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1. Introduction

The main purpose of this paper is to consider the existence of a positive periodic solution for third-
order neutral differential equation with a singularity

(u(t) − cu(t − τ(t)))′′′ + a(t)u(t) = f (t, u(t)) + e(t), (1.1)

where τ ∈ C(R,R) is a ω-periodic function, a ∈ C(R,R+) is ω-periodic functions, c is a constant and
c ∈

(
− m

M+m ,
m

M+m

)
, here M := max

t∈[0,ω]
|a(t)| and m := min

t∈[0,ω]
|a(t)|, e ∈ L1(R) is an ω-periodic function, the

nonlinear term f ∈ Car(R×R+,R) is a L2-Carathéodory function and is an ω-periodic function on t, f
has a singularity of repulsive type at the origin, i.e.,

lim
u→0+

f (t, u) = +∞, uniformly in t.

Note that when c = 0 the neutral operator u 7→ (u(t) − cu(t − τ(t))′′′ reduces to the linear operator
u 7→ u′′′ and then equation (1.1) is of the differential equation form

u′′′ + a(t)u = f (t, u) + e(t). (1.2)
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During the last two decades, there are some good amount of works on periodic solutions for
neutral differential equations (see [2, 3, 6–8, 11, 14, 16, 17, 19, 22, 23] and the references cited therein).
Some classical tools have been used to study neutral differential equation in the literature, including
the fixed point index theorem [2,16], Krasnoselskii’s fixed point theorem [3,6–8], fixed point theorem
of Leray-Schauder type [14], Mawhin’s continuous theorem [11, 23], Continuation theorem of
coincidence degree theory [19], the fixed point theorem in cones [17, 22]. For example, Wu and
Wang [22] in 2007 discussed a kind of second-order neutral differential equation

(u(t) − cu(t − τ))′′ + a(t)u(t) = λb(t) f (u(t − δ(t))), (1.3)

where c ∈
(
− m

M+m , 0
)
, b, δ ∈ C(R,R) are ω-periodic functions, λ is a constant and 0 < λ < 1. By

a fixed point theorem in cones and the property of neutral operator (A1u)(t) := u(t) − cu(t − τ), they
obtained sufficient conditions for the existence of positive periodic solutions to (1.3). Afterwards, Ren
et al. [17] in 2011 considered second-order neutral differential equation with variable delay as follows

(u(t) − cu(t − τ(t)))′′′ + a(t)u(t) = f (t, u(t − τ(t)), (1.4)

where |c| < 1. The authors presented the existence result for a positive periodic solution for (1.4) by
applications of Krasnoselskii’s fixed point theorem.

Besides, recently there have been published some results on second-order or third-order singular
equations (see [4, 5, 9, 10, 12, 13, 15, 18, 20, 21, 24, 25]). Torres [18] in 2007 investigated the existence
of periodic solutions for the following second-order equation with a singularity of repulsive type

u′′ + a(t)u = f (t, u) + e(t). (1.5)

His proof was based on Schauder’s fixed point theorem. After that, Ma et al. [15] in 2014 improved
Torres’s result and given an assumption which is relatively weaker than condition in [18].

We are mainly motivated by the recent work [15, 16, 18, 22] and focus on Eq (1.1). By employing
two available operators and applying Krasnoselskii’s fixed point theorem, we obtain the existence
of a positive periodic solution for (1.1). We would like to emphasize that the inclusion of the neutral
operator in the singularity implies a new technical difficulty concerning the right choice of the operator.

2. Preparation

Firstly, we recall Krasnoselskii’s fixed point theorem, which can be found in [1].

Lemma 2.1. Let Y be a Banach space. Assume K is a bounded closed convex subset of Y . If Q,
S : K → Y satisfy

(i) Qu + Sy ∈ K , ∀ u, y ∈ K ;
(ii) S is a contractive operator;
(iii) Q is a completely continuous operator in K .

Then Q + S has a fixed point in K .

Consider the following third-order linear nonhomogeneous differential equationu′′′ + a(t)u = h(t),
u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω),

(2.1)
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where h ∈ C+
ω := {h ∈ C(R, (0 + ∞)) : h(t + ω) ≡ h(t), ∀ t ∈ R}. Obviously, the calculation of the

Green’s function of (2.1) is very complicated. In order to get around the calculation of the Green’s
function of (2.1), we discuss the Green’s function of differential equation as followsu′′′ + Mu = h(t),

u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω),
(2.2)

where M = max
t∈[0,ω]

|a(t)| is defined in Section 1. The Eq (2.2) has a unique ω-periodic solution

u(t) =

∫ ω

0
G(t, s)h(s)ds. (2.3)

We introduce the positiveness of the Green’s function G(t, s), which can be found in [8, Lemma 2.2].

Lemma 2.2. (see [8, Lemma 2.2]) Assume that M < 64π3

81
√

3ω3 holds, then the Green’s function G(t, s)
satisfies

0 < l :=
1

3M
2
3 (exp(M

1
3ω) − 1)

≤ G(t, s) ≤
3 + 2 exp

(
−M

1
3 ω
2

)
3M

2
3

(
1 − exp

(
−M

1
3 ω
2

))2 := L,

for all (t, s) ∈ [0, ω] × [0, ω]. Furthermore,
∫ ω

0
G(t, s)ds = 1

M .

