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1. Introduction, definitions and preliminaries

In his survey-cum-expository review article, Srivastava [35] included also a brief overview of the
classical q-analysis versus the so-called (p, q)-analysis with an obviously redundant additional
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parameter p (see, for details, [35, p. 340]). The present sequel to Srivastava’s widely-cited review
article [35], we apply the concept of q-convolution in order to introduce and study the general
Taylor-Maclaurin coefficient estimates for functions belonging to a new class of normalized analytic
and bi-close-to-convex functions in the open unit disk, which we have defined here.

LetA denote the class of analytic functions of the form:

f (z) = z +

∞∑
n=2

an zn (z ∈ ∆), (1.1)

where ∆ denotes the open unit disk in the complex z-plane given by

∆ := {z : z ∈ C and |z| < 1}.

Also let S ⊂ A consist of functions which are also univalent in ∆.
If the function f is given by (1.1) and the function Υ ∈ A is given by

Υ(z) = z +

∞∑
n=2

ψnzn (z ∈ ∆), (1.2)

then the Hadamard product (or convolution) of the functions f and Υ is defined by defined by

( f ∗ Υ)(z) := z +

∞∑
n=2

an ψn zn =: (Υ ∗ f )(z) (z ∈ ∆).

For 0 5 α < 1, we let S ∗ (α) denote the class of functions g ∈ S which are starlike of order α in ∆

such that

<

(
zg′(z)
g(z)

)
> α (z ∈ ∆).

We denote by C (α) the class of functions f ∈ S which are close-to-convex of order α in ∆ such that
(see [10, 24])

<

(
z f ′(z)
g(z)

)
> α (z ∈ ∆),

where

g ∈ S ∗ (0) =: S ∗.

We note that

S ∗ (α) ⊂ C (α) ⊂ S and |an| < n (∀ f ∈ S; n ∈ N \ {1})

by the Bieberbach conjecture or the De Branges Theorem (see [3, 10]), N being the set of natural
numbers (or the positive integers).

In the above-cited review article, Srivastava [35] made use of various operators of q-calculus and
fractional q-calculus. We begin by recalling the definitions and notations as follows (see also [33]
and [45, pp. 350–351]).
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The q-shifted factorial is defined, for λ, q ∈ C and n ∈ N0 = N ∪ {0}, by

(λ; q)n =


1 (n = 0)

(1 − λ) (1 − λq) · · ·
(
1 − λqn−1

)
(n ∈ N).

By using the q-gamma function Γq(z), we get(
qλ; q

)
n

=
(1 − q)n Γq (λ + n)

Γq (λ)
(n ∈ N0) ,

where (see [19, 33])

Γq(z) = (1 − q)1−z (q; q)∞
(qz; q)∞

(|q| < 1) .

We note also that

(λ; q)∞ =

∞∏
n=0

(1 − λqn) (|q| < 1) ,

and that the q-gamma function Γq(z) satisfies the following recurrence relation:

Γq(z + 1) = [z]q Γq(z),

where [λ]q denotes the basic (or q-) number defined as follows:

[λ]q :=



1 − qλ

1 − q
(λ ∈ C)

1 +
`−1∑
j=1

q j (λ = ` ∈ N).

(1.3)

Using the definition in (1.3), we have the following consequences:

(i) For any non-negative integer n ∈ N0, the q-shifted factorial is given by

[n]q! :=


1 (n = 0)

n∏
k=1

[k]q (n ∈ N).

(ii) For any positive number r, the generalized q-Pochhammer symbol is defined by

[r]q,n :=


1 (n = 0)

r+n−1∏
k=r

[k]q (n ∈ N).

In terms of the classical (Euler’s) gamma function Γ (z), it is easily seen that

lim
q→1−
{Γq (z)} = Γ (z) .
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We also observe that

lim
q→1−


(
qλ; q

)
n

(1 − q)n

 = (λ)n ,

where (λ)n is the familiar Pochhammer symbol defined by

(λ)n =


1 (n = 0)

λ (λ + 1) · · · (λ + n − 1) (n ∈ N).

