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1. Introduction

A function M : Ri — R is called a bivariate mean (BM) if for all w,v > 0
min (w,v) < M (w,v) < max (w, v)
is valid. A BM is symmetric if for all w,v > 0
Mw,v)=M(@v,w)
1s valid. It is said to be homogeneous (of degree one) if for all 4, w,v > 0
M (Aw, Av) = AM (w,v)
is valid. If a BM M is differentiable on R?, then the function M, : R? — R defined by

M, (w,v) = MY (w*,v"*) if u # 0 and My (w, v) = WDy AD] (1.1)
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is called “u-order M mean”, where M, (x,y), M, (x,y) are the first-order partial derivatives in regard to
the first and second components of M(x,y), respectively (see [1]). For example, the arithmetic mean
(AM), logarithmic mean (LM) and identric mean (IM) are given by

v\ L/(v—=w)
+ —
Aw,v) = 22 L) = ——— Twv)=e|— :
2 Inw-—-1nv ww

respectively, then

Wi+ i\
A,(w,v) = ( > ) ifu+0and Ay (w,v) = Vwv, (1.2)
wh — V¥ L
L,(w,v) = (—) ifu # 0and Ly (w,v) = Vwv, (1.3)
u(lnw —Inv)
py 10w
L,(w,v) = e'/" (vz—w) ifu#0andIy(w,v) = Vwy (1.4)

are u-order AM, u-order LM and u-order IM, respectively. As usual, the u-order AM is still called
u-order PM. Correspondingly, since the form of M, is similar to PM A,, it is also known simply
as “power-type mean”. More general means than power-type mean including Stolarsky means, Gini
means, and two-parameters functions, etc., which can be seen in [2-7].

For those means with parameters, there are many nice properties including monotonicity, (log-)
convexity, comparability, additivity, stability and inequalities, which can be found in [8-17].

In this paper, we are interested in the properties of the PM A,. As is well-known that u — A, (w, v)
is increasing on R (see [5]). The log-convexity of u — A, (w,v), L,(w,v) and I, (w,v) is a direct
consequence of [9, Conclusion 1. 1)] when g = 0, that is,

Theorem 1. The functions u — A, (w,v), L, (w,v) and I, (w,v) are log-convex on (—0,0) and log-
concave on (0, o).

The log-convexity of the function u — A, (w,v) was reproved in [19] by Begea, Bukor and Tohb.
The authors proposed an open problem on the convexity of the function u — A, (w, v):

Problem 1. Prove that

1
inf0 {u: A,(w,v) is concave for variable u € R} = > In2,
w,v>
1
sup {u : A,(w,v) is convex for variable u € R} = 5
w,v>0

Problem 1 was proven by Matejic¢ka in [20]. In 2016, Raisouli and Séandor [16, Problem 1] proposed
the following problem.

Problem 2. Let p,q,r € R with g > r > p. Are there 0 < B, < 1 with 8 > «, such that the double
inequality
(I-)A,+aA; <A, <(1-PA, +PA,

holds? If it is positive, what are the best 8 and a?
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Clearly, this problem is partly related to the convexity of u +— A, (w,v). Motivated by Problem
2, the main purpose of this paper is to investigate completely the convexity of u — A, (w,v) on R
and s = A, (w,v) with u(s) = (In2) /In(1/s) on (0, ). As applications, some new inequalities
for power means are established, and an answer to Problem 2 is given. Final, three problems on the
convexity of certain power-type means and inequalities are proposed.

It should be noted that a homogeneous BM can be represented by the exponential functions. If
M (x,y) is a HM of positive arguments x and y, then M (x, y) can be represented as

M (x,y) = \xyM (¢, e™),

where t = (1/2)In(x/y). Further, if M (x,y) is symmetric, then M (x,y) can be expressed in terms of
hyperbolic functions (see [18, Lemma 3]). For example, in view of symmetry, we suppose v > w > 0.
Then we find t = (1/2)In(v/w) > 0. Thus the PM A, (w,v), u-order LM L, (w,v) and u-order IM
I, (w,v) can be represented as

AOnV) _ Lu(w,v)_[sinh(ut)]l/” Lwy) _ [ t _1]
N oWy ut oWy tanh (ut) u

if u #0.
The first result of the paper is the following theorem.
Theorem 2. The function u — A, (w,Vv) is convex on (—00,1n \/i) and concave on (1/2,0) for all

w,v > O withw # v. While u € (ln V2, 1/2), the function u — A, (w,v) is concave then convex.
Equivalently, the function
F, (u) = cosh'" (ut)

is convex (concave) for all t > 0 if and only if u < In V2 (u > 1/2). While In V2 <u< 1/2, there is a
U € (ln V2, 1/2) such that F; (1) is concave on (ln V2, ul) and convex on (uy, 1/2).

