

Research article**Properties of the power-mean and their applications****Jing-Feng Tian**^{1,2,*}, **Ming-Hu Ha**³ and **Hong-Jie Xing**⁴¹ School of Management, Hebei University, Wusi Road 180, Baoding 071002, P. R. China² Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, P. R. China³ School of Science, Hebei University of Engineering, Taiji Road 19, Handan 056038, P. R. China⁴ College of Mathematics and Information Science, Hebei University, Wusi Road 180, Baoding 071002, P. R. China*** Correspondence:** Email: tianjf@ncepu.edu.cn; Tel: +8603127525072.

Abstract: Suppose $w, v > 0$, $w \neq v$ and $A_u(w, v)$ is the u -order power mean (PM) of w and v . In this paper, we completely describe the convexity of $u \mapsto A_u(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln(1/s)$ on $(0, \infty)$. These yield some new inequalities for PMs, and give an answer to an open problem.

Keywords: power mean; power-type mean; convexity; inequality**Mathematics Subject Classification:** 26E60, 26A51**1. Introduction**

A function $M : \mathbb{R}_+^2 \mapsto \mathbb{R}$ is called a bivariate mean (BM) if for all $w, v > 0$

$$\min(w, v) \leq M(w, v) \leq \max(w, v)$$

is valid. A BM is symmetric if for all $w, v > 0$

$$M(w, v) = M(v, w)$$

is valid. It is said to be homogeneous (of degree one) if for all $\lambda, w, v > 0$

$$M(\lambda w, \lambda v) = \lambda M(w, v)$$

is valid. If a BM M is differentiable on \mathbb{R}_+^2 , then the function $M_u : \mathbb{R}_+^2 \mapsto \mathbb{R}$ defined by

$$M_u(w, v) = M^{1/u}(w^u, v^u) \text{ if } u \neq 0 \text{ and } M_0(w, v) = w^{M_x(1,1)}v^{M_y(1,1)}, \quad (1.1)$$

is called “ u -order M mean”, where $M_x(x, y)$, $M_y(x, y)$ are the first-order partial derivatives in regard to the first and second components of $M(x, y)$, respectively (see [1]). For example, the arithmetic mean (AM), logarithmic mean (LM) and identric mean (IM) are given by

$$A(w, v) = \frac{w + v}{2}, \quad L(w, v) = \frac{w - v}{\ln w - \ln v}, \quad I(w, v) = e^{-1} \left(\frac{v^v}{w^w} \right)^{1/(v-w)},$$

respectively, then

$$A_u(w, v) = \left(\frac{w^u + v^u}{2} \right)^{1/u} \quad \text{if } u \neq 0 \text{ and } A_0(w, v) = \sqrt{wv}, \quad (1.2)$$

$$L_u(w, v) = \left(\frac{w^u - v^u}{u(\ln w - \ln v)} \right)^{1/p} \quad \text{if } u \neq 0 \text{ and } L_0(w, v) = \sqrt{wv}, \quad (1.3)$$

$$I_u(w, v) = e^{-1/u} \left(\frac{v^u}{w^w} \right)^{1/(v^u - w^u)} \quad \text{if } u \neq 0 \text{ and } I_0(w, v) = \sqrt{wv} \quad (1.4)$$

are u -order AM, u -order LM and u -order IM, respectively. As usual, the u -order AM is still called u -order PM. Correspondingly, since the form of M_u is similar to PM A_u , it is also known simply as “power-type mean”. More general means than power-type mean including Stolarsky means, Gini means, and two-parameters functions, etc., which can be seen in [2–7].

For those means with parameters, there are many nice properties including monotonicity, (log-)convexity, comparability, additivity, stability and inequalities, which can be found in [8–17].

In this paper, we are interested in the properties of the PM A_u . As is well-known that $u \mapsto A_u(w, v)$ is increasing on \mathbb{R} (see [5]). The log-convexity of $u \mapsto A_u(w, v)$, $L_u(w, v)$ and $I_u(w, v)$ is a direct consequence of [9, Conclusion 1. 1)] when $q = 0$, that is,

Theorem 1. *The functions $u \mapsto A_u(w, v)$, $L_u(w, v)$ and $I_u(w, v)$ are log-convex on $(-\infty, 0)$ and log-concave on $(0, \infty)$.*

The log-convexity of the function $u \mapsto A_u(w, v)$ was reproved in [19] by Begea, Bukor and Tóhb. The authors proposed an open problem on the convexity of the function $u \mapsto A_u(w, v)$:

Problem 1. *Prove that*

$$\begin{aligned} \inf_{w, v > 0} \{u : A_u(w, v) \text{ is concave for variable } u \in \mathbb{R}\} &= \frac{1}{2} \ln 2, \\ \sup_{w, v > 0} \{u : A_u(w, v) \text{ is convex for variable } u \in \mathbb{R}\} &= \frac{1}{2}. \end{aligned}$$

Problem 1 was proven by Matejíčka in [20]. In 2016, Raïsouli and Sándor [16, Problem 1] proposed the following problem.

Problem 2. *Let $p, q, r \in \mathbb{R}$ with $q > r > p$. Are there $0 < \beta, \alpha < 1$ with $\beta > \alpha$, such that the double inequality*

$$(1 - \alpha)A_p + \alpha A_q < A_r < (1 - \beta)A_p + \beta A_q$$

holds? If it is positive, what are the best β and α ?

Clearly, this problem is partly related to the convexity of $u \mapsto A_u(w, v)$. Motivated by Problem 2, the main purpose of this paper is to investigate completely the convexity of $u \mapsto A_u(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln(1/s)$ on $(0, \infty)$. As applications, some new inequalities for power means are established, and an answer to Problem 2 is given. Final, three problems on the convexity of certain power-type means and inequalities are proposed.

It should be noted that a homogeneous BM can be represented by the exponential functions. If $M(x, y)$ is a HM of positive arguments x and y , then $M(x, y)$ can be represented as

$$M(x, y) = \sqrt{xy}M(e^t, e^{-t}),$$

where $t = (1/2)\ln(x/y)$. Further, if $M(x, y)$ is symmetric, then $M(x, y)$ can be expressed in terms of hyperbolic functions (see [18, Lemma 3]). For example, in view of symmetry, we suppose $v > w > 0$. Then we find $t = (1/2)\ln(v/w) > 0$. Thus the PM $A_u(w, v)$, u -order LM $L_u(w, v)$ and u -order IM $I_u(w, v)$ can be represented as

$$\frac{A_u(w, v)}{\sqrt{wv}} = \cosh^{1/u}(ut), \quad \frac{L_u(w, v)}{\sqrt{wv}} = \left[\frac{\sinh(ut)}{ut} \right]^{1/u}, \quad \frac{I_u(w, v)}{\sqrt{wv}} = \exp \left[\frac{t}{\tanh(ut)} - \frac{1}{u} \right]$$

if $u \neq 0$.