On the other hand, we give the property of neutral operator (Au)(t) := u(t) − cu(t − τ(t)).

Lemma 2.3. (see [16, Lemma 2.1]) If |c| < 1, then the operator Au has a continuous inverse A−1u on

X := {u ∈ C(R,R) : u(t + ω) ≡ u(t), ∀ t ∈ R},

satisfying

(1)
(
A−1 f

)
(t) = f (t) +

∞∑
j=1

c j f
(
s −

j−1∑
i=1
τ(Di)

)
, ∀ f ∈ X;

(2)
∣∣∣∣(A−1 f

)
(t)

∣∣∣∣ ≤ ‖ f ‖
1−|c| , ∀ f ∈ X,

where t − τ(t) = s and D j = s −
j−1∑
i=1
τ(Di), ‖ f ‖ := max

t∈[0,ω]
| f (t)|.

Let v(t) = (Au)(t), then from Lemma 2.3, we obtain that u(t) = (A−1v)(t). Hence (1.1) can be
transformed into

v′′′(t) + a(t)(A−1v)(t) = f (t, A−1v(t)) + e(t), (2.4)

which can be further rewritten as

v′′′(t) + a(t)v(t) − a(t)H(v(t)) = f (t, A−1v(t)) + e(t), (2.5)

whereH(v(t)) = v(t) − (A−1v)(t) = −c(A−1v)(t − τ(t)).
Furthermore, we consider

v′′′(t) + a(t)v(t) − a(t)H(v(t)) = h(t), for h ∈ C+
ω. (2.6)
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Formula (2.6) is rewritten in the following form

v′′′ + Mv = (M − a(t))v + a(t)H(v(t)) + h(t). (2.7)

Define operators T , B : X → X by

(T h)(t) =

∫ ω

0
G(t, s)h(s)ds, (Bv)(t) = (M − a(t))v + a(t)H(v(t)).

Obviously, (T h)(t) > 0 if M < 64π3

81
√

3ω3 , for all t ∈ [0, ω] and h ∈ C+
ω. By Lemma 2.3, ‖B‖ ≤ M−m+ M|c|

1−|c|
if |c| < 1. By (2.3), the solution of (2.7) can be written as the following form

v(t) = (T h)(t) + (TBv)(t).

In view of c ∈
(
− m

M+m ,
m

M+m

)
, we arrive at

‖TB‖ ≤ ‖T ‖‖B‖ ≤
M − m + m|c|

M(1 − |c|)
< 1, (2.8)

where we used the fact
∫ ω

0
G(t, s)ds = 1

M . Hence

v(t) = (I − TB)−1(T h)(t). (2.9)

Remark 2.1. If |c| > 1, by Lemma [16, Lemma 2.1] and (2.8)−(2.9), we get ‖TB‖ ≤ 1 − m
M + |c|

|c|−1 .

Since 1 − m
M + |c|

|c|−1 > 1, we can not get (I − TB)−1. Therefore, the above method does not apply to the
case of |c| > 1.

Define an operator P : X → X by

(Ph)(t) = (I − TB)−1(Th)(t).

If M < 64π3

81
√

3ω3 , then (2.6) has the unique periodic solution v(t) = (Ph)(t). Moveover, we get the
following conclusion.

Lemma 2.4. Assume that M < 64π3

81
√

3ω3 , c < 0 and |c| < min
{

m
M+m , σ

}
hold. Then P satisfies

(T h)(t) ≤ (Ph)(t) ≤
M(1 − |c|)

m − (M + m)|c|
‖T h‖, for h ∈ C+

ω, (2.10)

where σ := l
L and 0 < σ ≤ 1.

Proof. By the Neumann expansion of P, we have

P =(I − TB)−1T

=(I + TB + (TB)2 + · · · + (TB)n + · · · )T
=T + TBT + (TB)2T + · · · + (TB)nT + · · · .

(2.11)

From (2.11) and recalling that ‖TH‖ ≤ M−m+m‖c‖
M(1−‖c‖) < 1, we get

(Ph)(t) = (I − TB)−1(T h)(t) ≤
‖T h‖

I − ‖T B‖
≤

M(1 − |c|)
m − (M + m)|c|

‖T h‖.
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On the other hand, applying Lemma 2.2 and M < 64π3

81
√

3ω3 , we obtain

(T h)(t) =

∫ ω

0
G(t, s)h(s)ds

≥l
∫ ω

0
h(s)ds

=
l
L

L
∫ ω

0
h(s)ds

≥σ max
t∈[0,ω]

∫ ω

0
G(t, s)h(s)ds

=σ‖T h‖ > 0.