Remark 1. Theorem 2 not only gives an answer to Problem 1, but also describes completely the
convexity of the function u — A, (w,v) on R.

Remark 2. By Theorems 1 and 2, we see that the function u — A, (w,v) has the following (log-)
convexity:

u (—0,0) (0,1n «/i) (1n x/i,l/z) (1/2, )
A, U U NU N
InA, U N N N

where and in what follows the symbols “U” and “N” denote the given function are convex and concave,
“NU” and “UN” denote the given function are “concave then convex” and “convex then concave”,
respectively.

The second and third results of the paper are the following theorems.

Theorem 3. Suppose w,v > 0 andw # v. The function s — A, (W,v) withu = u(s) = (In2) /In(1/s)
is convex on (e‘z, 1) and concave on (1, 00). While s € (0, e‘z), the function s = A, (W, V) is convex
then concave. Equivalently, the function

In2

G, (s) = cosh'" (ut), where u = )
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is convex (concave) for all t > 0 if and only if s € (e‘z, 1) (s € (1,00)). While s € (O, e‘z), there is a

55 € (O, 6_2) such that G, (s) is convex on (O, s;) and concave on (s;, e‘2).

Theorem 4. Suppose w,v > 0 and a # b. The function s — A, (W, v) with u(s) = (In2) /In(1/s) is
log-concave on (0, e‘z) U (1, 00). Equivalently, the function G, (s) is log-concave for all t > 0 if and

only if s € (0, e‘z) U (1, c0).

Remark 3. By Theorems 3 and 4, the function s — A, (w, V) has the following (log-) convexity:

S (50 I ) WS
Agsy UN U N
In Au(s) N N

2. Tools

To prove the lemmas listed in Sections 3—-5, we need two tools. The first is the so-called L’Hospital
Monotone Rule (LMR), which appeared in [21] (see also [22]).

Proposition 1. Suppose —co < a < b < oo, ¢ and Y are differentiable functions on (a,b). Suppose
also the derivative ' is nonzero and does not change sign on (a,b), and ¢(a*) = Y(a*) = 0 or

db7)=w(b™) = 0. If ¢’ /¥ is increasing (decreasing) on (a, b) then so is ¢ /.

Before stating the second tool, we present first an important function Hy,. Assume that ¢ and y
are differentiable functions on (a, b) with ¢’ # 0, where —co0 < a < b < co. It was introduced by Yang
in [23, Eq (2.1)] that

Hyy = (ﬂ,d/ - ¢, 2.1)
¥
which we call Yang’s H-function. This function has some good properties, see [23, Properties 1 and 2],
and plays an important role in the proof of a monotonicity criterion for the quotient of two functions,
see for example, [24-28].

To study the monotonicity of the ratio ¢/y on (a, b), Yang [23, Property 1] presented two identities

in term of H, ,, which state that, if ¢ and ¢ are twice differentiable with )’ # 0 on (a, b), then

(5 - 55450
H;, = (%) Y. (2.3)

3. Proof of Theorem 2

In order to prove Theorem 2, we need the following lemma.

Lemma 1. Let hy (x) = f; (x) /g1 (x), where

fi(x) = (xtanhx —In(coshx))?, (3.1
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2
—2In(coshx). (3.2)

(x) = 2xtanhx-—
&1 cosh? x

Then hy (x) is strictly decreasing from (0, o) onto (ln V2,1 / 2).