The first result of the paper is the following theorem.

Theorem 2. *The function $u \mapsto A_u(w, v)$ is convex on $(-\infty, \ln \sqrt{2})$ and concave on $(1/2, \infty)$ for all $w, v > 0$ with $w \neq v$. While $u \in (\ln \sqrt{2}, 1/2)$, the function $u \mapsto A_u(w, v)$ is concave then convex. Equivalently, the function*

$$F_t(u) = \cosh^{1/u}(ut)$$

is convex (concave) for all $t > 0$ if and only if $u \leq \ln \sqrt{2}$ ($u \geq 1/2$). While $\ln \sqrt{2} < u < 1/2$, there is a $u_1 \in (\ln \sqrt{2}, 1/2)$ such that $F_t(u)$ is concave on $(\ln \sqrt{2}, u_1)$ and convex on $(u_1, 1/2)$.

Remark 1. *Theorem 2 not only gives an answer to Problem 1, but also describes completely the convexity of the function $u \mapsto A_u(w, v)$ on \mathbb{R} .*

Remark 2. *By Theorems 1 and 2, we see that the function $u \mapsto A_u(w, v)$ has the following (log-)convexity:*

u	$(-\infty, 0)$	$(0, \ln \sqrt{2})$	$(\ln \sqrt{2}, 1/2)$	$(1/2, \infty)$
A_u	\cup	\cup	$\cap \cup$	\cap
$\ln A_u$	\cup	\cap	\cap	\cap

where and in what follows the symbols “ \cup ” and “ \cap ” denote the given function are convex and concave, “ $\cap \cup$ ” and “ $\cup \cap$ ” denote the given function are “concave then convex” and “convex then concave”, respectively.

The second and third results of the paper are the following theorems.

Theorem 3. *Suppose $w, v > 0$ and $w \neq v$. The function $s \mapsto A_{u(s)}(w, v)$ with $u = u(s) = (\ln 2) / \ln(1/s)$ is convex on $(e^{-2}, 1)$ and concave on $(1, \infty)$. While $s \in (0, e^{-2})$, the function $s \mapsto A_{u(s)}(w, v)$ is convex then concave. Equivalently, the function*

$$G_t(s) = \cosh^{1/u}(ut), \quad \text{where } u = \frac{\ln 2}{\ln(1/s)}$$

is convex (concave) for all $t > 0$ if and only if $s \in (e^{-2}, 1)$ ($s \in (1, \infty)$). While $s \in (0, e^{-2})$, there is a $s_2^* \in (0, e^{-2})$ such that $G_t(s)$ is convex on $(0, s_2^*)$ and concave on (s_2^*, e^{-2}) .

Theorem 4. Suppose $w, v > 0$ and $a \neq b$. The function $s \mapsto A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln(1/s)$ is log-concave on $(0, e^{-2}) \cup (1, \infty)$. Equivalently, the function $G_t(s)$ is log-concave for all $t > 0$ if and only if $s \in (0, e^{-2}) \cup (1, \infty)$.

Remark 3. By Theorems 3 and 4, the function $s \mapsto A_{u(s)}(w, v)$ has the following (log-) convexity:

s	$(0, e^{-2})$	$(e^{-2}, 1)$	$(1, \infty)$
$A_{u(s)}$	$\cup \cap$	\cup	\cap
$\ln A_{u(s)}$	\cap		\cap

2. Tools

To prove the lemmas listed in Sections 3–5, we need two tools. The first is the so-called L'Hospital Monotone Rule (LMR), which appeared in [21] (see also [22]).

Proposition 1. Suppose $-\infty \leq a < b \leq \infty$, ϕ and ψ are differentiable functions on (a, b) . Suppose also the derivative ψ' is nonzero and does not change sign on (a, b) , and $\phi(a^+) = \psi(a^+) = 0$ or $\phi(b^-) = \psi(b^-) = 0$. If ϕ'/ψ' is increasing (decreasing) on (a, b) then so is ϕ/ψ .

Before stating the second tool, we present first an important function $H_{\phi, \psi}$. Assume that ϕ and ψ are differentiable functions on (a, b) with $\psi' \neq 0$, where $-\infty \leq a < b \leq \infty$. It was introduced by Yang in [23, Eq (2.1)] that

$$H_{\phi, \psi} := \frac{\phi'}{\psi'} \psi - \phi, \quad (2.1)$$

which we call Yang's H-function. This function has some good properties, see [23, Properties 1 and 2], and plays an important role in the proof of a monotonicity criterion for the quotient of two functions, see for example, [24–28].

To study the monotonicity of the ratio ϕ/ψ on (a, b) , Yang [23, Property 1] presented two identities in term of $H_{\phi, \psi}$, which state that, if ϕ and ψ are twice differentiable with $\psi\psi' \neq 0$ on (a, b) , then

$$\left(\frac{\phi}{\psi}\right)' = \frac{\psi'}{\psi^2} \left(\frac{\phi'}{\psi'} \psi - \phi\right) = \frac{\psi'}{\psi^2} H_{\phi, \psi}, \quad (2.2)$$

$$H'_{\phi, \psi} = \left(\frac{\phi'}{\psi'}\right)' \psi. \quad (2.3)$$

3. Proof of Theorem 2

In order to prove Theorem 2, we need the following lemma.

Lemma 1. Let $h_1(x) = f_1(x) / g_1(x)$, where

$$f_1(x) = (x \tanh x - \ln(\cosh x))^2, \quad (3.1)$$

$$g_1(x) = 2x \tanh x - \frac{x^2}{\cosh^2 x} - 2 \ln(\cosh x). \quad (3.2)$$

Then $h_1(x)$ is strictly decreasing from $(0, \infty)$ onto $(\ln \sqrt{2}, 1/2)$.