Since c ∈ (− m
M+m , 0) and |c| ≤ σ, using Lemma 2.3, we arrive at

(A−1T h)(t) =(T h)(t) +

∞∑
j=1

c j(T h)

s −
j−1∑
i=1

τ(Di)


=(T h)(t) +

∑
j≥1 even

c j(T h)

s −
j−1∑
i=1

τ(Di)

 − ∑
j≥1 odd

|c| j(T h)

s −
j−1∑
i=1

τ(Di)


≥
σ‖T h‖
1 − c2 −

|c|‖T h‖
1 − c2

=
(σ − |c|)‖T h‖

1 − c2 ≥ 0,

and from (2.11), we see that

(BT h)(t) = (M − a(t))(T h)(t) + a(t)(−c(A−1T h)(t − τ(t))) ≥ 0, for h ∈ C+
ω.

Clearly, (TBT h)(t) ≥ 0 if h ∈ C+
ω. Then we have from the above analysis that

(Ph)(t) = (T h)(t) + (TBT h)(t) + ((TB)2T h)(t) + ((TB)3T h)(t) + · · · ≥ (T h)(t), for h ∈ C+
ω.

�

Lemma 2.5. Assume that M < 64π3

81
√

3ω3 and c ∈ (0, m
M+m ) hold. Then P satisfies

m − (M + m)c
M(1 − c)

(T h)(t) ≤ (Ph)(t) ≤
M(1 − c)

m − (M + m)c
‖T h‖, for h ∈ C+

ω. (2.12)

Proof. In view of ‖TB‖ < 1, similarly as the proof of Lemma 2.4, we get that (Ph)(t) ≤ M(1−c)
m−(M+m)c‖T h‖.

Since c ∈ (0, m
M+m ), we can not get (TBh)(t) ≥ 0 for all h ∈ C+

ω. From (2.11), it is clear

P = (I + TB + (TB)2 + (TB)3 + · · · )T
= (I + (TB)2 + (TB)4 + · · · )T + (TB + (TB)3 + (TB)5 + · · · )T
= (I + (TB)2 + (TB)4 + · · · )T + (I + (TB)2 + (TB)4 + · · · )TBT
= (I + (TB)2 + (TB)4 + · · · )(I + TB)T .
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Then, we get
(Ph)(t) ≥ (I + TB)(T h)(t) ≥ (I − ‖TB‖)(T h)(t)

≥
m − (m + M)c

M(1 − c)
(T h)(t) > 0, for h ∈ C+

ω.

�

Define operators Q, S : X → X by

(Qu)(t) = P( f (t, u) + e(t)), (Su)(t) = cu(t − τ(t)). (2.13)

From (2.6) and (2.13), the existence of periodic solutions to (1.1) is equivalent to the existence of
solutions to operator equation as follows

Qu + Su = u, in X. (2.14)

3. Periodic solution for (1.1) in the case that c ∈ (0, m
M+m ]

In this section, we establish the existence of a positive periodic solution for (1.1) in the case that
c ∈ (0, m

M+m ] by using Krasnoselskii’s fixed point theorem. Define the function γ : R→ R

γ(t) :=
∫ ω

0
G(t, s)e(s)ds,

and
γ∗ := max

t∈R
γ(t), γ∗ := min

t∈R
γ(t).

By analysis of γ(t), we consider the following three cases.
Case (I) γ∗ > 0.

Theorem 3.1. Suppose M < 64π3

81
√

3ω3 and c ∈ (0, m
m+M ] hold. Furthermore, assume that the following

conditions hold:
(H1) There exist continuous, non-negative functions g(u), h(u) and ζ(t) such that

0 ≤ f (t, u) ≤ ζ(t)(g(u) + h(u)) for all (t, u) ∈ [0, ω] × (0,∞),

and g(u) > 0 is non-increasing and h(u) is non-decreasing in u ∈ (0,∞).
(H2) There exists a positive constant R > 0 such that

M
m − (M + m)c

(
g
(
m − (M + m)c

M(1 − c)
γ∗

) (
1 +

h(R)
g(R)

)
Λ∗ + γ∗

)
≤ R,

where Λ(t) =
∫ ω

0
G(t, s)ζ(s)ds and Λ∗ := max

t∈R
Λ(t).

If γ∗ > 0, then (1.1) has at least one positive periodic solution.

Proof. An ω-periodic solution of (1.1) is just a fixed point of the following operator equation

(Qu)(t) + (Su)(t) = u(t). (3.1)
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Let R be the positive constant satisfying (H2) and

r :=
m − (M + m)c

M(1 − c)
γ∗.

Then we have R > r > 0 since R > γ∗ > m−(M+m)c
M(1−c) γ∗. Now we define the set

K = {u ∈ X : r ≤ u(t) ≤ R for all t}. (3.2)

Obviously, K is a bounded closed convex set in X. Moreover, for any u ∈ K , it is easy to verify that
Q, S are continuous and (Qu)(t + ω) = (Qu)(t), (Su)(t + ω) = (Su)(t), that is, Q(K) ⊂ X,S(K) ⊂ X.