For 0 < q < 1, the q-derivative operator (or, equivalently, the q-difference operator) Dq is defined
by (see [22]; see also [14, 16, 21])

Dq ( f ∗ Υ) (z) = Dq

z +

∞∑
n=2

an ψn zn


:=

( f ∗ Υ) (z) − ( f ∗ Υ) (qz)
z(1 − q)

= 1 +

∞∑
n=2

[n]q an ψn zn−1 (z ∈ ∆),

where, as in the definition (1.3),

[n]q =


1 − qn

1 − q
= 1 +

n−1∑
j=1

q j (n ∈ N)

0 (n = 0).

(1.4)

Remark 1. Whereas a q-extension of the class of starlike functions was introduced in 1990 in [20]
by means of the q-derivative operator Dq, a firm footing of the usage of the q-calculus in the context
of Geometric Function Theory was actually provided and the generalized basic (or q-) hypergeometric
functions were first used in Geometric Function Theory in an earlier book chapter published in 1989 by
Srivastava (see, for details, [34]; see also the recent works [25,27,32,36,37,39,40,46,51–53,55–57]).

For λ > −1 and 0 < q < 1, El-Deeb et al. [14] defined the linear operatorHλ,q
Υ

: A → A by

H
λ,q
Υ

f (z) ∗Mq,λ+1(z) = z Dq ( f ∗ Υ) (z) (z ∈ ∆),

where the functionMq,λ(z) is given by

Mq,λ(z) = z +

∞∑
n=2

[λ]q,n−1

[n − 1]q!
zn (z ∈ ∆).

A simple computation shows that

H
λ,q
Υ

f (z) = z +

∞∑
n=2

[n]q!
[λ + 1]q,n−1

anψn zn (λ > −1; 0 < q < 1; z ∈ ∆). (1.5)

From the defining relation (1.5), we can easily verify that the following relations hold true for
all f ∈ A:

(i) [λ + 1]qH
λ,q
Υ

f (z) = [λ]qH
λ+1,q
Υ

f (z) + qλ z Dq

(
H

λ+1,q
Υ

f (z)
)

(z ∈ ∆);

(ii) IλΥ f (z) := lim
q→1−
H

λ,q
Υ

f (z) = z +

∞∑
n=2

n!
(λ + 1)n−1

anψnzm (z ∈ ∆). (1.6)
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Remark 2. If we take different particular cases for the coefficients ψn, we obtain the following special
cases for the operatorHλ,q

h :

(i) For ψn = 1, we obtain the operator Jλq defined by Arif et al. [2] as follows (see also Srivastava [47]):

J
λ
q f (z) := z +

∞∑
n=2

[n]q!
[λ + 1]q,n−1

an zn (z ∈ ∆); (1.7)

(ii) For

ψn =
(−1)n−1 Γ(υ + 1)

4n−1 (n − 1)! Γ(n + υ)
and υ > 0,

we obtain the operator Nλ
υ,q defined by El-Deeb and Bulboacă [12] and El-Deeb [11] as follows (see

also [16]):

Nλ
υ,q f (z) := z +

∞∑
n=2

(−1)n−1Γ(υ + 1)
4n−1 (n − 1)! Γ(n + υ)

·
[n]q!

[λ + 1]q,n−1
an zn

= z +

∞∑
n=2

[n]q!
[λ + 1]q,n−1

φn an zn (1.8)

(υ > 0; λ > −1; 0 < q < 1; z ∈ ∆),

where

φn :=
(−1)n−1 Γ(υ + 1)

4n−1 (n − 1)! Γ(n + υ)
(n ∈ N \ {1}); (1.9)

(iii) For

ψn =

(
n + 1
m + n

)α
, α > 0 and n ∈ N0,

we obtain the operatorMλ,α
m,q defined by El-Deeb and Bulboacă (see [13, 43]) as follows:

Mλ,α
m,q f (z) := z +

∞∑
n=2

(
m + 1
m + n

)α
·

[n]q!
[λ + 1]q,n−1

an zn (z ∈ ∆); (1.10)

(iv) For

ψn =
ρn−1

(n − 1)!
e−ρ and ρ > 0,

we obtain a q-analogue of the Poisson operator defined in [30] by

Iλ,ρq f (z) := z +

∞∑
n=2

ρn−1

(n − 1)!
e−ρ ·

[n]q!
[λ + 1]q,n−1

an zn (z ∈ ∆); (1.11)

(v) For

ψn =

(
m + n − 2

n − 1

)
θn−1 (1 − θ)m (m ∈ N; 0 5 θ 5 1) ,
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we get a q-analogue Ψλ,m
q,θ of the Pascal distribution operator as follows (see [15]):

Ψλ,m
q,θ f (z) := z +

∞∑
n=2

(
m + n − 2

n − 1

)
θn−1 (1 − θ)m

·
[n]q!