Proof. Differentiation yields

$$\begin{aligned} f'_1(x) &= \frac{2x}{\cosh^2 x} (x \tanh x - \ln \cosh x) := \frac{2x}{\cosh^2 x} f_2(x), \\ g'_1(x) &= 2 \frac{x^2 \sinh x}{\cosh^3 x} := \frac{2x}{\cosh^2 x} g_2(x), \end{aligned}$$

where

$$\begin{aligned} f_2(x) &= x \tanh x - \ln \cosh x, \quad g_2(x) = x \tanh x; \\ f'_2(x) &= \frac{x}{\cosh^2 x}, \quad g'_2(x) = \frac{x + \cosh x \sinh x}{\cosh^2 x}. \end{aligned}$$

Then

$$\begin{aligned} \frac{f'_1(x)}{g'_1(x)} &= \frac{f_2(x)}{g_2(x)}, \\ \frac{f'_2(x)}{g'_2(x)} &= \frac{x}{x + \cosh x \sinh x} = \frac{1}{1 + \sinh(2x)/(2x)}. \end{aligned}$$

Clearly, for $x \in (0, \infty)$, $g'_1(x) > 0$, and hence, $g_1(x) > g_1(0) = 0$. Since $\sinh(2x)/(2x)$ is strictly increasing for $x \in (0, \infty)$, it is readily seen that for $x \in (0, \infty)$, the function $f'_2(x)/g'_2(x)$ is strictly decreasing. Due to $f_2(0) = g_2(0) = 0$, so is $f_2(x)/g_2(x)$ by Proposition 1. Similarly, in view of $f_1(0) = g_1(0) = 0$, so is $f_1(x)/g_1(x) = h_1(x)$ using Proposition 1 again. An easy computation gives

$$\lim_{x \rightarrow 0} \frac{f_1(x)}{g_1(x)} = \frac{1}{2} \quad \text{and} \quad \lim_{x \rightarrow \infty} \frac{f_1(x)}{g_1(x)} = \frac{1}{2} \ln 2,$$

thereby completing the proof. \square

Now we shall prove Theorem 2.

Proof of Theorem 2. Differentiation yields

$$F'_t(u) = \frac{t}{u} \cosh^{1/u-1}(ut) \sinh(ut) - \frac{1}{u^2} \cosh^{1/u}(ut) \ln \cosh(ut),$$

$$\begin{aligned} F''_t(u) &= \frac{t}{u^3} \sinh(ut) [(1-u)(ut) \sinh(ut) - \cosh(ut) \ln \cosh(ut)] \cosh^{1/u-2}(ut) \\ &\quad + \frac{t}{u^2} [ut \cosh(ut) - \sinh(ut)] \cosh^{1/u-1}(ut) \\ &\quad - \frac{1}{u^4} [ut \sinh(ut) - \cosh(ut) \ln \cosh(ut)] \cosh^{1/u-1}(ut) \ln \cosh(ut) \\ &\quad - \frac{1}{u^3} [ut \tanh(ut) - 2 \ln \cosh(ut)] \cosh^{1/u}(ut). \end{aligned}$$

Letting $ut = x$ and simplifying give

$$\begin{aligned} \frac{u^4}{\cosh^{1/u-2}(ut)} F''_t(u) &= x(\sinh x)[(1-u)x \sinh x - \cosh x \ln \cosh x] \\ &\quad + ux(x \cosh x - \sinh x) \cosh x \\ &\quad - (x \sinh x - \cosh x \ln \cosh x) \cosh x \ln \cosh x \\ &\quad - u(x \tanh x - 2 \ln \cosh x) \cosh^2 x \\ &= u[2 \cosh^2 x \ln \cosh x + x^2 - 2x \cosh x \sinh x] \\ &\quad + (x \sinh x - \cosh x \ln \cosh x)^2 = -[u - h_1(x)]g_1(x) \cosh^2 x, \end{aligned}$$

where $h_1(x)$ and $g_1(x)$ are given in Lemma 1. Since $h_1(x)$ and $g_1(x)$ are even on $(-\infty, \infty)$ and $g_1(|x|) = g_1(|x|) > 0$ shown in Lemma 1, $F''_t(u) \geq (\leq) 0$ for $t > 0$ if and only if

$$Q_1(t) = u - h_1(|ut|) \leq (\geq) 0.$$

From Lemma 1 we find

$$Q'_1(t) = -|u| h'_1(|ut|) > 0$$

for all $t > 0$ and

$$\begin{aligned} \lim_{t \rightarrow 0} Q_1(t) &= u - \lim_{t \rightarrow 0} h_1(|ut|) = u - \frac{1}{2}, \\ \lim_{t \rightarrow \infty} Q_1(t) &= u - \lim_{t \rightarrow \infty} h_1(|ut|) = u - \frac{1}{2} \ln 2. \end{aligned}$$

We conclude thus that $F''_t(u) > (<) 0$ for all $t > 0$ if and only if

$$u \leq \min \left\{ \frac{1}{2}, \frac{1}{2} \ln 2 \right\} = \frac{1}{2} \ln 2 \text{ or } u \geq \max \left\{ \frac{1}{2}, \frac{1}{2} \ln 2 \right\} = \frac{1}{2}.$$

When $\ln \sqrt{2} < u < 1/2$, since $Q'_1(t) > 0$ with $Q_1(0^+) = u - 1/2 < 0$ and $Q_1(\infty) = u - \ln \sqrt{2} > 0$, there is a $t_1 = t_1(u)$ such that $Q_1(t) < 0$ on $(0, t_1)$ and $Q_1(t) > 0$ on (t_1, ∞) , where t_1 is a solution of the equation

$$Q_1(t) = u - h_1(|ut|) = 0. \quad (3.3)$$

Since for $x \in (0, \infty)$, the function $h_1(x)$ is strictly decreasing, the inverse of h_1 exists and so is h_1^{-1} . Solving the equation (3.3) for t yields

$$t = \frac{h_1^{-1}(u)}{u} = T_1(u).$$

Noting that $1/u$ and $h_1^{-1}(u)$ are both positive and decreasing, so is $t = T_1(u)$. This implies $u = T_1^{-1}(t)$ exists and strictly decreasing on $(0, \infty)$. It then follows that

$$\begin{aligned} t \in (0, t_1) &\iff u \in (T_1^{-1}(t_1), 1/2) = (u_1, 1/2), \\ t \in (t_1, \infty) &\iff u \in (\ln \sqrt{2}, T_1^{-1}(t_1)) = (\ln \sqrt{2}, u_1), \end{aligned}$$

where $u_1 = T_1^{-1}(t_1)$.