Proof. Differentiation yields

2 2
fix) = x2 (xtanh x — Incosh x) := x2 H (),
cosh” x cosh” x
x?sinh x 2x
1) = = (x),
&1 () cosh® x cosh? xg2
where
f>(x) = xtanh x —Incoshx, g, (x)= xtanhux;
X x + cosh x sinh x
() = ———, g =
S cosh? x 82 cosh? x
Then

O AW
G0 T 2@
O x I

g,(x)  x+coshxsinhx 1+sinh(2x)/(2x)

Clearly, for x € (0, 00), g} (x) > 0, and hence, g; (x) > g, (0) = 0. Since sinh (2x) / (2x) is strictly
increasing for x € (0, c0), it is readily seen that for x € (0, c0), the function f (x) /g, (x) is strictly
decreasing. Due to f,(0) = g,(0) = 0, so is f>(x) /g (x) by Proposition 1. Similarly, in view of
f1(0) =g, (x) =0,s0is f (x) /g1 (x) = hy (x) using Proposition 1 again. An easy computation gives
fl(x)_l fl(x)_l

lim =— and lim =—1In2,
x—0 g4 (x) 2 x—00 g (x) 2

thereby completing the proof. O
Now we shall prove Theorem 2.

Proof of Theorem 2. Differentiation yields

t 1
Fl(u) = - cosh'/*“! (ur) sinh (ur) — " cosh'’ (ur) In cosh (ur),

1
F/(u) = — sinh(ut)[(1 - u) (ut) sinh (ur) — cosh (uz) In cosh (ur)] cosh'/* " (ut)

u
t

+— [ut cosh (ut) — sinh (ut)] cosh"*~" (ur)
u
1

- [ut sinh (uf) — cosh (uf) In cosh (ur)] cosh'*~! (ur) In cosh (ur)
u

1
—— [uz tanh (ur) — 2 In cosh (ut)] cosh'/* (ut) .
u
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Letting ut = x and simplifying give

Lt4

thz()F” () = x(sinhx)[(1 — u) xsinh x — cosh x1n cosh x]
cos ut

t
+ux (x cosh x — sinh x) cosh x
— (x sinh x — cosh x In cosh x) cosh x In cosh x

—u (xtanh x — 2 In cosh x) cosh® x

= u [2 cosh? x In cosh x + x*> — 2x cosh x sinh x]
+ (xsinh x — cosh xIn cosh x)* = — [u — hy (x)] g1 (x) cosh? x,

where /; (x) and g, (x) are given in Lemma 1. Since /; (x) and g, (x) are even on (—co, o0) and g; (x) =
g1 (|x]) > 0 shown in Lemma 1, F" (1) > (<) 0 for ¢ > 0 if and only if

O1 (@) =u—h(jut) <(=0).
From Lemma 1 we find
Q) (1) = —[ul B} (|ut]) > 0
for all # > 0 and

ltLHOl O1() = u- ltl_%lhl (jut]) = u - 3
1
ImQ;(t) = u—-limh (lut|) =u- > In 2.
t—o0 t—oo
We conclude thus that F;" (u) > (<) 0 for all # > 0 if and only if
11 1 11 1
u< min{i, Ean} = Eln2 oru > max{i, Ean} = 5
When In V2 < u < 1/2, since Q/ () > 0 with Q; (0*) = u— 1/2 < 0 and Q, () = u —In V2 > 0,
there is a #; = #; (u) such that Q; (f) < 0 on (0, #) and Q; (r) > 0 on (#;, o), where ¢, is a solution of the
equation
Q1 (1) = u— hy (Jut]) = 0. (3.3)
Since for x € (0, c0), the function h; (x) is strictly decreasing, the inverse of A, exists and so is h[l.
Solving the equation (3.3) for ¢ yields

i w

= Tl (M)

Noting that 1/u and hl‘1 (1) are both positive and decreasing, so is r = Ty (u). This implies u = T NG
exists and strictly decreasing on (0, co). It then follows that

te (0.n) & ue (T (1), 1/2) = . 1/2),

t e (t,0) & ue(ln V2,17 (1)) = (In V2.uy),

where u; = T7' (1)).

We thus arrive at that
>0 ifue,l/2),

F (”){ <0 ifue(n V2, u),

which completes the proof. O
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4. Proof of Theorem 3

Lemma 2. The function

(In2) (x sinh x — (cosh x) In cosh x) cosh x — (x sinh x — (cosh x) In cosh x)?
2

hy (x) =

X
is strictly decreasing from (0, o) onto (O, In \/5)
Proof. We write

(xtanh x — In cosh x) In2 — (x tanh x — In cosh x)* R EYEY)

hy (x) =

x2/ cosh? x g )]
where
f3(x) = (xtanhx —Incoshx)In2 — (xtanh x — In cosh x)?,
2
X
(x) = :
& cosh? x

It is easy to check that
f3(0) = g3(0) = f3(c0) = g3(c0) = 0.