[λ + 1]q,n−1
an zn (1.12)

(z ∈ ∆).

If f and F are analytic functions in ∆, we say that the function f is subordinate to the function F,
written as f (z) ≺ F(z), if there exists a Schwarz function s, which is analytic in ∆ with s(0) = 0 and
|s(z)| < 1 for all z ∈ ∆, such that

f (z) = F
(
s(z)

)
(z ∈ ∆).

Furthermore, if the function F is univalent in ∆, then we have the following equivalence (see, for
example, [7, 28])

f (z) ≺ F(z) ⇐⇒ f (0) = F(0) and f (∆) ⊂ F(∆).

The Koebe one-quarter theorem (see [10]) asserts that the image of ∆ under every univalent function

f ∈ S contains the disk of radius
1
4

. Therefore, every function f ∈ S has an inverse f −1 which satisfies
the following inequality:

f
(
f −1(w)

)
= w

(
|w| < r0 ( f ) ; r0 ( f ) =

1
4

)
,

where

g(w) = f −1(w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · ·

= w +

∞∑
n=2

An wn.

A function f ∈ A is said to be bi-univalent in ∆ if both f and f −1 are univalent in ∆. Let Σ denote
the class of normalized analytic and bi-univalent functions in ∆ given by (1.1). The class Σ of analytic
and bi-univalent functions was introduced by Lewin [26], where it was shown that

f ∈ Σ =⇒ |a2| < 1.51.

Brannan and Clunie [4] improved Lewin’s result to the following form:

f ∈ Σ =⇒ |a2| <
√

2

and, subsequently, Netanyahu [29] proved that

f ∈ Σ =⇒ |a2| <
4
3
.

It should be noted that the following functions:

f1(z) =
z

1 − z
, f2(z) =

1
2

log
(
1 + z
1 − z

)
and f3(z) = − log(1 − z),
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together with their corresponding inverses given by

f −1
1 (w) =

w
1 + w

, f −1
2 (w) =

e2w − 1
e2w + 1

and f −1
3 (w) =

ew − 1
ew ,

are elements of the analytic and bi-univalent function class Σ (see [14, 48]). A brief history and
interesting examples of the analytic and bi-univalent function class Σ can be found in (for
example) [5, 48].

Brannan and Taha [6] (see also [48]) introduced certain subclasses of the bi-univalent function
class Σ similar to the familiar subclasses S ∗ (α) and K (α) of starlike and convex functions of order α
(0 5 α < 1), respectively (see [5]). Indeed, following Brannan and Taha [6], a function f ∈ A is said to
be in the class S ∗

Σ
(α) of bi-starlike functions of order α (0 < α 5 1), if each of the following conditions

is satisfied:

f ∈ Σ and

∣∣∣∣∣∣arg
(
z f ′(z)
f (z)

)∣∣∣∣∣∣ < απ

2
(z ∈ ∆)

and ∣∣∣∣∣∣arg
(
zF ′(w)
F (w)

∣∣∣∣∣) < απ

2
(w ∈ ∆),

where the function F is the analytic extension of f −1 to ∆, given by

F (w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · (w ∈ ∆). (1.13)

A function f ∈ A is said to be in the class K∗
Σ

(α) of bi-convex functions of order α (0 < α 5 1), if
each of the following conditions is satisfied:

f ∈ Σ, with

∣∣∣∣∣∣arg
(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣∣∣ < απ

2
(z ∈ ∆)

and ∣∣∣∣∣∣arg
(
1 +

zg′′(w)
g′(w)

)∣∣∣∣∣∣ < απ

2
(w ∈ ∆).

The classes S ∗
Σ

(α) and KΣ (α) of bi-starlike functions of order α in ∆ and bi-convex functions of
order α (0 < α 5 1) in ∆, corresponding to the function classes S ∗ (α) and K (α), were also introduced
analogously. For each of the function classes S ∗

Σ
(α) and KΣ (α), non-sharp estimates on the first two

Taylor-Maclaurin coefficients |a2| and |a3| are known (see [6, 35, 48]). In fact, this pioneering work
by Srivastava et al. [48] happens to be one of the most important studies of the bi-univalent function
class Σ. It not only revived the study of the bi-univalent function class Σ in recent years, but it has
also inspired remarkably many investigations in this area including the present paper. Some of these
many recent papers dealing with problems involving the analytic and bi-univalent functions such as
those considered in this article include [1, 9, 17, 23, 48], and indeed also many other works (see, for
example, [38, 44, 54]).