Next we claim that Qu +Sy ∈ K , for any u, y ∈ K . By Lemma 2.5 and non-negative sign of G(t, s)
and f (t, u), we have

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t))) + cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)
T ( f (t, u(t)) + e(t))) + cy(t − τ(t))

=
m − (M + m)c

M(1 − c)

(∫ ω

0
G(t, s)( f (s, u(s))ds + γ(t)

)
+ cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)
γ∗ := r > 0,

(3.3)

where we used the fact
∫ ω

0
G(t, s)ds = 1

M .

On the other hand, using Lemma 2.5, we have

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t))) + cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

|T ( f (t, u(t)) + e(t)))| + cy(t − τ(t))

=
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

∣∣∣∣∣ + cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c

{
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds

∣∣∣∣∣ + ‖γ‖

}
+ cy(t − τ(t)),

since γ∗ > 0, then γ(t) > 0 and ‖γ‖ := max
t∈[0,ω]

|γ(t)| = γ∗. By conditions (H1) and (H2), we have

(Qu)(t) + (Sy)(t)

≤
M(1 − c)

m − (M + m)c

{
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s)ζ(s)(g(u(s)) + h(u(s)))ds

∣∣∣∣∣ + γ∗
}

+ cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c

{
g(r)

(
1 +

h(R)
g(R)

)
Λ∗ + γ∗

}
+ cR

≤R.

(3.4)

Combining (3.3) and (3.4), we get Qu + Sy ∈ K for all u, y ∈ K .
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Furthermore, for any u1, u2 ∈ K , we have

‖(Su1)(t) − (Su2)(t)‖ = |cu1(t − τ(t)) − cu2(t − τ(t))|
≤ |c|‖u1 − u2‖,

which implies that
‖(Su1)(t) − (Su2)(t)‖ ≤ |c|‖u1 − u2‖. (3.5)

In view of |c| < 1, S is a contractive operator.
By [16, Theorem 3.1], we get thatQ is a completely continuous. Therefore, by Krasnoselskii’s fixed

point theorem, Q + S has a fixed point u ∈ K , that is to say, (1.1) has a positive ω-periodic solution
u(t) with u ∈ [r,R]. �

Remark 3.1. If |c| > 1, from (3.11), we can not get S is a contractive operator. Therefore, the above
method of Theorem 3.1 does not apply to the case of |c| > 1.

Corollary 3.1. Suppose M < 64π3

81
√

3ω3 and c ∈
(
0, m

M+m

]
hold. Assume the following condition holds:

(F1) There exist a continuous function d(t) � 0 and a constant ρ > 0 such that satisfy

0 ≤ f (t, u) ≤
d(t)
uρ

, for all (t, u) ∈ [0, ω] × (0,∞).

If γ∗ > 0, then (1.1) has at least one positive periodic solution.

Proof. We apply Theorem 3.1. We take

ζ(t) = d(t), g(u) =
1
uρ
, h(u) = 0.

Then condition (H1) is satisfied. Next, we consider the condition (H2) is also satisfied. In fact, we take
R > 0 with

M
m − (M + m)c

(
Mρ(1 − c)ρΨ∗

(m − (M + m)c)ργρ∗
+ γ∗

)
≤ R,

since c ∈
(
0, m

M+m

)
and Ψ(t) :=

∫ ω

0
G(t, s)d(s)dt. �

Corollary 3.2. Suppose M < 64π3

81
√

3ω3 and c ∈
(
0, m

M+m

]
hold. Assume the following condition holds:

(F2) There exist a continuous function d(t) � 0 and constants ρ > 0, 0 ≤ η < 1 such that satisfy

0 ≤ f (t, u) ≤
d(t)
uρ

+ d(t)uη, for all (t, u) ∈ [0, ω] × (0,∞).

If γ∗ > 0, then (1.1) has at least one positive periodic solution.

Proof. We apply Theorem 3.1. We take

ζ(t) = d(t), g(u) =
1
uρ
, h(u) = uη.

Then condition (H1) is satisfied and the existence condition (H2) is also satisfied. The existence
condition (H2) becomes

M
m − (M + m)c

(
Ψ∗

(
Mρ(1 − c)ρ

(m − (M + m)c)ργρ∗
+ (R)η

)
+ γ∗

)
≤ R, (3.6)

Since ρ > 0, 0 ≤ η < 1 and c ∈
(
0, m

M+m

)
, we can choose R > 0 large enough such that (3.6) is

satisfied. �
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In the following, we investigate (1.1) in the case that attractive-repulsive singularities.

Corollary 3.3. Suppose M < 64π3

81
√

3ω3 and c ∈
(
0, m

M+m

]
hold. Assume that the following condition holds:

(F3) There exist positive constants α > β > 0 and µ > 0 such that

f (t, u) =
1
uα
−
µ

uβ
.

If γ∗ > 0, then there exists a positive constant µ1 such that (1.1) has at least one positive periodic
solution for each 0 ≤ µ ≤ µ1.

Proof. We apply Theorem 3.1. Take

g(x) =
1
uα
, h(u) ≡ 0, ζ(t) ≡ 1.

