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1. Introduction and main results

In this paper, we concentrate on the following stochastic damped Ostrovsky equation driven by pure
jump noise du(t) = [β∂3

xu(t) − 1
2∂x(u2) + λu + γ∂−1

x u]dt +
∫

Z
g(u(t−), z)η(dt, dz),

u(0) = u0.
(1.1)

where λ > 0, β and γ are real numbers such that β · γ , 0 and ∂−1
x f =

(
(iξ)−1 f̂ (ξ)

)∨
, and η(dt, dz)

denotes the Poisson counting measure. The Ostrovsky equation was introduced by [17] to describe the
weakly nonlinear long waves in a rotating liquid, where the parameter γ measures the effect of rotation
which is supposed to be small. β represents the capillary waves on the surface of a liquid or for oblique
magneto-acoustic waves in plasma. And λ > 0 means the positive dispersion.

For the stochastic Ostrvosky equation driven by white noise, Isaza [11–13] proved the
well-posedness in H s(R) with s > −3

4 . Yan et al. [21, 22] obtained the local well-posedness for the
Cauchy problem for (1.1) the initial data u0(·, ω) ∈ H s(R)(ω ∈ Ω a.e.) with s > −3

4 , and the global
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well-posedness in L2(R)(a.e.ω ∈ Ω). Chen [4] established the existence of random attractor in L̃2(R).
Wu et al. [19] established the ergodicity of stochastic damped Ostrovsky equation with Gaussian
noise, but they do not discuss the ergodicity of the equation with Lévy noise.

The dispersive partial differential equation such as Schrödinger equation, KdV equation and
Ostrovsky equation are integrable systems with infinite conservation laws. If λ = 0, then (1.1) become
a stochastic KdV equation. Bouard et al. [2, 3] established the local well-posedness for stochastic
KdV equation with additive noise and multiplicative noise respectively. The dissipative effect of
damped dispersive systems are too weak to apply the theory for dissipative dynamical systems. There
are two typical difficulties to establish the ergodicity for stochastic dispersive equation on R need to
overtake, one is the non-compactness of the whole real line R, and the other one is the
non-compactness of operator semigroup for stochastic linear dispersive equation. Recently, Ekren,
Kukavica and Ziane [9, 10] applied the stopping time technique to establish the boundedness of the
uniform estimate, which can deduce the tightness of the measure sequences in local square integrable
space L2

loc(R), they also used the convergence in measure in Hilbert space in terms of the idea in [16]
to obtain the existence of invariant measure, but they could not provide with the uniqueness and
ergodicity, we refer it to [9] for details.

Recently, Bouard et al. [1] studied the nonlinear Schrödinger eqution driven by jump process, and
proved the existence of a martingale solution of the nonlinear Schrödinger equation with jump
processes with infinite activity, but they could not study the ergodicity of invariant measure for
stochastic Schrödinger equation with jump noise. In fact, there are a lot of paper on ergodicity for
stochastic dissipative partial differential equation driven by jump process, Dong and Xie [7] studied
ergodicity of stochastic 2D Navier-stokes equations with Lévy noise, Dong et.al. [6] study the
existence of martingale solutions of stochastic 3D Navier-Stokes equations with jump noise. To the
best of our knowledge, there is little paper on the ergodicity of stochastic damped dispersive PDE
with Lévy noise due to the above mentioned difficulty.

The goal of this paper is to study the invariant measure of stochastic damped Ostrovsky equation
with pure jump noise. The novelty of the current paper to obtain the uniformly bounded of solutions
in H1(R) and L2(R) space respectively, which are the key tools to prove the tightness of the measure
sequences in local square integrable space L2

loc(R). By using the convergence in measure in Hilbert
space in terms of the idea in [16], we can obtain the existence of invariant measure. Moreover, by
applying the idea of Proposition 3.2.7 in [5], we prove that the invariant measure is unique if the initial
value is non-random. The another novelty of the current paper is that the numerical simulation in the
sense of E‖u(t, ·)‖L2

x
reveals that stochastic damped Ostrovsky equation driven by pure jump may posses

an unique ergodic invariant measure.
We state our main result followed as:

Theorem 1.1. Assume that u0 ∈ X1, and the Hypothesis (H1)–(H3) are satisfied. Then stochastic
damped Ostrovsky equation (1.1) admits an invariant measures. Moreover, it posses an ergodic
invariant measure for the non-random initial data.