Sakar and Güney [31] introduced and studied the following class:

TΣ (λ, β) (0 5 λ 5 1; 0 5 β < 1) .

In the same way, we define the following subclass of bi-close-to-convex functions Hq,λ
Σ

(η, β,Υ)
as follows.

AIMS Mathematics Volume 5, Issue 6, 7087–7106.
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Definition 1. For 0 5 η < 1 and 0 5 β 5 1, a function f ∈ Σ has the form (1.1) and the function Υ

given by (1.2), the function f is said to be in the class Hq,λ
Σ

(η, β,Υ) if there exists a function g ∈ S∗

such that

<

 z
(
H

λ,q
Υ

f (z)
)′

+ βz2
(
H

λ,q
Υ

f (z)
)′′

(1 − β)Hλ,q
Υ

g(z) + βz
(
H

λ,q
Υ

g(z)
)′
 > η (z ∈ ∆) (1.14)

and

<

 z
(
H

λ,q
Υ
F (w)

)′
+ βz2

(
H

λ,q
Υ
F (w)

)′′
(1 − β)Hλ,q

Υ
G(w) + βz

(
H

λ,q
Υ
G(w)

)′
 > η (w ∈ ∆), (1.15)

where the function F is the analytic extension of f −1 to ∆, and is given by (1.13), and G is the analytic
extension of g−1 to ∆ as follows:

G(w) = w − b2w2 +
(
2b2

2 − b3

)
w3 −

(
5b3

2 − 5b2b3 + b4

)
w4 + · · · (w ∈ ∆). (1.16)

We note that, if bn = an (n ∈ N \ {1}), Sq,λ
Σ

(η, β,Υ) becomes the class of bi-starlike functions
satisfying the following inequalities:

<

 z
(
H

λ,q
Υ

f (z)
)′

+ βz2
(
H

λ,q
Υ

f (z)
)′′

(1 − β)Hλ,q
Υ

f (z) + βz
(
H

λ,q
Υ

f (z)
)′
 > η (z ∈ ∆). (1.17)

and

<

 z
(
H

λ,q
Υ
F (w)

)′
+ βz2

(
H

λ,q
Υ
F (w)

)′′
(1 − β)Hλ,q

Υ
F (w) + βz

(
H

λ,q
Υ
F (w)

)′
 > η (w ∈ ∆). (1.18)

Remark 3. Each of the following limit cases when q→ 1− is worthy of note.

(i) Putting q→ 1−, we obtain

lim
q→1−
H

q,λ
Σ

(η, β, h) =: PλΣ (η, β, h) ,

where Pλ
Σ

(η, β,Υ) represents the functions f ∈ Σ that satisfy (1.14) and (1.15) with Hλ,q
Υ

replaced by
Iλ

Υ
as in (1.6).

(ii) Putting

ψn =
(−1)n−1Γ(υ + 1)

4n−1 (n − 1)! Γ(m + υ)
(υ > 0),

we obtain the class Bq,λ
Σ

(η, β, υ) representing the functions f ∈ Σ that satisfy (1.14) and (1.15) with
H

λ,q
Υ

replaced by Nλ
υ,q as in (1.8).

(iii) Putting

ψn =

(
n + 1
m + n

)α
(α > 0; m = N0),

AIMS Mathematics Volume 5, Issue 6, 7087–7106.
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we obtain the class Lλ,q
Σ

(η, β,m, α) consisting of the functions f ∈ Σ that satisfy (1.14) and (1.15) with
H

λ,q
Υ

replaced byMλ,α
m,q as in (1.10).

(iv) Putting

ψn =
ρn−1

(n − 1)!
e−ρ (ρ > 0),

we obtain the class Mq,λ
Σ

(η, β, ρ) representing the functions f ∈ Σ which satisfy the inequalities
in (1.14) and (1.15) withHλ,q

Υ
replaced by Iλ,ρq as in (1.11).