We thus arrive at that

$$F''_t(u) \begin{cases} > 0 & \text{if } u \in (u_1, 1/2), \\ < 0 & \text{if } u \in (\ln \sqrt{2}, u_1), \end{cases}$$

which completes the proof. \square

4. Proof of Theorem 3

Lemma 2. *The function*

$$h_2(x) = \frac{(\ln 2)(x \sinh x - (\cosh x) \ln \cosh x) \cosh x - (x \sinh x - (\cosh x) \ln \cosh x)^2}{x^2}$$

is strictly decreasing from $(0, \infty)$ onto $(0, \ln \sqrt{2})$

Proof. We write

$$h_2(x) = \frac{(x \tanh x - \ln \cosh x) \ln 2 - (x \tanh x - \ln \cosh x)^2}{x^2 / \cosh^2 x} := \frac{f_3(x)}{g_3(x)},$$

where

$$\begin{aligned} f_3(x) &= (x \tanh x - \ln \cosh x) \ln 2 - (x \tanh x - \ln \cosh x)^2, \\ g_3(x) &= \frac{x^2}{\cosh^2 x}. \end{aligned}$$

It is easy to check that

$$f_3(0) = g_3(0) = f_3(\infty) = g_3(\infty) = 0.$$

Differentiation yields

$$\begin{aligned} f'_3(x) &= \frac{x \ln 2}{\cosh^2 x} - 2(x \tanh x - \ln \cosh x) \frac{x}{\cosh^2 x} := \frac{x}{\cosh^2 x} f_4(x), \\ g'_3(x) &= 2x \frac{\cosh x - x \sinh x}{\cosh^3 x} = \frac{x}{\cosh^2 x} g_4(x), \end{aligned}$$

where

$$\begin{aligned} f_4(x) &= \ln 2 - 2(x \tanh x - \ln \cosh x), \\ g_4(x) &= 2 - 2x \tanh x; \end{aligned}$$

$$\begin{aligned} f'_4(x) &= -\frac{2x}{\cosh^2 x}, \\ g'_4(x) &= -2 \frac{x + \cosh x \sinh x}{\cosh^2 x}. \end{aligned}$$

Then

$$\begin{aligned} \frac{f'_3(x)}{g'_3(x)} &= \frac{\ln 2 - 2(x \tanh x - \ln \cosh x)}{2 - 2x \tanh x} = \frac{f_4(x)}{g_4(x)}, \\ \frac{f'_4(x)}{g'_4(x)} &= \frac{x}{x + \cosh x \sinh x} = \frac{1}{1 + \sinh(2x)/(2x)}, \end{aligned}$$

where $g_4(x) \neq 0$. As shown in the proof of Lemma 1, $f'_4(x)/g'_4(x)$ is strictly decreasing on $(0, \infty)$.

Since $f'_4(x) < 0$ with $f_4(0) = \ln 2$ and $f_4(\infty) = -\ln 2$, there is an $x_1 > 0$ such that $f_4(x) > 0$ on $(0, x_1)$ and $f_4(x) < 0$ on (x_1, ∞) . Likewise, the facts that $g'_4(x) < 0$ with $g_4(0) = 2$ and $g_4(\infty) = -\infty$ implies that there is an $x_2 > 0$ such that $g_4(x) > 0$ on $(0, x_2)$ and $g_4(x) < 0$ on (x_2, ∞) . We claim that $x_1 < \ln 3 < x_2$. In fact, since

$$\begin{aligned} f_4(\ln 3) &= \ln 2 - \frac{8}{5} \ln 3 + 2 \ln \frac{5}{3} < 0, \\ g_4(\ln 3) &= 2 - \frac{8}{5} \ln 3 > 0, \end{aligned}$$

it is deduced that $x_1 \in (0, \ln 3)$ and $x_2 \in (\ln 3, \infty)$, and therefore, $x_1 < \ln 3 < x_2$.

We next prove that $h_2 = f_3/g_3$ is strictly decreasing on $(0, \infty)$ by distinguishing two cases.

Case 1: $x \in (0, x_2)$. Due to $x_1 < \ln 3 < x_2$, we have $f_4(x_2) < 0$, $g_4(x_2) = 0$. Since $(f'_4/g'_4)' < 0$ for $x \in (0, \infty)$, $g_4 > 0$ for $x \in (0, x_2)$, by the second identity (2.3) it is seen that $H'_{f_4, g_4} = (f'_4/g'_4)' g_4 < 0$ for $x \in (0, x_2)$. On the other hand, we see that

$$H_{f_4, g_4}(x_2) = \lim_{x \rightarrow x_2^+} \left[\frac{f'_4(x)}{g'_4(x)} g_4(x) - f_4(x) \right] = -f_4(x_2) > 0. \quad (4.1)$$

Then $H_{f_4, g_4}(x) > H_{f_4, g_4}(x_2) > 0$ for $x \in (0, x_2)$. Due to $g'_4(x) < 0$, it follows from the first identity (2.2) that

$$\left(\frac{f_4}{g_4} \right)' = \frac{g'_4}{g_4^2} H_{f_4, g_4} < 0 \text{ for } x \in (0, x_2).$$

In view of $f_3(0) = g_3(0) = 0$, by Proposition 1 we find that $h_2 = f_3/g_3$ is strictly decreasing on $(0, x_2)$.

Case 2: $x \in (x_2, \infty)$. We have $f_4(x_2) < 0$, $g_4(x_2) = 0$. Since $(f'_4/g'_4)' < 0$ for $x \in (0, \infty)$, $g_4 < 0$ for $x \in (x_2, \infty)$, by the second identity (2.3) it is deduced that $H'_{f_4, g_4} = (f'_4/g'_4)' g_4 > 0$ for $x \in (x_2, \infty)$. This together with (4.1) gives that $H_{f_4, g_4}(x) > H_{f_4, g_4}(x_2) > 0$ for $x \in (x_2, \infty)$. Due to $g'_4(x) < 0$, it follows that

$$\left(\frac{f_4}{g_4} \right)' = \frac{g'_4}{g_4^2} H_{f_4, g_4} < 0 \text{ for } x \in (x_2, \infty).$$

In view of $f_3(\infty) = g_3(\infty) = 0$, by Proposition 1 we deduce that $h_2 = f_3/g_3$ is strictly decreasing on (x_2, ∞) .

Taking into account Cases 1 and 2 as well the continuity of the function $g_3(x)$ at $x = x_2$, we conclude that $h_2 = f_3/g_3$ is strictly decreasing on $(0, \infty)$. An easy calculation yields $h_2(0) = \ln \sqrt{2}$ and $h_2(\infty) = 0$, and the proof is completed. \square

Now we shall prove Theorem 3.