The rest of paper is organized as follows. In Section 2, some function setting and useful lemmas
or technique theorem are provided. In Section 3, the uniformly bounded of solutions in H1(R) and
L2(R) space are established respectively, which are the key tools to obtain the ergodicity. By using
the methods of [1, Appendix A], we prove the existence of invariant measure for stochastic damped
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Ostrovsky equation in Section 4. Moreover, by applying the idea of Proposition 3.2.7 in [5], we prove
that the invariant measure is unique if the initial value is restricted to be non-random. In Section 5,
some numerical simulation are provide to support the theoretical results.

2. Preliminary

In this section, we introduce some basic concepts and some inequalities, which are from [1] and
[18].

Let (Ω,F ,Ft,P) be a complete probability space, (Z,B(Z)) be a measurable space and ν(dz) be a
σ−finite measure on it. Let P = (p(t), t ∈ Dp) be a stationary Ft−Poisson point process on Z with
characteristic measure ν(dz), where Dp is a countable subset of [0,+∞) depending on random
parameter ω ∈ Ω. Denote by η(dt, dz) the Poisson counting measure associated with p, that is
η(dt, dz) = Σs∈Dp,s6t1A(p(s)), where 1A(·) is the indicator function with respect to A. Let
η̃(dt, dz) = η(dt, dz) − dtν(dz) be the compensated Poisson measure. If ν(z) < ∞, η̃ is a martingale
with 〈η̃(Z)〉t = tν(z), and ν is the intensity measure of η.

We impose the hypothesis (H1)–(H3) on the Poisson processes just as [8]

(H1) For any u ∈ X1, there exists a constant C < ∞ such that∫
‖g(u, z)‖2X1

ν(dz) 6 C(1 + ‖u‖2X1
),

(H2) ν(0) = 0,
∫

Z
‖z‖2Zν(dz) < ∞ and ν(Z) = ρ < ∞,

(H3) Z is continuously embedded in H1(R).

The measure ν describes the expected number of jumps of a certain height in a time interval of length
1. The hypothesis means there is an finite number of small jumps is expected.

Let Y be a separable and complete metric space and T > 0. The space X(T ) = D([0,T ]; Y) denotes
the space of all right continuous functions x : [0,T ] → Y with left limits, P(D([0,T ]; Y)) the space of
Borel probability measures on D([0,T ]; Y). We equip D([0,T ]; Y) with the Skorohod topology such
that D([0,T ]; Y) is both separable and complete.

Let H be a Hilbert space, H s(R) is the Sobolev space with norm

‖ f ‖Hs(R) = ‖〈ξ〉sFx f ‖L2
ξ (R),

where 〈ξ〉s = (1 + ξ2)
s
2 for any ξ ∈ R, Fxu and F −1

x u denotes the Fourier transformation and the Fourier
inverse transformation of u with respect to its space variable respectively. Ḣ s1,s2(R) is the Sobolev
space with norm

‖ f ‖Ḣs1 ,s2 (R) = ‖〈ξ〉s1 |ξ|s2Fx f ‖L2
ξ (R).

and Ḣ s = Ḣ0,s. With this choice of the antiderivative we have, ∂−1
x f =

(
f̂ (ξ)
iξ

)∨
, so it is natural to define

the function space Xs as one in [15]

Xs =
{
f ∈ H s(R) : ∂−1

x f ∈ L2(R)
}
, s ∈ R.

Space S(R) is the Schwartz space and S
′

(R) is its dual space. F u and F −1u denotes the Fourier
transformation and the Fourier inverse transformation of u with respect to its all variables respectively.
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The following Theorem is the key tool to prove the ergodicity for stochastic equation (1.1), which
is from [1],

Lemma 2.1 (Appendix A.1, [1]). Let {xn : n ∈ N} be a sequence of càdlàg processes, each of the
process defined on a probability space (Ωn,Fn,Pn). Then the sequence of laws of {xn : n ∈ N}is tight
on D([0,T ]; Y) if

(a) there exists a space Y1, with Y1 → Y compactly and some r > 0, such that

En|xn(t)|rY1
≤ C, ∀n ∈ N.

(b) there exist constants c > 0, γ > 0 and r > 0 such that for all θ ∈ [0,T ], t ∈ [0,T − θ], and n ≥ 0,
we have

En sup
t≤s≤t+θ

|xn(t) − xn(s)|rY ≤ cθγ.

Denote

φ(ξ) = βξ3 +
γ

ξ
, S λ(t)u = eλtU(t),

U(t)u0 = e−λt
∫

R
ei(xξ−tφ(ξ))Fxu0(ξ)dξ,

‖ f ‖Lq
t Lp

x
=

∫
R

(∫
R
| f (x, t)|pdx

) q
p

dt


1
q

, ‖ f ‖Lp
xt

= ‖ f ‖Lp
t Lp

x
.