(v) Putting

ψn =

(
m + n − 2

n − 1

)
θn−1 (1 − θ)m (m ∈ N; 0 5 θ 5 1) ,

we get the class Wq,λ
Σ

(η, β,m, θ) of the functions f ∈ Σ which satisfy the inequalities in (1.14)
and (1.15) withHλ,q

Υ
replaced by Ψλ,m

q,θ occurring in (1.12).

Using the Faber polynomial expansion of functions f ∈ A which have the normalized form (1.1),
the coefficients of its inverse map may be expressed as follows (see [18]):

F (w) = f −1(w) = w +

∞∑
n=2

1
n

K−n
n−1(a2, a3, · · · ) wn = w +

∞∑
n=2

An wn, (1.19)

where

K−n
n−1(a2, a3, · · · ) =

(−n)!
(−2n + 1)! (n − 1)!

an−1
2

+
(−n)!

(2(−n + 1))! (n − 3)!
an−3

2 a3

+
(−n)!

(−2n + 3)! (n − 4)!
an−4

2 a4

+
(−n)!

(2(−n + 2))! (n − 5)!
an−5

2

[
a5 + (−n + 2) a2

3

]
+

(−n)!
(−2n + 5)! (n − 6)!

an−6
2 [a6 + (−2n + 5) a3 a4]

+
∑
j=7

an− j
2 U j (1.20)

such that U j with 7 5 j 5 n is a homogeneous polynomial in the variables a2, a3, · · · , an. Here such
expressions as (for example) (−n)! are to be interpreted symbolically by

(−n)! ≡ Γ(1 − n) := (−n)(−n − 1)(−n − 2) · · ·
(
n ∈ N0

)
.

In particular, the first three terms of K−n
n−1 are given by

K−2
1 = −2a2,

K−3
2 = 3

(
2a2

2 − a3

)
AIMS Mathematics Volume 5, Issue 6, 7087–7106.
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and

K−4
3 = −4

(
5a3

2 − 5a2a3 + a4

)
.

In general, an expansion of K−n
m (n ∈ N) is given by (see [1, 8, 41, 42, 47, 49, 50])

K−n
m = nam +

n (n − 1)
2

D2
m +

n!
3! (n − 3)!

D3
m + · · · +

n!
m! (n − m)!

Dm
m,

where
Dn

m = Dn
m(a2, a3, a4, · · · )

and, alternatively,

Dn
m(a2, a3, · · · , am+1) =

∑
i1,··· ,im

(
n!

i1! · · · im!

)
ai1

2 · · · aim
m+1,

where a1 = 1 and the sum is taken over all non-negative integers i1, · · · , im satisfying the following
constraints:

i1 + i2 + · · · + im = n

and
i1 + 2i2 + · · · + mim = m.

Evidently, we have
Dm

m(a2, a3, · · · , am+1) = am
2 .

The following Lemma will be needed to prove our results.

The Carathéodory Lemma. (see [10]) If φ ∈ P and

φ(z) = 1 +

∞∑
n=1

cn zn,

then
|cn| 5 2 (n ∈ N).

This inequality is sharp for all positive integers n. Here P is the family of all functions φ, which
analytic and have positive real part in ∆, with φ(0) = 1.

2. A set of main results

In this section, we apply the above-described Faber polynomial expansion method, we derive
bounds for the general Taylor-Maclaurin coefficients of functions inHq,λ

Σ
(η, β,Υ).

Theorem 1. Let the function f given by (1.1) belong to the classHq,λ
Σ

(η, β,Υ). Suppose also that

0 5 η < 1, 0 5 β 5 1, λ > −1 and 0 < q < 1.

If ak = 0 for 2 5 k 5 n − 1, then

|an| 5
2 (1 − η) [λ + 1]q,n−1

n
[
1 + (n − 1) β

]
[n]q!ψn

+ 1.

AIMS Mathematics Volume 5, Issue 6, 7087–7106.
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Proof. If f ∈ Hq,λ
Σ

(η, β,Υ), then there exists a function g(z), given by

g(z) := z +

∞∑
n=2

bn zn ∈ S ∗,

such that

<

 z
(
H

λ,q
Υ

f (z)
)′

+ βz2
(
H

λ,q
Υ

f (z)
)′′

(1 − β)Hλ,q
Υ

g(z) + βz
(
H

λ,q
Υ

g(z)
)′
 > η (z ∈ ∆).