Differentiation yields

xIn?2 X
(x) = — 2 (xtanh x — Incosh x = x),
5@ cosh? x ( ) cosh? x cosh? xf4 )
cosh x — xsinh x X
50 = 2x = (x),
8 cosh® x cosh? xg4
where
fa(x) = In2—-2(xtanhx —Incoshx),
g4+(x) = 2—2xtanhux;
, 2x
X) = — ,
fi@ cosh? x
, X + cosh x sinh x
84 (X) = -2 2
cosh” x
Then
f;(x)  In2-2(xtanhx—Incoshx)  f3(x)
gi(x) 2 —2xtanh x g ()’
Jfi (%) x 1

gy (x) X + cosh x sinh x B 1 + sinh (2x) / (2x)’

where g4 (x) # 0. As shown in the proof of Lemma 1, f; (x) /g} (x) is strictly decreasing on (0, c0).
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Since f; (x) < 0 with f;(0) = In2 and f; (c0) = —1In2, there is an x; > 0 such that f; (x) > 0 on
(0, x;) and f; (x) < 0 on (x;, 00). Likewise, the facts that g} (x) < 0 with g4(0) = 2 and g4 (c0) = —oc0
implies that there is an x, > 0 such that g4 (x) > 0 on (0, x,) and g4 (x) < 0 on (x,, o). We claim that
x1 <In3 < x,. In fact, since

8 5
fa(In3) = ln2—§ln3+21n§<0,
g4(In3) = 2—§1n3>0,

it is deduced that x; € (0,1n3) and x, € (In 3, o), and therefore, x; < In3 < x,.
We next prove that s, = f3/g3 is strictly decreasing on (0, co) by distinguishing two cases.
Case 1: x € (0,x2). Due to x; < In3 < x, we have f; (x2) < 0, g4 (x2) = 0. Since (f; /g;)' < 0 for

x € (0, 00), g4 > 0 for x € (0, x;), by the second identity (2.3) it is seen that H}4’g4 = (ﬁ/gj‘)l g4 < 0 for
x € (0, x5). On the other hand, we see that

. i
Hp o (x0) = Iim | ———g4 (x) = f4(x)| = —f4 (x2) > 0. 4.1)
=23 | g4 (X)

Then Hy, 4, (x) > Hy, o, (x2) > 0 for x € (0, x,). Due to g} (x) < 0, it follows from the first identity (2.2)
that

(ﬁ) =8y, <Oforxe (0, x).

84 1

In view of f;3(0) = g3 (0) = 0, by Proposition 1 we find that h, = f3/g3 is strictly decreasing on (0, x,).
Case 2: x € (x,, ). We have f; (x,) < 0, g4 (x2) = 0. Since (f;/g}) < 0 for x € (0,00), g4 < 0 for

x € (x2, 00), by the second identity (2.3) it is deduced that H/, = (f; /gg)' g4 > 0 for x € (x,, ). This

together with (4.1) gives that Hy, o, (x) > Hy,,, (x2) > 0 for x € (x;,00). Due to g (x) < 0, it follows

that

(é) = g—;‘lLIfM4 < 0 for x € (xy, 00).
84 P
In view of f; (c0) = g3 (c0) = 0, by Proposition 1 we deduce that h, = f3/g3 is strictly decreasing on
(X2, 00).

Taking into account Cases 1 and 2 as well the continuity of the function g3 (x) at x = x;, we
conclude that h, = f3/g3 1s strictly decreasing on (0, co). An easy calculation yields £, (0) = In V2 and
h, (00) = 0, and the proof is completed. O

Now we shall prove Theorem 3.
Proof of Theorem 3. Differentiation give

cosh'" ! (ur) In2
u? sln? s
cosh'/*“ ! (ur)
sln2 ~

G, (s) = [utsinh (ut) — cosh (ut)Incosh (ut)]

= [ut sinh (ut) — cosh (ut) In cosh (ut)]

AIMS Mathematics Volume 5, Issue 6, 7285-7300.
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In2 cosh'“! (ur)
sln’s  sln2

G/ (s) = |uf®cosh(ur) - tsinh (u) Incosh (ur)|

+ [ut sinh (ut) — cosh (ut) In cosh (ut)]
y (1 = u) ut sinh (uf) — cosh (ut) In cosh (ur) cosh'/“~% (ur) 1n2

sin2 u’ sln* s
hl/u—l ¢
_ [ut sinh (uf) — cosh (ur) In cosh (u)] S0
521n2
Letting ut = x and simplifying give
?In*2
e 7(s) = u (x2 cosh x — x sinh x In cosh x) cosh x

cosh!“2 (ur)
+ (x sinh x — cosh x In cosh x)