Proof of Theorem 3. Differentiation give

$$\begin{aligned} G'_t(s) &= [ut \sinh(ut) - \cosh(ut) \ln \cosh(ut)] \frac{\cosh^{1/u-1}(ut)}{u^2} \frac{\ln 2}{s \ln^2 s} \\ &= [ut \sinh(ut) - \cosh(ut) \ln \cosh(ut)] \frac{\cosh^{1/u-1}(ut)}{s \ln 2}, \end{aligned}$$

$$\begin{aligned}
G_t''(s) &= \left[ut^2 \cosh(ut) - t \sinh(ut) \ln \cosh(ut) \right] \frac{\ln 2}{s \ln^2 s} \frac{\cosh^{1/u-1}(ut)}{s \ln 2} \\
&\quad + [ut \sinh(ut) - \cosh(ut) \ln \cosh(ut)] \\
&\quad \times \frac{(1-u)ut \sinh(ut) - \cosh(ut) \ln \cosh(ut)}{s \ln 2} \frac{\cosh^{1/u-2}(ut)}{u^2} \frac{\ln 2}{s \ln^2 s} \\
&\quad - [ut \sinh(ut) - \cosh(ut) \ln \cosh(ut)] \frac{\cosh^{1/u-1}(ut)}{s^2 \ln 2}.
\end{aligned}$$

Letting $ut = x$ and simplifying give

$$\begin{aligned}
\frac{s^2 \ln^2 2}{\cosh^{1/u-2}(ut)} G_t''(s) &= u \left(x^2 \cosh x - x \sinh x \ln \cosh x \right) \cosh x \\
&\quad + (x \sinh x - \cosh x \ln \cosh x) \\
&\quad \times [(1-u)x \sinh x - \cosh x \ln \cosh x] \\
&\quad - (\ln 2)(x \sinh x - \cosh x \ln \cosh x) \cosh x \\
\\
&= ux^2 - [(\ln 2)(x \sinh x - \cosh x \ln \cosh x) \cosh x \\
&\quad - (x \sinh x - \cosh x \ln \cosh x)^2] = x^2 [u - h_2(x)],
\end{aligned}$$

where $h_2(x)$ is as in Lemma 2. Since $h_2(x)$ is even on $(-\infty, \infty)$, $G_t''(s) \geq (\leq) 0$ for all $t > 0$ if and only if

$$Q_2(t) = u - h_2(|ut|) \geq (\leq) 0$$

for $t > 0$. From Lemma 2 we find

$$Q_2'(t) = -|u| h_2'(|ut|) > 0$$

for all $t > 0$ and

$$\begin{aligned}
\lim_{t \rightarrow 0} Q_2(t) &= u - \lim_{t \rightarrow 0} h_2(|ut|) = u - \frac{1}{2} \ln 2, \\
\lim_{t \rightarrow \infty} Q_2(t) &= u - \lim_{t \rightarrow \infty} h_2(|ut|) = u.
\end{aligned}$$

We conclude thus that $G_t''(s) \geq (\leq) 0$ for all $t > 0$ if and only if

$$u \geq \max \left\{ 0, \frac{1}{2} \ln 2 \right\} = \frac{1}{2} \ln 2 \text{ or } u \leq \min \left\{ 0, \frac{1}{2} \ln 2 \right\} = 0,$$

which, by the relation $u = (\ln 2) / \ln(1/s)$, implies that $e^{-2} \leq s < 1$ or $s > 1$.

When $0 < u(s) < \ln \sqrt{2}$, that is, $s \in (0, \ln \sqrt{2})$, since $Q_2'(t) > 0$, $Q_2(0^+) = u - \ln \sqrt{2} < 0$ and $Q_2(\infty) = u > 0$, there is a $t_2 > 0$ such that $Q_2(t) < 0$, $t \in (0, t_2)$ and $Q_2(t) > 0$, $t \in (t_2, \infty)$, where t_2 is a solution of the equation

$$Q_2(t) = u - h_2(|ut|) = 0. \quad (4.2)$$

Since the function $h_2(x)$, $(x > 0)$ is strictly decreasing, the inverse of h_2 exists and so is h_2^{-1} . Solving the Eq (4.2) for t yields

$$t = \frac{h_2^{-1}(u)}{u} = T_2(u).$$

Because that $1/u$ and $h_2^{-1}(u)$ are both positive and strictly decreasing, so is $t = T_2(u)$. This implies $u = T_2^{-1}(t)$ exists and strictly decreasing on $(0, \infty)$. It then follows that

$$\begin{aligned} t \in (0, t_2) &\iff u \in (T_2^{-1}(t_2), \ln \sqrt{2}) = (u_2, \ln \sqrt{2}), \\ t \in (t_2, \infty) &\iff u \in (0, T_2^{-1}(t_2)) = (0, u_2), \end{aligned}$$

where $u_2 = T_2^{-1}(t_2) \in (0, \ln \sqrt{2})$. We thus deduce that $G_t''(s) < 0$ for $u \in (u_2, \ln \sqrt{2})$ and $G_t''(s) > 0$ for $u \in (0, u_2)$. Due to $u = (\ln 2) / \ln(1/s)$, it follows that $G_t''(s) < 0$ on $u \in (s_2^*, e^{-2})$ and $G_t''(s) > 0$ on $(0, s_2^*)$, where $s_2^* = 2^{-1/u_2}$. This completes the proof. \square

5. Proof of Theorem 4

Lemma 3. *The function*

$$h_3(x) = \frac{x \tanh x - \ln(\cosh x)}{x^2 / \cosh^2 x} \ln 2$$

is strictly increasing from $(0, \infty)$ onto $(\ln \sqrt{2}, \infty)$.

Proof. As shown in Lemmas 1 and 2, $x \tanh x - \ln \cosh x = f_2(x)$ and $x^2 / \cosh^2 x = g_3(x)$ with $f_2(0) = g_3(0) = 0$. Since $f_2'(x) = x / \cosh^2 x > 0$, we have $f_2(x) > f_2(0) = 0$ for $x > 0$. Note that

$$\begin{aligned} \frac{g_3'(x)}{f_2'(x)} &= 2 - 2x \tanh x, \\ \left[\frac{g_3'(x)}{f_2'(x)} \right]' &= -2 \frac{x + \cosh x \sinh x}{\cosh^2 x} < 0. \end{aligned}$$

By Proposition 1 we deduce that $g_3(x) / f_2(x)$ is strictly decreasing on $(0, \infty)$, which, due to $g_3(x) / f_2(x) > 0$, implies that $h_3(x) = [f_2(x) / g_3(x)] \ln 2$ is strictly increasing on $(0, \infty)$. A simple computation yields

$$\lim_{x \rightarrow 0} h_3(x) = \frac{1}{2} \ln 2 \text{ and } \lim_{x \rightarrow \infty} h_3(x) = \infty,$$

which completes the proof. \square

Based on Lemma 3, we now check Theorem 4.