Then the mild solution of equation (1.1) can be written as:

u(t) = S λ(t)u0 −

∫ t

0
S λ(t − s)u∂xuds +

∫ t

0

∫
Z

S λ(t − s)g(u(s−), z)η(ds, dz). (2.1)

Definition 2.1. Assume that (X,T ) is a polish space, Σ is a σ-algebra on X, M is a set of measures on
Σ. M is said to be tight if for any ε > 0, there exists a compact set Kε ⊂ X such that

|µ(Kc
ε)| < ε, for any µ ∈ M.

The following Lemma is the key tool to prove the ergodicity for stochastic equation (1.1), which is
from [5].

Lemma 2.2 ( [5], Proposition 3.2.7). An invariant probability measure for the semigroup Pt, t ≥ 0, is
ergodicity if and only if it is an extremal point of the set of all the invariant probability measures for
the semigroup Pt, t ≥ 0.

3. Uniform bounded and global well-posedness

In this section, we establish the uniform estimates of the solution in L2 norm and H1 norm
respectively, which is the key tool to obtain the ergodicity for stochastic Ostrovsky equation (1.1).
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Lemma 3.1 ( [22]). There exists some monotonely increasingly continous function C̃1(t) and a constant
α > 0, ∀h, g ∈ X(T ), such that

‖

∫ t

0
S λ(t − s)h(s)∂xg(s)ds ‖X(T )6 C̃1(T )Tα ‖ h ‖X(T )‖ g ‖X(T ) .

Here ‖u‖X(T ) = sups∈[0,T ] ‖u(s)‖H1 .

Lemma 3.2 ( [22]). There exists some monotonely increasingly continuous function C̃2(t), such that

‖ S λ(t)u0 ‖X(T )6 C̃2(T ) ‖ u0 ‖X(T ) .

Lemma 3.3. If u(t) ∈ X1 solves the equation (2.1), and the Hypothesis (H1)–(H3) are satisfied. There
exists a constant C > 0 such that

E[ sup
06t6T

‖u‖2L2p] 6 C(1 + E[‖u0‖
2
L2p]), (3.1)

E[ sup
06t6T

‖u‖2H1] 6 C(1 + E[‖u0‖
2
H1]). (3.2)

Proof. The proof of (3.1) can get by slightly modifying the proof of Lemma 5.1 in [22], we just prove
(3.2). Let

I(u) =

∫
R
β(∂xu)2 +

γ

2
(∂−1

x u)2 +
1
3

u3dx.

Applying the Itô formula to I(u) yields

I(u(t)) ≤ I(u(0)) +

∫ t

0

∫
Z
(‖∂xg(u(s−), z)‖2L2 + 2〈∂xu(s−), ∂xg(u(s−), z)〉)η̃(ds, dz)

+

∫ t

0

∫
Z
(‖∂xg(u(s), z)‖2L2 + 2〈∂xu(s), ∂xg(u(s), z)〉)dsν(dz)

+

∫ t

0

∫
Z
(‖∂−1

x g(u(s−), z)‖2L2 + 2〈∂−1
x u(s−), ∂−1

x g(u(s−), z)〉)η̃(ds, dz)

+

∫ t

0

∫
Z
(‖∂−1

x g(u(s), z)‖2L2 + 2〈∂−1
x u(s), ∂−1

x g(u(s), z)〉)dsν(dz)

+

∫ t

0

∫
Z
‖u(s−) + g(u(s−), z)‖3L3 − ‖u(s−)‖3L3 η̃(ds, dz)

+

∫ t

0

∫
Z
‖u(s) + g(u(s), z)‖3L3 − ‖u(s)‖3L3dsν(dz)

= I(u(0)) + M1 + I1 + M2 + I2 + M3 + I3.

Direct computation shows that

[MτN
1 ,MτN

1 ]
1
2
t = [M1,M1]

1
2
τN∧t

= (
∑

s∈Dp,s6τN∧t

(‖∂xg(u(s−), z)‖2L2 + 2〈u(s−), g(u(s−), p(s))〉)2)
1
2

≤ (2
∑

s∈Dp,s6τN∧t

(‖∂xg(u(s−), z)‖4L2 + 8
∑

s∈Dp,s6τN∧t

‖∂xu(s−)‖2L2‖∂xg(u(s−), p(s))‖2L2 )
1
2
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≤ C(
∑

s∈Dp,s6τN∧t

‖∂xg(u(s−), z)‖4L2 )
1
2 + C(

∑
s∈Dp,s6τN∧t

‖∂xu(s−)‖2L2‖∂xg(u(s−), p(s))‖2L2 )
1
2

≤ C
∑

s∈Dp,s6τN∧t

‖∂xg(u(s−), z)‖2L2 + C(
∑

s∈Dp,s6τN∧t

‖∂xu(s−)‖2L2‖∂xg(u(s−), p(s))‖2L2 )
1
2

≤ C
∑

s∈Dp,s6τN∧t

‖∂xg(u(s−), z)‖2L2 + C sup
s≤t∧τN

‖∂xu(s−)‖L2 (
∑

s∈Dp,s6τN∧t

‖∂xg(u(s−), p(s))‖2L2 )
1
2

≤ C
∑

s∈Dp,s≤τN∧t

‖∂xg(u(s−), z)‖2L2 +
1
2

sup
s≤t∧τN

‖∂xu(s−)‖2L2 .