X [(1 — u) x sinh x — cosh x In cosh x]

— (In2) (x sinh x — cosh xIn cosh x) cosh x

= ux* — [(In2) (xsinh x — cosh xIn cosh x) cosh x
— (xsinh x — cosh xIncosh x)*| = % [u — I ()],
where 5, (x) is as in Lemma 2. Since 5, (x) is even on (=00, 00), G} (5) > (<) 0 for all # > 0 if and only

if
0> () = u—hy(Jut]) = (< 0)

for ¢t > 0. From Lemma 2 we find
Q5 (1) = —|ul hy (Jut]) > O

for all > 0 and

1
IimQ,(#) = wu-limh,(ut]) =u—- -1In2,
—0 —0 2
IimQ,(t) = wu—1limh, (|lut]) = u.
t—o0 t—o0

We conclude thus that G}’ (s) > (<) 0 for all # > 0 if and only if

1 1 ) 1
> — = — < - =
u _max{0,2ln2} 2ln2 or u _m1n{0,21n2} 0,

which, by the relation u = (In2) /In(1/s), implies thate™> < s < 1 or s > 1.

When 0 < u(s) < In V2, that is, s € (0,In V2), since Q5 (#) > 0, 0>(0*) = u —In V2 < 0 and
0)(0) =u >0, thereisar, > 0suchthat O, () < 0,7 € (0,5,) and O, () > 0, t € (£, 00), where 1, is a
solution of the equation

Q> (1) = u — hy (Jut]) = 0. (4.2)

Since the function A, (x), (x > 0) is strictly decreasing, the inverse of &, exists and so is i ! Solving
the Eq (4.2) for ¢ yields

1
G
u
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Because that 1/u and h; ! (u) are both positive and strictly decreasing, so is t = T, (u). This implies
u=T; !'(¢) exists and strictly decreasing on (0, o). It then follows that

t € (0.1) & ue(Ty' (12).In V2) = (1. 1n V2),

€ (o) & ue(0.7;' (1) =(0.u).

where uy = T (1) € (0,In V2). We thus deduce that G/’ (s) < 0 for u € (up,In V2) and G/ (s) > 0
for u € (0,11,). Due to u = (In2) / In(1/s), it follows that G}’ (s) < 0 on u € (s3,72) and G}’ (s) > 0 on
(O, sz) where s3 = 27'/2. This completes the proof. O

5. Proof of Theorem 4

Lemma 3. The function

Iy () = xtanh x — In (zcosh X) 2
x%/ cosh” x

is strictly increasing from (0, o) onto (ln V2, oo).

Proof. As shown in Lemmas 1 and 2, x tanh x —In cosh x = £ (x) and x?/ cosh? x = g3 (x) with £, (0) =
g3(0) = 0. Since f (x) = x/ cosh? x > 0, we have £ (x) > f>(0) = 0 for x > 0. Note that

S0 ranhy,

£ ()
[g% (x)]' _ _2x+cosh)2csinhx 0.
1 (%) cosh? x

By Proposition 1 we deduce that g3 (x)/f;(x) is strictly decreasing on (0, o), which, due to
g3 (x) /o (x) > 0, implies that &3 (x) = [f>(x) /g3 (x)]In2 is strictly increasing on (0, ). A simple
computation yields

1
lir% hs (x) = 3 In2 and lim A3 (x) = oo,
which completes the proof. O
Based on Lemma 3, we now check Theorem 4.

Proof of Theorem 4. Differentiation yields

1 In2
(InG, ()" = [uttanh (ur) — Incosh (ur)] — ———
U sln”s
_uttanh (uf) — In cosh (ur)
- sIn2 ’
ut’ n2 1 ut tanh (ut) — In cosh (uz)
InG, ()" = -
[InG: (s)] cosh? (uf) sIn* s sIn2 s2In2
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(ut)? u ut tanh (ut) — In cosh (ur)

cosh? (ut) $2In?2 s2In2 .