Proof of Theorem 4. Differentiation yields

$$\begin{aligned} [\ln G_t(s)]' &= [ut \tanh(ut) - \ln \cosh(ut)] \frac{1}{u^2} \frac{\ln 2}{s \ln^2 s} \\ &= \frac{ut \tanh(ut) - \ln \cosh(ut)}{s \ln 2}, \end{aligned}$$

$$[\ln G_t(s)]'' = \frac{ut^2}{\cosh^2(ut)} \frac{\ln 2}{s \ln^2 s} \frac{1}{s \ln 2} - \frac{ut \tanh(ut) - \ln \cosh(ut)}{s^2 \ln 2}$$

$$= \frac{(ut)^2}{\cosh^2(ut)} \frac{u}{s^2 \ln^2 2} - \frac{ut \tanh(ut) - \ln \cosh(ut)}{s^2 \ln 2},$$

Letting $ut = x$ and simplifying lead to

$$\frac{s^2 \ln^2 2}{x^2} (\cosh^2 x) [\ln G_t(s)]'' = u - \frac{x \tanh x - \ln \cosh x}{x^2 / \cosh^2 x} \ln 2 = u - h_3(x),$$

where $h_3(x)$ is given in Lemma 3. Since $h_3(x)$ is even on $(-\infty, \infty)$, $[\ln G_t(s)]'' \geq (\leq) 0$ for $t > 0$ if and only if

$$Q_3(t) = u - h_3(|ut|) \geq (\leq) 0$$

for $t > 0$. From Lemma 3 we get

$$Q'_3(t) = -|u| h_3'(|ut|) < 0$$

for $t > 0$ and

$$\begin{aligned} \lim_{t \rightarrow 0} Q_3(t) &= u - \lim_{t \rightarrow 0} h_3(|ut|) = u - \frac{1}{2} \ln 2, \\ \lim_{t \rightarrow \infty} Q_3(t) &= u - \lim_{t \rightarrow \infty} h_3(|ut|) = -\infty. \end{aligned}$$

We conclude thus that $[\ln G_t(s)]'' \leq 0$ for all $t > 0$ if and only if $u \leq \ln \sqrt{2}$, which, by the relation $u = (\ln 2) / \ln(1/s)$, implies that $0 < s \leq e^{-2}$ or $s > 1$. This completes the proof. \square

6. Several new inequalities

Using Theorems 2 and 4, we get the following corollary.

Corollary 1. Suppose $w, v > 0$, $w \neq v$. If $p < r < q \leq \ln \sqrt{2}$, then the double inequality

$$A_p(w, v)^{1-\beta_0} A_q(w, v)^{\beta_0} < A_r(w, v) < (1 - \alpha_0) A_p(w, v) + \alpha_0 A_q(w, v) \quad (6.1)$$

holds, where

$$\alpha_0 = \frac{r-p}{q-p} \quad \text{and} \quad \beta_0 = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}}. \quad (6.2)$$

The second inequality of (6.1) is reversed if $1/2 \leq p < r < q$.

Proof. By Theorem 4, the function $s \mapsto \ln A_{u(s)}(w, v)$ is concave on $(0, e^{-2}] \cup (1, \infty)$. Then for $s_i \in (0, e^{-2}]$ or $s_i \in (1, \infty)$, $i = 1, 2, 3$, using the property of convex functions we have

$$\frac{\ln A_{u(s_2)}(w, v) - \ln A_{u(s_1)}(w, v)}{s_2 - s_1} > \frac{\ln A_{u(s_3)}(w, v) - \ln A_{u(s_1)}(w, v)}{s_3 - s_1}, \quad (6.3)$$

which is equivalent to

$$\ln A_{u(s_2)}(w, v) > \frac{s_3 - s_2}{s_3 - s_1} \ln A_{u(s_1)}(w, v) + \frac{s_2 - s_1}{s_3 - s_1} \ln A_{u(s_3)}(w, v). \quad (6.4)$$

Let $(u(s_1), u(s_2), u(s_3)) = (p, r, q)$. Then by the relation $u(s) = (\ln 2) / \ln(1/s)$ we get $(s_1, s_2, s_3) = (2^{-1/p}, 2^{-1/r}, 2^{-1/q})$ with $\ln \sqrt{2} \leq p < r < q$. The inequality (6.4) thus becomes to the left hand side inequality of (6.1).

From Theorem 2, the function $u \mapsto A_u(w, v)$ is convex on $(-\infty, \ln \sqrt{2})$ and concave on $(1/2, \infty)$, where $w, v > 0, w \neq v$. Then for $p < r < q \leq \ln \sqrt{2}$ the right hand side inequality of (6.1) holds, which is reversed if $1/2 \leq p < r < q$. This completes the proof. \square

Using Theorems 1 and 3, we obtain the following corollary.

Corollary 2. Suppose $w, v > 0, w \neq v$. If $\ln \sqrt{2} \leq p < r < q$, then the double inequality

$$A_p(w, v)^{1-\alpha_0} A_q(w, v)^{\alpha_0} < A_r(w, v) < (1 - \beta_0) A_p(w, v) + \beta_0 A_q(w, v) \quad (6.5)$$

holds, where α_0 and β_0 are given in (6.2) are the best constants. The double inequality (6.5) is reversed if $p < r < q < 0$ with the best constants α_0 and β_0 .