Taking the expectation and using (H1)–(H3) gives

E[ sup
06s6t
|MτN

1 |] 6 CE([MτN ,MτN ]
1
2
t )

≤ CE[
∑

s∈Dp,s6τN∧t

‖∂xg(u(s−), z)‖2L2] +
1
2
E[ sup

s6t∧τN

‖∂xu(s−)‖2L2]

= CE[
∫ t∧τN

0

∫
Z
‖∂xg(u(s−), z)‖2L2dsν(dz)] +

1
2

E[ sup
s≤t∧τN

‖∂xu(s−)‖2L2]

≤ CE[
∫ t∧τN

0
(1 + ‖∂xu(s−)‖2L2)ds] +

1
2
E[ sup

s6t∧τN

‖∂xu(s−)‖2L2]

≤ C(1 + N)t +
1
2

N < ∞.

We can deduce that for I1(t ∧ τN),

E[I1(t ∧ τN)] = E[
∫ t∧τN

0

∫
Z
(‖∂xg(u(s), z)‖2L2 + 2〈u(s), g(u(s), z)〉)dsν(dz)]

≤ E[
∫ t∧τN

0

∫
Z
(‖∂xg(u(s), z)‖2L2 + 2‖∂xu(s)‖2L2‖∂xg(u(s), z)‖2L2)dsν(dz)]

≤ 2E[
∫ t∧τN

0

∫
Z
‖∂xg(u(s), z)‖2L2dsν(dz)] + E[

∫ t∧τN

0

∫
Z
‖∂xu(s)‖2L2dsν(dz)]

= 2E[
∫ t∧τN

0

∫
Z
‖∂xg(u(s), z)‖2L2dsν(dz)] + E[

∫ t∧τN

0

∫
Z
‖∂xu(s−)‖2L2dsν(dz)]

≤ CE[
∫ t∧τN

0
(1 + ‖∂xu(s−)‖2L2)ds] + ρE[

∫ t∧τN

0
‖∂xu(s−)‖2L2ds]

≤ Ct + (C + ρ)Nt < ∞.

Similarly,

E[ sup
0≤s≤t
|MτN

2 |] ≤ CE([MτN ,MτN ]
1
2
t )

≤ CE[
∫ t∧τN

0
(1 + ‖∂−1

x u(s−)‖2L2)ds] +
1
2

E[ sup
s≤t∧τN

‖∂−1
x u(s−)‖2L2]

6 C(1 + N)t +
1
2

N < ∞,
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and

E[I2(t ∧ τN)] = E[
∫ t∧τN

0

∫
Z
(‖∂−1

x g(u(s), z)‖2L2 + 2〈u(s), g(u(s), z)〉)dsν(dz)]

≤ CE[
∫ t∧τN

0
(1 + ‖∂−1

x u(s−)‖2L2)ds] + ρE[
∫ t∧τN

0
‖∂−1

x u(s−)‖2L2ds]

≤ Ct + (C + ρ)Nt < ∞.

For M3, by Agmon’s inequality, ‖u‖L∞ ≤ ‖u‖
1/2
L2 ‖∂xu‖

1/2
L2 , we have

[M,τN
3 ,M,τN

3 ]
1
2
t = [M3,M3]

1
2
τN∧t

=

 ∑
s∈Dp,s≤τN∧t

(‖g(u(s−), z)‖3L3 + 2〈u2(s−), g(u(s−), p(s))〉 + 2〈u(s−), g2(u(s−), p(s))〉)2


1
2

≤ C

 ∑
s∈Dp,s6τN∧t

(‖g(u(s−), z)‖6L3 +
∑

s∈Dp,s6τN∧t

‖∂xu(s−)‖4L2‖g(u(s−), p(s))‖2L2

+
∑

s∈Dp,s6τN∧t

‖u(s−)‖4L2‖∂xg(u(s−), p(s))‖2L2


1
2

≤ C

 ∑
s∈Dp,s6τN∧t

‖∂xu(s−)‖2L2 + ‖g(u(s−), p(s))‖4L2 + ‖u(s−)‖4L2 + ‖∂xg(u(s−), p(s))‖2L2

 ,
and by (3.1)