Moreover, by using the Faber polynomial expansion, we have

z
(
H

λ,q
Υ

f (z)
)′

+ βz2
(
H

λ,q
Υ

f (z)
)′′

(1 − β)Hλ,q
Υ

g(z) + βz
(
H

λ,q
Υ

g(z)
)′

= 1 +

∞∑
n=2

( [
1 + β (n − 1)

] [n]q!
[λ + 1]q,n−1

ψn (nan − bn)

+

n−2∑
t=1

[n, q]!
[λ + 1, q]n−1

ψn
[
1 + (n − t − 1) β

]
· K−1

t
[
(1 + β) b2, (1 + 2β) b3, · · · , (1 + tβ) bt+1

]
· [(n − t) an−t − bn−t]

)
zn−1 (z ∈ ∆). (2.1)

Also, for the inverse map F = f −1, there exists a function G(w), given by

G(w) = w +

∞∑
n=2

Bn wn ∈ S ∗,

such that

<

 z
(
H

λ,q
Υ
F (w)

)′
+ βz2

(
H

λ,q
Υ
F (w)

)′′
(1 − β)Hλ,q

Υ
G(w) + βz

(
H

λ,q
Υ
G(w)

)′
 > η (w ∈ ∆),

the Faber polynomial expansion of the inverse map F = f −1 is given by

F (w) = w +

∞∑
n=2

An wn,
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so we have

z
(
H

λ,q
Υ
F (w)

)′
+ βz2

(
H

λ,q
Υ
F (w)

)′′
(1 − β)Hλ,q

Υ
G(w) + βz

(
H

λ,q
Υ
G(w)

)′
= 1 +

∞∑
n=2

( [
1 + β (n − 1)

] [n]q!
[λ + 1]q,n−1

ψn (nAn − Bn)

+

n−2∑
t=1

[n]q!
[λ + 1]q,n−1

ψn
[
1 + (n − t − 1) β

]
· K−1

t
[
(1 + β) B2, (1 + 2β) B3, · · · , (1 + tβ) Bt+1

]
· [(n − t) An−t − Bn−t]

)
wn−1 (w ∈ ∆). (2.2)

Now, since
f ∈ Hq,λ

Σ
(η, β,Υ) and F = f −1 ∈ H

q,λ
Σ

(η, β,Υ) ,

there are the following two positive real part functions:

U(z) = 1 +

∞∑
n=1

cn zn

and

V(w) = 1 +

∞∑
n=1

dn wn,

for which
<

(
U(z)

)
> 0 and <

(
V(w)

)
> 0 (z,w ∈ ∆),

so that

z
(
H

λ,q
Υ
F (w)

)′
+ βz2

(
H

λ,q
Υ
F (w)

)′′
(1 − β)Hλ,q

Υ
G(w) + βz

(
H

λ,q
Υ
G(w)

)′ = η + (1 − η) U(z)

= 1 + (1 − η)
∞∑

n=1

cn zn (2.3)

and

z
(
H

λ,q
Υ
F (w)

)′
+ βz2

(
H

λ,q
Υ
F (w)

)′′
(1 − β)Hλ,q

Υ
G(w) + βz

(
H

λ,q
Υ
G(w)

)′ = η + (1 − η) V(w)

= 1 + (1 − η)
∞∑

n=1

dn wn. (2.4)
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Now, under the assumption that ak = 0 for 0 5 k 5 n − 1, we obtain An = −an. Then, by using (2.1)
and comparing the corresponding coefficients in (2.3), we obtain

[
1 + β (n − 1)

] [n]q!
[λ + 1]q,n−1

ψn (nan − bn) = (1 − η) cn−1. (2.5)

Similarly, by using (2.2) in the Eq (2.4), we find that

[
1 + β (n − 1)

] [n]q!
[λ + 1]q,n−1

ψn (nAn − Bn) = (1 − η) dn−1, (2.6)

[
1 + β (n − 1)

] [n]q!
[λ + 1]q,n−1

ψn (nan − bn) = (1 − η) cn−1 (2.7)

and

−
[
1 + β (n − 1)

] [n]q!
[λ + 1]q,n−1

ψn (−nan − Bn) = (1 − η) dn−1. (2.8)

Taking the moduli of both members of (2.7) and (2.8) for

|bn| 5 n and |Bn| 5 n,

and applying the Carathéodory Lemma, we conclude that

|an| 5
2 (1 − η) [λ + 1]q,n−1

n
[
1 + (n − 1) β

]
[n]q!ψn

+ 1,

which completes the proof of Theorem 1. �

If we set

ψn =
(−1)n−1Γ(υ + 1)

4n−1 (n − 1)! Γ(n + υ)
(υ > 0)

in Theorem 1, we obtain the following special case.