Proof. By Theorem 1 the function $u \mapsto \ln A_u(w, v)$ is convex on $(-\infty, 0)$ and concave on $(0, \infty)$. This implies that, for $0 < p < r < q$ ($p < r < q < 0$), the inequality

$$\frac{q-r}{q-p} \ln A_p(w, v) + \frac{r-p}{q-p} \ln A_q(w, v) < (>) \ln A_r(w, v)$$

holds, that is,

$$A_p(w, v)^{1-\alpha_0} A_q(w, v)^{\alpha_0} < (>) A_r(w, v).$$

By Theorem 3, the function $s \mapsto A_{u(s)}(w, v)$ is convex on $[e^{-2}, 1)$ and concave on $(1, \infty)$. Then for $s_i \in [e^{-2}, 1)$, $i = 1, 2, 3$, with $s_1 < s_2 < s_3$, by the property of concave functions we have

$$\frac{A_{u(s_2)}(w, v) - A_{u(s_1)}(w, v)}{s_2 - s_1} < \frac{A_{u(s_3)}(w, v) - A_{u(s_1)}(w, v)}{s_3 - s_1}, \quad (6.6)$$

which is equivalent to

$$A_{u(s_2)}(w, v) < \frac{s_3 - s_2}{s_3 - s_1} A_{u(s_1)}(w, v) + \frac{s_2 - s_1}{s_3 - s_1} A_{u(s_3)}(w, v). \quad (6.7)$$

Let $(u(s_1), u(s_2), u(s_3)) = (p, r, q)$. Then by the relation $u(s) = (\ln 2) / \ln(1/s)$ we get $(s_1, s_2, s_3) = (2^{-1/p}, 2^{-1/r}, 2^{-1/q})$ with $\ln \sqrt{2} \leq p < r < q$. The inequality (6.7) thus becomes to the right hand side inequality of (6.5).

If $s_i \in (1, \infty)$, $i = 1, 2, 3$, with $s_1 < s_2 < s_3$, by the property of concave functions, the inequality (6.6) is reversed, and so is the right hand side inequality of (6.5) if $p < r < q < 0$.

Without loss of generality, we suppose that $0 < w < v$. Then $\varsigma = \ln \sqrt{v/w} > 0$. Due to

$$\begin{aligned} & \lim_{v \rightarrow w} \frac{\ln A_r(w, v) - \ln A_p(w, v)}{\ln A_q(w, v) - \ln A_p(w, v)} \\ &= \lim_{\varsigma \rightarrow 0} \frac{\ln \cosh^{1/r}(r\varsigma) - \ln \cosh^{1/p}(p\varsigma)}{\ln \cosh^{1/q}(q\varsigma) - \ln \cosh^{1/p}(p\varsigma)} = \frac{r-p}{q-p} = \alpha_0, \\ & \lim_{v \rightarrow \infty} \frac{A_r(w, v) - A_p(w, v)}{A_q(w, v) - A_p(w, v)} \\ &= \lim_{\varsigma \rightarrow \infty} \frac{\cosh^{1/r}(r\varsigma) - \cosh^{1/p}(p\varsigma)}{\cosh^{1/q}(q\varsigma) - \cosh^{1/p}(p\varsigma)} = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}} = \beta_0 \end{aligned}$$

for $\max\{p, q, r\} < 0$ or $\min\{p, q, r\} > 0$, α_0 and β_0 are the best. This completes the proof. \square

Similarly, by means of Theorems 1 and 4 we can prove the following corollary, all the details of proof are omitted here.

Corollary 3. Suppose $w, v > 0$, $w \neq v$. If $p < r < q < 0$, then

$$A_p(w, v)^{1-\beta_0} A_q(w, v)^{\beta_0} < A_r(w, v) < A_p(w, v)^{1-\alpha_0} A_q(w, v)^{\alpha_0},$$

where α_0 and β_0 are given in (6.2).

By means of Corollaries 1 and 2, we have

Corollary 4. Suppose $p, q, r \in \mathbb{R}$, $p < r < q$. (i) If $p \geq 1/2$, then for $w, v > 0$, $w \neq v$ the double mean-inequality

$$(1 - \beta) A_p(w, v) + \beta A_q(w, v) > A_r(w, v) > (1 - \alpha) A_p(w, v) + \alpha A_q(w, v) \quad (6.8)$$

is valid if and only if

$$\alpha \leq \alpha_0 = \frac{r - p}{q - p} \text{ and } \beta \geq \beta_0 = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}}.$$

(ii) If $q < 0$, then for $w, v > 0$, $w \neq v$ the double inequality (6.8) is reversed if and only if $\alpha \geq \alpha_0$ and $\beta \leq \beta_0$.

Proof. (i) **Necessity.** Since $w, v > 0$ with $w \neq v$, we suppose $v > w > 0$. Then $\varsigma = \ln \sqrt{v/w} > 0$. If the first inequality of (6.8) holds for all $v > w > 0$, then

$$\alpha \leq \lim_{\varsigma \rightarrow 0} \frac{\cosh^{1/r}(r\varsigma) - \cosh^{1/p}(p\varsigma)}{\cosh^{1/q}(q\varsigma) - \cosh^{1/p}(p\varsigma)} = \frac{r - p}{q - p} = \alpha_0.$$

If the second inequality of (6.8) is valid for $v > w > 0$, then

$$\beta \geq \lim_{\varsigma \rightarrow \infty} \frac{\cosh^{1/r}(r\varsigma) - \cosh^{1/p}(p\varsigma)}{\cosh^{1/q}(q\varsigma) - \cosh^{1/p}(p\varsigma)} = \frac{2^{-1/r} - 2^{-1/p}}{2^{-1/q} - 2^{-1/p}} = \beta_0.$$

Sufficiency. By Corollaries 1 and 2, the reverse of the right hand side inequality in (6.1) for $\alpha = \alpha_0$ and the inequality (6.5) for $\beta = \beta_0$ both hold if $1/2 \leq p < r < q$, that is, for $w, v > 0$, $w \neq v$ and $(\alpha, \beta) = (\alpha_0, \beta_0)$, the double inequality (6.8) is valid. It is easy to find that, for $\alpha \leq \alpha_0$,

$$A_r(w, v) > (1 - \alpha_0) A_p(w, v) + \alpha_0 A_q(w, v) \geq (1 - \alpha) A_p(w, v) + \alpha A_q(w, v),$$

and for $\beta \geq \beta_0$,

$$(1 - \beta) A_p(w, v) + \beta A_q(w, v) > (1 - \beta_0) A_p(w, v) + \beta_0 A_q(w, v) > A_r(w, v).$$

This proves the sufficiency.

(ii) The second assertion of this theorem can be proven in a similar way. This completes the proof. \square

Remark 4. Clearly, Corollary 4 gives an answer to Problem 2.

7. Conclusions

In this paper, we completely described the convexity of $u \mapsto A_u(w, v)$ on \mathbb{R} and $s \mapsto A_{u(s)}(w, v)$, $\ln A_{u(s)}(w, v)$ with $u(s) = (\ln 2) / \ln(1/s)$ on $(0, \infty)$ by using two tools. From which we obtained several new sharp inequalities involving the power means (Corollaries 1–4), where Corollary 4 gives an answer to Problem 2. Moreover, we gave another new proof of Problem 1.