E[ sup
06s6t
|MτN

3 |] ≤ CE[
∑

s∈Dp,s6τN∧t

‖∂xg(u(s−), z)‖2L2 ] +
1
2

E[ sup
s6t∧τN

‖∂xu(s−)‖2L2 ]

≤ CE[
∫ t∧τN

0
(1 + ‖∂xu(s−)‖2L2 )ds] +

1
2

E[ sup
s6t∧τN

‖∂xu(s−)‖2L2 ] ≤ C(1 + N)t +
1
2

N < ∞,

E[I3(t ∧ τN)] ≤ CE[
∫ t∧τN

0
(1 + ‖∂xu(s−)‖2L2 )ds] +

1
2

E[ sup
s6t∧τN

‖∂xu(s−)‖2L2 ]

≤ C(1 + N)t +
1
2

N < ∞.

Combining the above arguments, we can obtain

E[ sup
06s6t∧τN

‖I(u(s))‖2L2 ] = E[ sup
06s6t
‖I(u(s ∧ τN))‖2L2 ]

≤ E[‖I(u0)‖2L2 ] + Ct + CE[
∫ t∧τN

0
(1 + ‖u(s−)‖2L2 )ds] +

1
2

E[ sup
s6t∧τN

‖u(s−)‖2L2 ]

+CE[
∫ t∧τN

0
(1 + ‖∂xu(s−)‖2L2 )ds] + ρE[

∫ t∧τN

0
‖∂xu(s−)‖2L2 ds]

+CE[
∫ t∧τN

0
( sup

s6t∧τN

‖∂−1
x u(s)‖2L2 )ds] +

1
2

E[ sup
s6t∧τN

‖∂−1
x u(s)‖2L2 ].

Applying Gronwall’s inequality leads to

E[ sup
06s6t∧τN

‖I(u(s))‖2L2] 6 C(Ct + E[‖I(u0)‖2L2])eCt.
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Since τN ∧ T → T as N → ∞,P.a.s.. It follows from Young’s inequality that∫ ∞

−∞

u3(x, t)dx ≤ ‖u(t)‖L∞ ‖u0‖
2
L2 ≤

√
2 ‖u0‖

5/2
L2 ‖∂xu(t)‖1/2L2

≤
β

2
‖∂xu(t)‖2L2 + C.

(3.3)

which implies that

β ‖∂xu(t)‖2L2 +
γ

2

∥∥∥∂−1
x u(t)

∥∥∥2

L2

= I2 (u0) −
1
3
‖u(t)‖3L3 ≤ |I2 (u0)| +

β

2
‖∂xu(t)‖2L2 + C. (3.4)

Then, we can prove that
E[ sup

06t6T
‖u‖2H1] 6 C(1 + E[‖u0‖

2
H1]).

Thus, the proof of Lemma is completed. �

Next, we will prove the global well-posdness of (1.1) in D([0,T ],H1) by the method developed
in [1].

Theorem 3.1. Assume the conditions (H1)–(H3) are satisfied. Then, the equation (1.1) admits a unique
global mild solution in X1, which is cádlag.

Proof. Let {τn : n ∈ N} be a family of independent exponential distributed random variables with
parameter ρ, and set

Tn =

n∑
j=1

τ j, n ∈ N.

Define {N(t) : t > 0} as the counting process

N(t) = Σ∞j=11[T j,∞)(t), t > 0.

Then for any fixed t > 0, N(t) is a Poisson distributed random variable with parameter ρt. Let {Yn : n ∈
N} be a family of independent, ν/ρ distributed random variables. Then

∫ t

0

∫
Z

g(u(s−), z)η̃(ds, dz) =


−

∫ t
0

∫
Z g(u(s−), z)ν(dz)ds, i f N(t) = 0,

Σ
N(t)
j=1 g(u(t−),Yn) −

∫ t
0

∫
Z g(u(s−), z)ν(dz)ds, i f N(t) > 0,

Notice that N(t) = 0 on the interval [0,T1), then the equation (1.1) can be rewritten as the following
equations du(t) = [β∂3

xu(t) − 1
2∂x(u2) + λu + γ∂−1

x u]dt,

u(0) = u0.
(3.5)

Thus, the mild solution of equation (3.5) can be represented as follows

u(t) = S λ(t)u0 −

∫ t

0
S λ(t − s)u∂xuds.
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Define the operator F by

Fu = S λ(t)u0 −

∫ t

0
S λ(t − s)u∂xuds.

Then

‖Fu‖X1(T1) 6 ‖S λ(t)u0‖X1(T1) + ‖

∫ t

0
S λ(t − s)u∂xuds‖X1(T1)

for ‖u‖X1(T1) < ∞. Lemma 3.1 and 3.2 implies that there exists some constant C > 0 such that