Letting ut = x and simplifying lead to

s21n’2 xtanh x — In cosh x

x2

(cosh2 x) [(InG,(s)]” = u~— In2=u-hs(x),

x2/ cosh? x
where /3 (x) is given in Lemma 3. Since /3 (x) is even on (—oo, 00), [In G, (5)]” > (<) 0 for ¢ > 0 if and
only if
Q5 () =u—hs (jut]) = (< 0)
for # > 0. From Lemma 3 we get
Q5 (1) = — |ul hs (|ut]) < 0

for ¢ > 0 and
1
IimQ;(t) = u-limh;(lut]) =u— =In2,
t—0 t—0 2
Iim Q3 () = wu—limh; (Jut]) = —co.
t—o0 1—00

We conclude thus that [InG, (s)]” < 0 for all 7 > 0 if and only if u < In V2, which, by the relation
u = (In2)/In(1/s), implies that 0 < s < e~2 or s > 1. This completes the proof. O

6. Several new inequalities

Using Theorems 2 and 4, we get the following corollary.

Corollary 1. Suppose w,v >0, w # v. If p < r < g < In V2, then the double inequality

A, W, ) AL (wvf < A (w,v) < (1= ) A, (W, v) + oA, (W, V) (6.1)
holds, where y y
_r—p _ 277
oy = q—p and ,80 = m (62)

The second inequality of (6.1) is reversed if 1/2 < p <r <gq.

Proof. By Theorem 4, the function s — InA, (w, V) is concave on (0, €21 U (1, 00). Then for s; €
(0,e7?] or s; € (1,00), i = 1,2, 3, using the property of convex functions we have

InAysy) (W, v) = In Ay, (W, v) S In Ay W, v) = InA, iy (w,v)

, (6.3)

$H — §1 §3 — 81
which is equivalent to

§3

— 5 A\p)
lIlAu(s]) (W, V) +
381

— 0 Ay (W,1) - (6.4)
§3 — 81 ’

InA,q;,) w,v) >
Let (u(sy),u(s2),u(s3)) = (p,r,q). Then by the relation u (s) = (In2) /In(1/s) we get (sy, 52, 53) =
(2‘”1’, 27, 2‘”‘1) with In V2 < p < r < ¢. The inequality (6.4) thus becomes to the left hand side
inequality of (6.1).
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From Theorem 2, the function u — A, (w, v) is convex on (—oo, In \/5) and concave on (1/2, ),
where w,v > 0, w # v. Then for p < r < ¢ < In V2 the right hand side inequality of (6.1) holds, which
is reversed if 1/2 < p < r < g. This completes the proof. O

Using Theorems 1 and 3, we obtain the following corollary.
Corollary 2. Suppose w,v > 0, w # v. IfIn V2 < p < r < gq, then the double inequality
A, (w, p)l-ao Ay (W, )™ <A, (w,v) < (1 =Bo)A, (w,v) +BoA, (W, V) (6.5)
holds, where ay and By are given in (6.2) are the best constants. The double inequality (6.5) is reversed
if p <r < q < 0 with the best constants ay and .

Proof. By Theorem 1 the function u — In A, (w, v) is convex on (—oo, 0) and concave on (0, co). This
implies that, for 0 < p < r < g (p < r < g <0), the inequality

L= 1A, w.v) + —L A, (w,v) < (>)InA, (w,v)
q-p

holds, that is,
A, W, )T AL (W, 1) < (3) A, (W, V).

By Theorem 3, the function s — A, (w, V) is convex on [e2, 1) and concave on (1, o). Then for
s;ele2,1),i=1,2,3, with s; < 5, < 53, by the property of concave functions we have

Au(sz) (W’ V) - Au(S|) (W, V) < Au(s_;) (W’ V) - Au(s1) (W’ V) , (66)

§2 = 81 §3 — 81
which is equivalent to

§3 — 82 §2 — 81

Au(sz) (W’ V) <

Au(sl) (W, V) +
53— 85 §3 — 81

Au(S3) (W, V) . (67)

Let (u(sy),u(s2),u(s3)) = (p,r,q). Then by the relation u (s) = (In2) /In(1/s) we get (sy, 2, §3) =
(2‘1/1’, 2-Ur, 2‘1/q) with In V2 < p < r < ¢. The inequality (6.7) thus becomes to the right hand side
inequality of (6.5).

If s; € (1,00),7 =1,2,3, with 5; < 5, < 53, by the property of concave functions, the inequality
(6.6) is reversed, and so is the right hand side inequality of (6.5)if p <r < g < 0.