Corollary 1. Let the function f given by (1.1) belong to the class Bq,λ
Σ

(η, β, υ). Suppose also that

0 5 η < 1, 0 5 β 5 1, λ > −1, υ > 0 and 0 < q < 1.

If ak = 0 for 2 5 k 5 n − 1, then

|an| 5
2 (1 − η) [λ + 1]q,n−1

n
[
1 + (n − 1) β

]
[n]q! φn

+ 1,

where φn is given by (1.9).

Upon putting

ψn =

(
n + 1
m + n

)α
(α > 0; m ∈ N0)

in Theorem 1, we obtain the following result.
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Corollary 2. Let the function f given by (1.1) belong to the class Lq,λ
Σ

(η, β,m, α). Suppose also that

0 5 η < 1, 0 5 β 5 1, λ > −1, α > 0, m ∈ N0 and 0 < q < 1.

If ak = 0 for 2 5 k 5 n − 1, then

|an| 5
2 (1 − η) (m + n)α [λ + 1]q,n−1

n
[
1 + (n − 1) β

]
[n]q! (n + 1)α

+ 1.

If we take

ψn =
ρn−1

(n − 1)!
e−ρ (ρ > 0)

in Theorem 1, we obtain the following special case.

Corollary 3. Let the function f given by (1.1) belong to the classMq,λ
Σ

(η, β, ρ). Suppose also that

0 5 η < 1, 0 5 β 5 1, λ > −1, ρ > 0 and 0 < q < 1.

If ak = 0 for 2 5 k 5 n − 1, then

|an| 5
2 (1 − η) (n − 1)! [λ + 1]q,n−1

n
[
1 + (n − 1) β

]
[n]q! ρn−1 e−ρ

+ 1.

Upon setting

ψn =

(
m + n − 2

n − 1

)
θn−1 (1 − θ)m (m ∈ N; 0 5 θ 5 1)

in Theorem 1, we are led to the following result for the above-defined classWq,λ
Σ

(η, β,m, θ).

Corollary 4. Let the function f given by (1.1) belong to the following class:

W
q,λ
Σ

(η, β,m, θ)

(0 5 η < 1; 0 5 β 5 1; λ > −1; 0 < q < 1; m ∈ N; 0 5 θ 5 1).

If ak = 0 for 2 5 k 5 n − 1, then

|an| 5
2 (1 − η) [λ + 1]q,n−1

n
[
1 + (n − 1) β

]
[n]q!

(
m+n−2

n−1

)
θn−1 (1 − θ)m

+ 1.

In particular, if we let g(z) = f (z), we obtain the class Sq,λ
Σ

(η, β,Υ), which is a subclass of
H

q,λ
Σ

(η, β,Υ). We then give the next theorem, which involves the coefficients of this subclass of the
analytic and bi-starlike functions in ∆.

Theorem 2. Let the function f given by (1.1) belong to the class Sq,λ
Σ

(η, β,Υ). Suppose also that

γ = 1, η = 0, λ > −1, 0 5 β < 1 and 0 < q < 1.
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Then

|a2| 5


2(1−η)[λ+1]q

(1+β) [2]q!ψ2

(
0 5 η < 1 − (1+β)2 ([2]q!)2 [λ+2]q ψ

2
2

2(1+2β−β2) [3]q! [λ+1]q ψ3

)
√

2(1−η)[λ+1]q,2

(1+2β−β2) [3]q!ψ3

(
1 − (1+β)2 ([2]q!)2 [λ+2]q ψ

2
2

2(1+2β−β2) [3]q! [λ+1]qψ3
5 η < 1

) (2.9)

and

|a3| 5


2(1−η)[λ+1]q,2

(1+2β−β2) [3]q!ψ3

(
0 5 η < 1 − (1+β)2 ([2]q!)2 [λ+2]q ψ

2
2

2(1+2β−β2) [3]q! [λ+1]q ψ3

)
(1−η)

(1+2β)

(
[λ+1]q,2

[3]q!ψ3
+

2(1−η)[λ+1]2
q

([2]q!)2
ψ2

2

) (
1 − (1+β)2 ([2]q!)2 [λ+2]q ψ

2
2

2(1+2β−β2) [3]q![λ+1]q ψ3
5 η < 1

)
.