‖Fu‖X1(T1) 6 C(‖u0‖X1(T1) + Tα
1 ‖u‖

2
X1(T1)) < ∞.

Thus, F maps X1(T1) into itself. Next, we will verify that the operator F is contractive. In fact, for any
u1, u2 ∈ X1(T1), we have

‖Fu1 − Fu2‖X1(T1) = ‖

∫ t

0
S λ(t − s)(u1∂xu1 − u2∂xu2)ds‖X1(T1)

6 ‖

∫ t

0
S λ(t − s)u1∂x(u1 − u2)ds‖X1(T1) + ‖

∫ t

0
S λ(t − s)(u1 − u2)∂xu2ds‖X1(T1)

6 C1(T1)Tα
1 (‖u1‖X1(T1) + ‖u2‖X1(T1))‖u1 − u2‖X1(T1).

Hence, there exists a sufficient small T1 > 0 such that equation (3.5) posses an unique local solution
on [0,T1]. In the sequel, we extend the local solution to the global one by Lemma 3.3. To the end,
denote this local solution on [0,T1) by u1. We will consider the solution on [T1,T2). Notice that a jump
with size g(u(T1−),Yn) happens at time T1, let u0

1 = u1(T1−)+g(u1(T1−),Yn), and we consider a second
process on [T1,T2) as followingdu(t) = [β∂3

xu(t) − 1
2∂x(u2) + λu + γ∂−1

x u]dt,

u(0) = u0,
(3.6)

Similarly, we can deduce that equation (3.6) posses a unique mild solution u2 on [T1,T2). Repeating
the above arguments, we can obtain that the equation (1.1) has a unque global mild solution in X(T ).

Since P(N(t) < ∞) = 1, the solution u(t) is almost surely defined on [0,T ]. It is clearly that the
jumps take place at each T j, and lim

t↓T j
u(t) = u0

j , and lim
t↑T j

u(t) exists. Then u is cádlag. Thus the proof of

Theorem 3.1 is complete. �

4. Ergodicity of stochastic equation (1.1)

In this section, we first prove the tightness of semigroup P(t), t ≥ 0 according to Lemma 2.1, then
prove the ergodicity of stochastic equation (1.1) .

Theorem 4.1. Assume that u0 ∈ H1(R), and the conditions (H1)–(H3) are satisfied. Then for any
sequence of deterministic initial conditions {un

0} with R = sup
n∈N
{‖un

0‖H1} < ∞, {Ptn(u
n
0, ·) : n ∈ N} is tight

on H1 for any tn > 0 with tn → ∞ as n→ ∞.
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Proof. Without loss of generality, we assume that tn is an increasing sequence. Denote by un(t) the
solution with the initial condition un(0). We claim that {un(t)}∞n=1 converges in H1(R). In fact, since

E[ sup
0≤t≤T

‖u‖2H1] ≤ C(1 + E[‖u0‖
2
H1]),

then we have

sup
t≥0
E[‖ un(tn) ‖2H1] ≤ C(sup

n
(‖un(0)‖2H1) + sup

n
(‖u0‖

2
L2)2 + 1) := C(R).

Due to Lemma 2.2, it suffices to prove there exist two constants c > 0 and γ > 0 and a real number
r > 0 such that for all θ > 0, t ∈ [0,T − θ], and n ≥ 0

En sup
t≤s≤t+θ

|un(t) − un(s)|rX ≤ cθγ.

By the Definition 2.1, we get

E‖un(t + θ) − un(s)‖2H1

≤ E‖

∫ t+θ

t
S λ(t − s)u∂xuds‖2 + E‖

∫ t+θ

t

∫
Z

S λ(t − s)g(u(s−), z)η(ds, dz)‖2.

It follows from Lemma 3.1 and assumptions (H1)–(H3) that there exist γ > 0 such that

E‖un(t + θ) − un(s)‖2 ≤ θγ + E

∫ t+θ

t
1 + ‖S λ(t − s)g(u(s−), z)‖2ds,

which implies that the tightness of {Ptn(u
n
0, ·) : n ∈ N} holds, and the proof of Theorem 4.1 is complete.

�

Theorem 4.2. Assume that u0 ∈ H1(R) and the conditions (H1)–(H3) are satisfied. If K is a compact
set of {H1}, then the sequence of measures {Ps(v, ·) : s ∈ [0, 1], v ∈ K} is tight on H1.