Without loss of generality, we suppose that 0 < w < v. Then ¢ = In vv/w > 0. Due to

InA, (w,v) —InA, (w,v)
vowInA, (w,v) —1nA, (w,v)

Incosh'’" (r¢) — Incosh!’” (p¢) _r—p

= 1m 1/ 1/ - = @,

s—=0 Incosh /¥ (gg) —Incosh'’? (pg) qg—1p
. Ar (W, V) - Ap (W’ V)

lim

y—00 Aq (W’ V) - Ap (W, V)

cosh'” (r¢) —cosh'’? (pg) ~ 271/r—2-lr
= lm 1 1 = 5oy “i7, = Po
s—e cosh /¥ (gg) — cosh''? (pg) 2714 =274/p
for max {p, g, r} < 0or min{p,q,r} > 0, ay and S, are the best. This completes the proof. O
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Similarly, by means of Theorems 1 and 4 we can prove the following corollary, all the details of
proof are omitted here.

Corollary 3. Suppose w,v >0, w#v. If p<r <q <0, then
A, (w, )l Ay (w, W< A, (w,v) < A, (w, p)l-a A, (w, V)™,
where ay and By are given in (6.2).

By means of Corollaries 1 and 2, we have

Corollary 4. Suppose p,q,r € R, p < r < q. (i) If p > 1/2, then for w,v > 0, w # v the double
mean-inequality

(I1=-BA,(w,v)+BA,(w,v) > A, (w,v) > -a)A,(w,v) + @A, (W, V) (6.8)
is valid if and only if
r—p 2-Ur _p-lp
a <= andﬁZﬁozm.

(ii) If g < O, then for w,v > 0, w # v the double inequality (6.8) is reversed if and only if « > ay and
B < Bo.

Proof. (i) Necessity. Since w,v > 0 with w # v, we suppose v > w > 0. Then ¢ = In vv/w > 0. If the
first inequality of (6.8) holds for all v > w > 0, then

cosh'” (r¢) — cosh'’” (pg) _r—=p

a < lim : 1 = = Q@o-
50 cosh!/? (¢¢) — cosh'? (pg)  q—p

If the second inequality of (6.8) is valid for v > w > 0, then

> lim cosh'”” (r¢) — cosh'’? (pg)  271/r—2-1lp iy
= - = 0.
s—e0 cosh!/? (gs) — cosh!/? (<) 2-1/q —2-1/p

Sufficiency. By Corollaries 1 and 2, the reverse of the right hand side inequality in (6.1) for @ = g
and the inequality (6.5) for 8 = By both hold if 1/2 < p < r < g, that is, for w,v > 0, w # v and
(a,B) = (g, Bo), the double inequality (6.8) is valid. It is easy to find that, for @ < ay,

A, (w,v) > (I —ap) A, (w,v) + @A, (w,v) 2 (1 —a)A, (w,v) + @A, (W, V),
and for 8 > B,
(I1-PA, w,v)+BA,(w,v) > (1 =Bo)A, W, V) + oA, (w,v) > A, (w,v).

This proves the sufficiency.
(i1) The second assertion of this theorem can be proven in a similar way. This completes the proof.
O

Remark 4. Clearly, Corollary 4 gives an answer to Problem 2.
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7. Conclusions

In this paper, we completely described the convexity of u — A, (w,v) on R and s — A, (w,v),
InA, (w,v) withu (s) = (In2) /In(1/s) on (0, c0) by using two tools. From which we obtained several
new sharp inequalities involving the power means (Corollaries 1-4), where Corollary 4 gives an answer
to Problem 2. Moreover, we gave another new proof of Problem 1.

Final inspired by Theorems 1-4, we propose the following problem.

Problem 3. For all w,v > 0, w # v, determine the best p € R such that the functions p — L, (w, V),
I, (w,v) are convex or concave .

The second problem is inspired by Corollary 3 and Problem 2.

Problem 4. Suppose p,q,r € Rwith p < r < q and v,w > 0 with v # w. Determine the best
a,B € (0, 1) with a < B such that the double inequality

A, (w, iF A, (w, VW< A, (w,v) < A, (w, vl A, (w,v)"

is valid.

It was shown in [29, Lemma 6] (see also [30, 31]) that the function p +— 21/1’A,, (w,v) is strictly
decreasing and log-convex on (0, o). Motivated by this, it is natural to propose the following problem.

Problem 5. Describe the convexity of the function p — 2'/PA » (W, v) on (=00, 0) and (0, c0).
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