Firstly, we consider that condition (H2) is satisfied. Take R > 0 with

R =
M

m − (M + m)c

(
1

M(γ∗)α
+ γ∗

)
,

where
∫ ω

0
G(t, s)ds = 1

M . Next, we consider that the condition (H1) is also satisfied. In fact, f (t, u) ≥ 0
if and only if µ ≤ uβ−α.

In view of β < α, then we have µ < Rβ−α. As a consequence, the result holds for

µ1 :=
(

M
m − (M + m)c

(
1

M(γ∗)α
+ γ∗

))β−α
.

�

By Theorem 3.1, we consider a special case of c, i.e., c = 0.

Theorem 3.2. Suppose M < 64π3

81
√

3ω3 and c = 0 hold, and f (t, u) satisfies condition (H1). Furthermore,
assume that the following conditions holds:

(H∗2) There exists a positive constant R > 0 such that

M
m

(
g (γ∗)

(
1 +

h(R)
g(R)

)
Λ∗ + γ∗

)
≤ R.

If γ∗ > 0, then (1.2) has at least one positive periodic solution.

Remark 3.2. Theorem 3.2 extends and improves [26, Theorem 3.3].

Case (II) γ∗ = 0.

Theorem 3.3. Suppose M < 64π3

81
√

3ω3 and c ∈
(
0, m

M+m

]
hold. And f (t, u) satisfies (H1). Furthermore,

assume that the following conditions hold:
(H3) For each L > 0, there exists a continuous function φL � 0 such that f (t, u) ≥ φL(t) for all

(t, u) ∈ [0, ω] × (0, L].
(H4) There exists R > 0 such that R > (ΦR)′∗ := m−(M+m)c

M(1−c) (ΦR)∗ and

M
m − c(m + M)

(
g
(
(ΦR)′∗

) (
1 +

h(R)
g(R)

)
Λ∗ + γ∗

)
≤ R,

where ΦR(t) =
∫ ω

0
G(t, s)(φR)(s)ds.

If γ∗ = 0, then (1.1) has at least one positive periodic solution.
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Proof. We follow the same strategy and notation as in the proof of Theorem 3.1. Let R be the positive
constant satisfying (H4) and let r := m−(M+m)c

M(1−c) (ΦR)∗; then R > r > 0 since R > (ΦR)′∗. Next we prove
that Qu + Sy ∈ K for all u, y ∈ K .

For each u, y ∈ K and for all t ∈ [0, ω], by Lemma 2.5 and (H3), we get

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t))) + cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)
T ( f (t, u(t)) + e(t))) + cy(t − τ(t))

=
m − (M + m)c

M(1 − c)

(∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

)
+ cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)

(∫ ω

0
G(t, s)φR(s)ds + γ(t)

)
+ cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)
(ΦR)∗ := r > 0.

(3.7)

On the other hand, using Lemma 2.5, we see that

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t))) + cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

|T ( f (t, u(t)) + e(t)))| + cy(t − τ(t))

=
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

∣∣∣∣∣ + cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

∣∣∣∣∣ + cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c

{
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds

∣∣∣∣∣ + ‖γ‖

}
+ cy(t − τ(t)).

(3.8)

By conditions (H1) and (H4), we have

(Qu)(t) + (Sy)(t)

≤
M(1 − c)

m − (M + m)c

{
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s)ζ(s)(g(u(s)) + h(u(s)))ds

∣∣∣∣∣ + ‖γ‖

}
+ cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c

{
g(r)

(
1 +

h(R)
g(R)

)
Λ∗ + ‖γ‖

}
+ cR

≤R.

(3.9)

Combining (3.7) and (3.9), we get Qu + Sy ∈ K for all u, y ∈ K .
Similarly, we get that Q is a completely continuous and S is a contractive operator in X. Therefore,

by Krasnoselskii’s fixed point theorem, our result is proven. �

Corollary 3.4. Suppose M < 64π3

81
√

3ω3 and c ∈
(
0, m

M+m

]
hold. Assume that the following condition holds:
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(F4) There exist continuous functions d(t), d̂(t) � 0 and 0 < ρ < 1 such that satisfy

0 ≤
d̂(t)
uρ
≤ f (t, u) ≤

d(t)
uρ

, for all (t, u) ∈ [0, ω] × (0,∞).

If γ∗ = 0, then (1.1) has at least one positive periodic solution.

Proof. We apply Theorem 3.3. We take

φL(t) =
d̂(t)
Lρ

, ζ(t) = d(t), g(u) =
1
uρ
, h(u) = 0.

Then conditions (H1) and (H3) are satisfied, and the existence condition (H4) becomes

R >
(m − (M + m)c)Ψ̂∗

M(1 − c)Rρ
= r,

M
m − (M + m)c

((
M(1 − c)Rρ

(m − (M + m)c)Ψ̂∗

)ρ
Ψ∗ + ‖γ‖

)
≤ R, (3.10)

where Ψ̂ =
∫ ω

0
G(t, s)d̂(t)dt. Note that Ψ∗ > 0, since 0 < ρ < 1, we can choose appropriate R > 0 so

that (3.10) is satisfied and the proof is complete. �

Case (III) γ∗ < 0.