Proof. We need to prove that {Ps(v, ·) : s ∈ [0, 1], v ∈ K} posses a convergent subsequence. Without
loss of generality, we assume that (sn, vn) ∈ [0, 1] × K converges to (s, v) ∈ [0, 1] × K, because K is a
compact set. Let un(t) be the solution with the initial value vn(0), and u(t) the solution with the initial
value v. For u ∈ D([0, 1]; H1), then we can derive that

lim
n→∞
‖u(sn) − u(s)‖H1 = 0, P.a.s.

Next, we will prove that there exists a subsequence (snk , vnk) of sequence (sn, vn) such that

lim
k→∞

(‖u(snk) − u(s)‖H1 + ‖unk(s) − u(s)‖H1) = 0.

Finally, set R0 = sup
v∈K
‖v‖H1 + 1, and choose R > 0 such that C(R0)

R ≤ ε
2 , then we have

P{max{ sup
s∈[0,t]
‖u(s)‖2H1 , sup

s∈[0,t]
‖un(s)‖2H1} ≥ R}

AIMS Mathematics Volume 5, Issue 6, 7145–7160.



7155

≤ P{ sup
s∈[0,t]
‖u(s)‖2H1 + sup

s∈[0,t]
‖un(s)‖2H1 ≥ R}

≤
1
R
E[ sup

s∈[0,t]
‖u(s)‖2H1 + sup

s∈[0,t]
‖un(s)‖2H1] ≤

C(R0)
R
≤
ε

2
.

Define τ = inf{s ≥ 0 : 4C̃(t)sα(C̃(t)R + ‖ū‖X(s) + ‖
∫ s

0
U(s − r)∂xu2dr‖X(s)) > 1}. is a stopping time. Let

τ0 = τ, and

τk+1 = inf{s ≥ τk : 4C̃(t)(s − τk)α(C̃(t)R + ‖ūτk‖X(τk ,s)

+‖

∫ s

τk

U(s − r)∂xu2dr‖X(τk ,s)) > 1},

An = {max{ sup
s∈[0,t]
‖u(s)‖2H1 , sup

s∈[0,t]
‖un(s)‖2H1} ≤ R},

and choose N such that P(τN ≤ 1) ≤ ε
2 , we obtain

sup
s∈[0,1]

‖u(s) − un(s)‖H1 ≤ (2C̃(t))N+1‖v − vn‖H1 → 0

on the interval An
⋂
{τN ≥ 1}.

Choosing n be large enough such that (2C̃(t))N+1‖v − vn‖H1 < δ, we have

P( sup
s∈[0,1]

‖u(s) − un(s)‖H1 ≤ δ) ≥ P(An

⋂
{τN ≥ 1}) ≥ 1 − ε,

which implies that
lim
n→∞

sup
s∈[0,1]

‖u(s) − un(s)‖H1 → 0, P.a.s.

Therefore, there exists a sequence nk such that

lim
k→∞
‖u(s) − unk(s)‖H1 → 0, P.a.s.

We can deduce that

|Psnk
ξ(vnk) − Psξ(v)| ≤ E[|ξ(unk(snk)) − ξ(u(snk))|] + E[|ξ(u(snk)) − ξ(u(s))|]→ 0

for any real valued uniformly continuous function ξ ∈ H1(R). Therefore, {Ps(v, ·) : s ∈ [0, 1], v ∈ K}
has a convergent subsequence. The proof of Theorem 4.2 is complete. �

Theorem 4.3. Assume that u0 ∈ H1(R) and the conditions (H1)–(H3) are satisfied. Then µn(·) =
1
n

∫ n

0
Pt(0, ·)dt, n = 1, 2, ... is tight on H1(R).

Proof. Since for any ε > 0, {Pn(0, ·) : n ≥ 0} is tight , we can choose a compact set Kε ⊂ H1(R) such
that sup

n
{Pn(0,Kc

ε) ≤
ε
2 , and {Ps(v, ·) : s ∈ [0, 1], v ∈ K} is tight on H1. We can also choose a compact

set Aε ⊂ Hm(R) such that sup
s∈[0,1],v∈Kε

{Pn(0, Ac
ε) ≤

ε
2 . Therefore, we have

µn(Ac
ε) =

1
n

∫ n

0
Pt(0, Ac

ε)dt
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7156

=
1
n

n−1∑
i=0

∫ i+1

i

∫
H1

Pi(0, dy)Pt−i(y, Ac
ε)dt

=
1
n

n−1∑
i=0

∫ i+1

i
[
∫

Kε

Pi(0, dy)Pt−i(y, Ac
ε) +

∫
Kc
ε

Pi(0, dy)Pt−i(y, Ac
ε)]dt

≤
1
n

n−1∑
i=0

∫ i+1

i
[
ε

2

∫
Kε

Pi(0, dy) +

∫
Kc
ε

Pi(0, dy)]dt

≤
1
n

n−1∑
i=0

∫ i+1

i
εdt = ε.