Final inspired by Theorems 1–4, we propose the following problem.

Problem 3. For all $w, v > 0$, $w \neq v$, determine the best $p \in \mathbb{R}$ such that the functions $p \mapsto L_p(w, v)$, $I_p(w, v)$ are convex or concave.

The second problem is inspired by Corollary 3 and Problem 2.

Problem 4. Suppose $p, q, r \in \mathbb{R}$ with $p < r < q$ and $v, w > 0$ with $v \neq w$. Determine the best $\alpha, \beta \in (0, 1)$ with $\alpha < \beta$ such that the double inequality

$$A_p(w, v)^{1-\beta} A_q(w, v)^\beta < A_r(w, v) < A_p(w, v)^{1-\alpha} A_q(w, v)^\alpha$$

is valid.

It was shown in [29, Lemma 6] (see also [30, 31]) that the function $p \mapsto 2^{1/p} A_p(w, v)$ is strictly decreasing and log-convex on $(0, \infty)$. Motivated by this, it is natural to propose the following problem.

Problem 5. Describe the convexity of the function $p \mapsto 2^{1/p} A_p(w, v)$ on $(-\infty, 0)$ and $(0, \infty)$.

Acknowledgments

This work is supported by the NNSF of China (No. 61672205).

Conflict of interest

The authors declare no conflict of interest.

References

1. Z. H. Yang, Y. M. Chu, *An optimal inequalities chain for bivariate means*, J. Math. Inequal., **9** (2015), 331–343.
2. K. B. Stolarsky, *Generalizations of the Logarithmic Mean*, Math. Mag., **48** (1975), 87–92.
3. E. B. Leach, M. C. Sholander, *Extended mean values*, Amer. Math. Monthly, **85** (1978), 84–90.
4. C. Gini, *Diuna formula comprensiva delle media*, Metron, **13** (1938), 3–22.
5. Z. H. Yang, *On the homogeneous functions with two parameters and its monotonicity*, J. Inequal. Pure Appl. Math., **6** (2005), 1–11.
6. Z. H. Yang, *On the monotonicity and log-convexity of a four-parameter homogeneous mean*, J. Inequal. Appl., **2008** (2008), 1–12.

7. A. Witkowski, *Comparison theorem for two-parameter means*, Math. Inequal. Appl., **12** (2009), 11–20.
8. F. Qi, *Logarithmic convexities of the extended mean values*, Proc. Amer. Math. Soc., **130** (2002), 1787–1796.
9. Z. H. Yang, *On the log-convexity of two-parameter homogeneous functions*, Math. Inequal. Appl., **10** (2007), 499–516.
10. Zs. Páles, *Inequalities for sums of powers*, J. Math. Anal. Appl., **131** (1988), 265–270.
11. Zs. Páles, *Inequalities for differences of powers*, J. Math. Anal. Appl., **131** (1988), 271–281.
12. L. Losonczi, Zs. Páles, *Minkowski's inequality for two variable Gini means*, Acta Sci. Math. Szeged, **62** (1996), 413–425.
13. L. Losonczi, Zs. Páles, *Minkowski's inequality for two variable difference means*, Proc. Amer. Math. Soc., **126** (1998), 779–791.
14. E. Neuman, Zs. Páles, *On comparison of Stolarsky and Gini means*, J. Math. Anal. Appl., **278** (2003), 274–284.
15. Y. M. Li, B. Y. Long, Y. M. Chu, *Sharp bounds by the power mean for the generalized Heronian mean*, J. Inequal. Appl., **2012** (2012), 1–9.
16. M. Raïsouli, J. Sándor, *Sub-super-stabilizability of certain bivariate means via mean-convexity*, J. Inequal. Appl., **2016** (2016), 1–13.
17. Z. H. Yang, *On converses of some comparison inequalities for homogeneous means*, Hacet. J. Math. Stat., **46** (2017), 629–644.
18. Z. H. Yang, *New sharp bounds for identric mean in terms of logarithmic mean and arithmetic mean*, J. Math. Inequal., **6** (2012), 533–543.
19. A. Begea, J. Bukor, J. T. Tóhb, *On (log-) convexity of power mean*, Anna. Math. Inform., **42** (2013), 3–7.
20. L. Matejíčka, *Short note on convexity of power mean*, Tamkang J. Math., **46** (2015), 423–426.
21. I. Pinelis, *L'Hospital type rules for oscillation, with applications*, J. Inequal. Pure Appl. Math., **2** (2001), 1–24.
22. G. D. Anderson, M. Vamanamurthy, M. Vuorinen, *Monotonicity rules in calculus*, Amer. Math. Monthly, **113** (2006), 805–816.
23. Z. H. Yang, *A new way to prove L'Hospital Monotone Rules with applications*, arXiv:1409.6408, 2014. Available from: <https://arxiv.org/abs/1409.6408>.
24. Z. H. Yang, Y. M. Chu, M. K. Wang, *Monotonicity criterion for the quotient of power series with applications*, J. Math. Anal. Appl., **428** (2015), 587–604.
25. Z. H. Yang, Y. M. Chu, *A monotonicity property involving the generalized elliptic integral of the first kind*, Math. Inequal. Appl., **20** (2017), 729–735.
26. Z. H. Yang, W. Zhang, Y. M. Chu, *Sharp Gautschi inequality for parameter $0 < p < 1$ with applications*, Math. Inequal. Appl., **20** (2017), 1107–1120.
27. Z. H. Yang, J. F. Tian, *The monotonicity rules for the ratio of two Laplace transforms with applications*, J. Math. Anal. Appl., **470** (2019), 821–845.

- 28. Z. H. Yang, K. F. Tin, Q. Gao, *The monotonicity of ratios involving arctangent function with applications*, Open Math., **17** (2019), 1450–1467.
- 29. Z. H. Yang, *Estimates for Neuman-Sndor mean by power means and their relative errors*, J. Math. Inequal., **7** (2013), 711–726.
- 30. Z. H. Yang, *Some monotonicity results for the ratio of two-parameter symmetric homogeneous functions*, Int. J. Math. Math. Sci., **2009** (2019), 1–12.
- 31. Z. H. Yang, *Log-convexity of ratio of the two-parameter symmetric homogeneous functions and an application*, J. Inequal. Spec. Func., **2010** (2010), 16–29.

AIMS Press

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)