Theorem 3.4. Suppose M < 64π3

81
√

3ω3 and c ∈
(
0, m

M+m

]
hold. And f (t, u) satisfies (H1) and (H3).

Furthermore, assume that the following condition holds:
(H5) There exists R > 0 such that R > m−(M+m)c

M(1−c) ((ΦR)∗ + γ∗) > 0 and

M
m − (M + m)c

g
(
m − (M + m)c

M(1 − c)
((ΦR)∗ + γ∗)

) (
1 +

h(R)
g(R)

)
Λ∗ ≤ R.

If γ∗ < 0, then (1.1) has at least one positive periodic solution.

Proof. We follow the same strategy and notation as in the proof of Theorem 3.1. Let R be the positive
constant satisfying (H5) and let r := m−(M+m)c

M(1−c) ((ΦR)∗+γ∗); then R > r > 0 since R > m−(M+m)c
M(1−c) ((ΦR)∗+γ∗).

Next we prove that Qu + Sy ∈ K for all u, y ∈ K .
For each u, y ∈ K and for all t ∈ [0, ω], by Lemma 2.5 and (H3), we deduce

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t))) + cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)
T ( f (t, u(t)) + e(t))) + cy(t − τ(t))

=
m − (M + m)c

M(1 − c)

(∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

)
+ cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)

(∫ ω

0
G(t, s)φR(s)ds + γ(t)

)
+ cy(t − τ(t))

≥
m − (M + m)c

M(1 − c)
((ΦR)∗ + γ∗) := r > 0.

(3.11)

On the other hand, applying Lemma 2.5 and (3.8), we arrive at

(Qu)(t) + (Sy)(t)
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≤
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

∣∣∣∣∣ + cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds

∣∣∣∣∣ + cy(t − τ(t)),

since γ∗ ≤ 0, G(t, s) and f (t, u(t) are non-negative, (ΦR)∗ + γ∗ > 0, then we know∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

∣∣∣ ≤ ∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds

∣∣∣. By conditions (H1) and (H5), we get

(Qu)(t) + (Sy)(t)

≤
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s)ζ(s)(g(u(s)) + h(u(s)))ds

∣∣∣∣∣ + cy(t − τ(t))

≤
M(1 − c)

m − (M + m)c
g(r)

(
1 +

h(R)
g(R)

)
Λ∗ + cR

≤R.

(3.12)

Combining (3.11) and (3.12), we get Qu + Sy ∈ K for all u, y ∈ K .
Similarly, we get that Q is a completely continuous and S is a contractive operator in X. Therefore,

by Krasnoselskii’s fixed point theorem, our result is proven. �

Corollary 3.5. Suppose M < 64π3

81
√

3ω3 , c ∈
(
0, m

M+m

]
and (F4) hold. If γ∗ < 0 and

γ∗ ≥
(
Ψ̂∗

(m−(M+m)c)ρ

(MΨ∗)ρ ρ2
) 1

1−ρ2
(
1 − 1

ρ2

)
, then (1.1) has at least one positive periodic solution.

Proof. We apply Theorem 3.4. We take

φL(t) =
d̂(t)
Lρ

, ζ(t) = d(t), g(u) =
1
uρ
, h(u) = 0.

Then conditions (H1) and (H3) hold. Next, we consider that the condition (H5) is also satisfied. In fact,
take R > 0 with

R :=
M

m − (M + m)c

(
Ψ∗

rρ

)
,

then m−(M+m)c
M(1−c) ((ΦR)∗ + γ∗) ≥ r holds if r verifies

m − (M + m)c
M(1 − c)

(
Ψ̂∗

(m − (M + m)c)ρ

(MΨ∗)ρ
(r)ρ

2
+ γ∗

)
≥ r,

or equivalently,

γ∗ ≥ f (r) :=
m − (M + m)c

M(1 − c)
r − Ψ̂∗

(m − (M + m)c)ρ

(MΨ∗)ρ
(r)ρ

2
.

The function f (r) possesses a minimum at r0 :=
(
Ψ̂∗

(m−(M+m)c)ρ

(MΨ∗)ρ ρ2
) 1

1−ρ2
. Let r = r0. Then the (ΦR)∗+γ∗ >

0 holds if γ∗ ≥ f (r0), which is just the condition γ∗ ≥
(
Ψ̂∗

(m−(M+m)c)ρ+1

(MΨ∗)ρM(1−c) ρ
2
) 1

1−ρ2
(
1 − 1

ρ2

)
. The the condition

(H5) holds directly by the choice of R, and it would remain to prove that R = M
m−(M+m)c

(
Ψ∗

(r0)ρ

)
> r0. This

is easily verified through elementary computations.
�
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In the end of this section, we illustrate our results with one example.

Example 3.1. Consider the following a singular equation(
u −

1
8

u(t − cos2 t)
)′′′

+
1
8

(sin(2t) + 2)u =
cos(2t) + 4

uρ
+ (cos(2t) + 4)u

1
2 + esin2 t, (3.13)

where ρ is a real constant and ρ > 0.
Comparing Eq (3.13) with Eq (1.1), it is easy to see that

c =
1
8
, τ = cos2 t, a(t) =

1
8

(sin(2t) + 2), ω = π, f (t, u) =
cos(2t) + 4

uρ
+ (cos(2t) + 4)u

1
2 , e(t) = esin2 t.