Then we get that µn(·) = 1
n

∫ n

0
Pt(0, ·)dt, n = 1, 2, ... is tight on H1(R) ∩ Ḣ−1(R). The proof of Theorem

4.3 is complete. �

Theorem 4.4. Assume that u0 ∈ H1(R) and the conditions (H1)–(H3) are satisfied. Then equation
(1.1) admits an invariant measures. Moreover, equation (1.1) with the deterministic initial condition
posses an ergodic invariant measure.

Proof. Using Krylov-Bogoliubov proposition, Theorem 4.1 and Theorem 4.3, we can prove there exist
at least an invariant measures for equation (1.1). Denote K be the set of all the invariant measure, then
it is easy to check that K is convex. Let {µn}n∈N+ be a sequence of invariant measures in K. Then there
exists some constant C such that

sup
n

∫
‖u‖2H1µn(du) ≤ C and sup

n

∫
‖u‖4H1µn(du) ≤ C.

For any deterministic initial condition, {(µnPtn)(·) : n ∈ N+} = {µn(·) : n ∈ N+} is tight. Since K is a self
sequentially compact set, then K is compact. It follows from Krein-Milman theorem, a convex compact
set posses extremal point. Theorem 2.2 yields that this extremal point is ergodic. Therefore, stochastic
equation (1.1) admits an ergodic invariant measure. Thus, the proof of Theorem 4.4 is complete. �

5. Numerical simulation

In this section, we will take the numerical simulation of the invariant measure. To the end, we give
the distribution of the solution 1

TM

∑TM
m=0 E [Φ (u(tm))] by using the so-called the Monte Carl method as

following. One can prove theoretically that it does have a unique invariant measure, which derive to
the ergodicity [5].

We do the numerical simulation to find what happen if the Ostrovsky equation perturbed by pure
jump noise. We firstly use the the norm conservative finite difference scheme introduced by [20,
scheme 1] to simulate the equation (1.1) as

U(n+1)
j − U(n)

j

∆t
+ βδ(3)

U(n)
j + U(n+1)

j

2


+

1
3

δ(1)

U(n)
j + U(n+1)

j

2


2

+
U(n)

j + U(n+1)
j

2
δ(2)

U(n)
j + U(n+1)

j

2



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= λ

U(n)
j + U(n+1)

j

2

 + γδ−1
FD

U(n)
j + U(n+1)

j

2

 +
∑

ti≤s≤ti+1

g (∆Ls) 1A (∆Ls(ω)) (5.1)

where

δ−1
FDU (m)

j

= ∆x

U (n)
1

2
+

j−1∑
k=2

U (n)
k +

U (n)
j

2

 − (∆x)2

L

N∑
k=1

U (n)
1

2
+

k−1∑
1=2

U (n)
1 +

U (n)
k

2

 ,
δ(1)U (n)

j =
U (n)

j+1 − U (n)
j−1

2∆x
, δ(3)U (n)

j =
U (n)

j+2 − 2U (n)
j+1 + 2U (n)

j−1 − U (n)
j−2

2(∆x)3

and
∑

s≤t 1A (∆Ls(ω)) is a possion process with the parameter P∆t.

Now we set β = 0.01, γ = 1, λ = 0.5, and u0(x) = sin(x). The simulation of (1.1) driven by Poisson
noise with g(u(t−), z) = 0.2u(t−)z is given in Figure 1. Figure 2 gives time changes of ‖u(t, ·)‖L2

x
using

different sample trajectories.

It can be clearly seen from the Figure 2 that the decay rate of the equation is slowed down under the
influence of noise. At the same time, as shown in Figure 3, it can be seen that for Φ(y) = exp(−|y|2),
the distribution of the solution 1

N+1

∑N
n=0 E

[
Φ

(
U (n)

)]
tends to a measure µ as T → ∞.

The above numerical simulation of stochastic damped Ostrovsky equation (Figure 3) in the sense of
E‖u(t, ·)‖L2

x
reveals that stochastic damped Ostrovsky equation driven by pure jump posses an unique

ergodic invariant measure.

Figure 1. Solution of u with Poisson Process.
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Figure 2. Changes of ‖u(t, ·)‖L2
x
.

Figure 3. Solution of u with Poisson Process.

6. Conclusions

In this paper, the global well-posedness of stochastic damped Ostrovsky equation driven by pure
jump noise is given at first. Then we use the tightness criterion to investigate the existence of invariant
measures, and give the ergodicity under determined initial condition. A numerical experiment is also
given to support our results.
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