(2.10)

Proof. Putting n = 2 and n = 3 in (2.5) and (2.6), we have

(1 + β)
[2]q!

[λ + 1]q
ψ2a2 = (1 − η) c1, (2.11)

[
2 (1 + 2β) a3 − (1 + β)2 a2

2

] [3]q!
[λ + 1]q,2

ψ3 = (1 − η) c2, (2.12)

− (1 + β)
[2]q!

[λ + 1]q
ψ2a2 = (1 − η) d1 (2.13)

and [
−2 (1 + 2β) a3 +

(
3 + 6β − β2

)
a2

2

] [3]q!
[λ + 1]q,2

ψ3 = (1 − η) d2. (2.14)

From (2.11) and (2.13), by using the Carathéodory Lemma, we obtain

|a2| =
(1 − η) [λ + 1]q |c1|

(1 + β) [2]q!ψ2
=

(1 − β) [λ + 1]q |d1|

(1 + γ + 2η) [2]q!ψ2

≤
2 (1 − η) [λ + 1]q

(1 + β) [2]q!ψ2
. (2.15)

Also, from (2.12) and (2.14), we have

2
(
1 + 2β − β2

) [3]q!
[λ + 1]q,2

ψ3a2
2 = (1 − β) (c2 + d2) .

Thus, by using the Carathéodory Lemma, we obtain

|a2| 5

√
2 (1 − β) [λ + 1]q,2(

1 + 2β − β2) [3]q!ψ3
. (2.16)

From (2.15) and (2.16), we obtain the desired estimate on the coefficient |a2| as asserted in (2.9).
In order to find the bound on the coefficient |a3| , we subtract (2.14) from (2.12), so that

4 (1 + 2β)
[3]q!

[λ + 1]q,2
ψ3

(
a3 − a2

2

)
= (1 − η) (c2 − d2) ,
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that is,

a3 = a2
2 +

(1 − η) (c2 − d2) [λ + 1]q,2

4 (1 + 2β) [3]q! ψ3
. (2.17)

Now, upon substituting the value of a2
2 from (2.16) into (2.17) and using the Carathéodory Lemma,

we find that

|a3| 5
2 (1 − β) [λ + 1]q,2(

1 + 2β − β2) [3]q! ψ3
. (2.18)

Moreover, upon substituting the value of a2
2 from (2.11) into (2.12), we have

a3 =
(1 − η)

2 (1 + 2β)

 [λ + 1]q,2 c2

[3]q!ψ3
+

(1 − η) [λ + 1]2
qc2

1(
[2]q!

)2
ψ2

2

 .
Applying the Carathéodory Lemma, we obtain

|a3| 5
(1 − η)

(1 + 2β)

 [λ + 1]q,2

[3]q!ψ3
+

2 (1 − η) [λ + 1]2
q(

[2]q!
)2
ψ2

2

 . (2.19)

Finally, by combining (2.18) and (2.19), we have the desired estimate on the coefficient |a3| as
asserted in (2.10). The proof of Theorem 2 is thus completed. �

3. Conclusions

In our present investigation, we have made use of the concept of q-convolution with a view to
introducing a new class of analytic and bi-close-to-convex functions in the open unit disk. For functions
belonging to this analytic and bi-univalent function class, we have derived estimates for the general
coefficients in their Taylor-Maclaurin series expansions in the open unit disk. Our methodology is
based essentially upon the Faber polynomial expansion method. We have also presented a number of
corollaries and consequences of our main results.

In his recently-published review-cum-expository review article, in addition to applying the
q-analysis to Geometric Function Theory of Complex Analysis, Srivastava [35] pointed out the fact
that the results for the q-analogues can easily (and possibly trivially) be translated into the
corresponding results for the (p, q)-analogues (with 0 < q < p 5 1) by applying some obvious
parametric and argument variations, the additional parameter p being redundant. Of course, this
exposition and observation of Srivastava [35, p. 340] would apply also to the results which we have
considered in our present investigation for 0 < q < 1.
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9. M. Çaglar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean
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