Furthermore, we have

m =
1
8
, M =

3
8
< 0.456 <

64

81
√

3
, c ∈

(
0,

1
4

)
, d(t) = cos(2t) + 4, η =

1
2
,

and
γ(t) =

∫ ω

0
G(t, s)e(t)ds > 0.

Obviously, condition (F2) holds, and γ∗ > 0. Therefore, applying Corollary 3.2, we get that Eq (3.13)
has at least one positive π-periodic solution.

4. Periodic solution for (1.1) in the case that c ∈
(
− m

M+m , 0
)

In this section, we investigate the existence of positive periodic solutions for (1.1) in the case that
c ∈

(
− m

M+m , 0
)

by using Krasnoselskii’s fixed point theorem.
Case (I) γ∗ > 0.

Theorem 4.1. Suppose M < 64π3

81
√

3ω3 , c < 0 and |c| < min
{

m
M+m , σ

}
hold, and f (t, u) satisfies conditions

(H1). Furthermore, assume that the following condition holds:
(H∗∗2 ) There exists a positive constant R such that γ∗

1+|c| < R < γ∗
|c| and

M(1 − |c|)
m − (M + m)|c|

(
g (γ∗ − |c|R)

(
1 +

h(R)
g(R)

)
Λ∗ + γ∗

)
≤ R.

If γ∗ > 0, then (1.1) has at least one positive periodic solution.

Proof. We follow the same strategy and notation as in the proof of Theorem 3.1. Let R be the positive
constant satisfying (H∗∗2 ) and let r := γ∗ − |c|R; then R > r > 0 since R > γ∗

1+|c| . Next we prove that
Qu + Sy ∈ K for all u, y ∈ K .

For any u, y ∈ K , by Lemma 2.4 and non-negative sign of G(t, s) and f (t, u), we see that

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t)) + cy(t − τ(t))
≥T ( f (t, u(t)) + e(t)) + cy(t − τ(t))

=

∫ ω

0
G(t, s) f (s, u(s))ds + γ(t) − |c|y(t − τ(t))

≥γ∗ − |c|R := r > 0.

(4.1)
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On the other hand, applying Lemma 2.4, we obtain

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t)) + cy(t − τ(t))

≤
M(1 − |c|)

m − (M + m)|c|
max
t∈[0,ω]

|T ( f (t, u(t)) + e(t))| + cy(t − τ(t))

=
M(1 − |c|)

m − (M + m)|c|
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

∣∣∣∣∣ − |c|y(t − τ(t))

≤
M(1 − |c|)

m − (M + m)|c|

(
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds

∣∣∣∣∣ + γ(t)
)
,

since c < 0 and y ∈ K . By conditions (H1) and (H∗∗2 ), we get

(Qu)(t) + (S y)(t)

≤
M(1 − |c|)

m − (M + m)|c|

{
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s)ζ(s)(g(u(s)) + h(u(s)))ds

∣∣∣∣∣ + γ∗
}

≤
M(1 − |c|)

m − (M + m)|c|

{
g(r)

(
1 +

h(R)
g(R)

)
Λ∗ + γ∗

}
≤R.

(4.2)

Combining (4.1) and (4.2), we get Qu + Sy ∈ K for all u, y ∈ K .
Similarly, we get that Q is a completely continuous and S is a contractive operator in X. Therefore,

by Krasnoselskii’s fixed point theorem, our results is proven. �

Corollary 4.1. Suppose M < 64π3

81
√

3ω3 , c < 0, |c| < min
{

m
M+m , σ

}
and (F1) hold. If

γ∗ >

(
(m − (M + m)|c|
ρ|c|M(1 − |c|)Ψ∗

) 1
ρ+1

+
1
ρ

(
(m − (M + m)|c|
ρ|c|M(1 − |c|)Ψ∗

)− 2ρ+1
ρ+1

+
|c|M(1 − |c|)

m − (M + m)|c|
γ∗ > 0, (4.3)

then (1.1) has at least one positive periodic solution.

Proof. We apply Theorem 4.1. We take

ζ(t) = d(t), g(u) =
1
uρ
, h(u) = 0.

Then condition (H1) is satisfied. Next, we consider the condition (H∗∗2 ) is also satisfied. In fact, taking
R =

M(1−|c|)
m−(M+m)|c|

(
Ψ∗

rρ + γ∗
)
, the γ∗ − |c|R ≥ r holds if and only if r verifies

γ∗ −
|c|M(1 − |c|)

m − (M + m)|c|

(
Ψ∗

rρ
+ γ∗

)
≥ r,

or equivalently,

γ∗ ≥ f (r) := r +
|c|M(1 − |c|)

m − (M + m)|c|

(
Ψ∗

rρ
+ γ∗

)
.
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The function f (r) possesses a minimum at r0 :=
(

(m−(M+m))|c|
ρ|c|M(1−|c|)Ψ∗

) 1
ρ+1
. Let r = r0. Then γ∗ − cR ≥ r holds

if γ∗ ≥ f (r0), which is just the condition (4.3). The (H∗∗2 ) holds directly by the choice of R, and it

would remain to prove that R =
M(1−|c|)

m−(M+m)|c|

(
Ψ∗

rρ0
+ γ∗

)
> r0. This is easily verified through elementary

computations. �

Case (II) γ∗ = 0.

Theorem 4.2. Suppose M < 64π3

81
√

3ω3 , c < 0 and |c| < min
{

m
M+m , σ

}
hold. And f (t, u) satisfies (H1) and

(H3). Furthermore, assume that the following condition holds:
(H∗∗4 ) There exists R > 0 such that (ΦR)∗

1+|c| < R < (ΦR)∗
|c| and

M(1 − |c|)
m − (M + m)|c|

(
g ((ΦR)∗ − |c|R)

(
1 +

h(R)
g(R)

)
Λ∗ + ‖γ‖

)
≤ R.

If γ∗ > 0, then (1.1) has at least one positive periodic solution.

Proof. We follow the same strategy and notation as in the proof of Theorem 4.1. Let R be the positive
constant satisfying (H∗∗4 ) and let r := (ΦR)∗ − |c|R; then R > r > 0 since R > (ΦR)∗

1+|c| . Next we prove that
Qu + Sy ∈ K for all u, y ∈ K .

For any u, y ∈ K , by Lemma 2.5 and (H3), we have

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t)) + cy(t − τ(t))
≥T ( f (t, u(t)) + e(t)) + cy(t − τ(t))

=

∫ ω

0
G(t, s) f (s, u(s))ds + γ(t) − |c|y(t − τ(t))

≥

∫ ω

0
G(t, s)φR(s)ds + γ(t) − |c|y(t − τ(t))

≥(ΦR)∗ − |c|R := r > 0.

(4.4)

On the other hand, applying Lemma 2.4, we get

(Qu)(t) + (Sy)(t)
=P( f (t, u(t)) + e(t)) + cy(t − τ(t))

≤
M(1 − |c|)

m − (M + m)|c|
max
t∈[0,ω]

|T ( f (t, u(t)) + e(t))| + cy(t − τ(t))

=
M(1 − |c|)

m − (M + m)|c|
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds + γ(t)

∣∣∣∣∣ − |c|y(t − τ(t))

≤
M(1 − |c|)

m − (M + m)|c|

(
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s) f (s, u(s))ds

∣∣∣∣∣ + ‖γ‖

)
,
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since c < 0 and y ∈ K. By conditions (H1) and (H∗∗4 ), it is clear

(Qu)(t) + (Sy)(t)

≤
M(1 − |c|)

m − (M + m)|c|

(
max
t∈[0,ω]

∣∣∣∣∣∫ ω

0
G(t, s)ζ(s)(g(u(s)) + h(u(s)))ds

∣∣∣∣∣ + ‖γ‖

)
≤

M(1 − |c|)
m − (M + m)|c|

(
g(r)

(
1 +

h(R)
g(R)

)
Λ∗ + ‖γ‖

)
≤R.

(4.5)

Combining (4.4) and (4.5), we get Qu + Sy ∈ K for all u, y ∈ K .
Similarly, we get that Q is a completely continuous and S is a contractive operator in X. Therefore,

by Krasnoselskii’s fixed point theorem, our results is proven. �

Corollary 4.2. Suppose M < 64π3

81
√

3ω3 , c < 0, |c| < min
{

m
M+m , σ

}
and (F5) hold. If γ∗ = 0, then (1.1) has

at least one positive periodic solution.

Proof. We apply Theorem 4.2. We take

φL(t) =
d̂(t)
Lρ

, ζ(t) = d(t), g(u) =
1
uρ
, h(u) = 0.

Then conditions (H1) and (H2) hold, and the existence condition (H∗∗4 ) becomes

Ψ̂∗

|c|Rρ
> R >

Ψ̂∗

(1 + |c|)Rρ
= r, (4.6)

and

M(1 − |c|)
m − (M + m)|c|

((
(1 + |c|)Rρ

Ψ̂∗

)ρ
Ψ∗ + ‖γ‖

)
≤ R. (4.7)

Note that Ψ∗ > 0, since 0 < ρ < 1, we can choose appropriate R > 0 so that (4.6) and (4.7) are satisfied
and the proof is complete. �

5. Conclusion

The paper is devoted to the existence of positive periodic solutions for (1.1), where the nonlinear
function f has a singularity at u = 0 and sub-linearity condition at u = ∞ for an appropriately chosen
parameter. By employing Green’s function and the Krasnoselskii fixed point theorem in cones, we
prove the existence of positive periodic solutions to (1.1) with time-dependent delay for the first time.
We would like to emphasize that the inclusion of the neutral operator in the singularity implies a new
technical difficulty concerning the right choice of the operator.
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