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1. Introduction

Integral inequalities exist in many branches of mathematics and physics [1–20], their roles in
mathematics and its associated disciplines are priceless. Despite this, it was distinctly during the
1960s that the principal work [21] was distributed and it is this exemplary work changed the field of
inequalities from an assortment of secluded equations into a precise and attractive discipline [22–32].
In recent years, the theory of inequalities has formed into a dynamic and autonomous area of research,
requiring the development of new journals that gave exclusively to inequalities and their applications.
Recently, several researchers have contributed to produce different results about fractional integral
inequalities and their applications utilizing Riemann, Liouville, Caputo, Wely, and Hadamard
fractional integral and differential operators. Specific consideration has been given to inequalities
including special functions [33–39], fractional calculus [40–46] and probability density functions and
this is the place the current work lies. We concentrate our attention around variants including the
fractional calculus and continuous random variables.

A complete description of the distribution of a probability for a given random variable can be
obtained by distribution function and density functions. Interestingly, they don’t permit us to do
comparisons between two distinct distributions. The random variables about mean that particularly
portray the appropriation under reasonable conditions is helpful in making comparisons. Knowing the
probability function, we can determine the expectation and variance. There are, however, applications
wherein the exact forms of probability distributions are not known or are mathematically intractable
so that the moments cannot be calculated–as an example, an application in insurance in connection
with the insurer’s payout on a given contract or group of contracts that follows a mixture or compound
probability distribution. It is this problem that motivates researchers to obtain alternative estimations
for the expectations and variances of a probability distribution. Applying the mathematical
inequalities, some estimations for the expectation and variance of random variables were studied
in [47, 48].

In 2001, Cerone and Dargomir [49] estimated the bounds of a continuous random variable whose
probability density function for the expectation and variance is defined on a finite interval, some
integral inequalities have been contemplated for the expectation and variance of a random variable
having a probability density function. Kumar [50] derived certain variants for the moments and
higher-order moments of a continuous random variable.

The main purpose of the article is to establish some novel estimates for the expectation and
variance of the continuous random variables by use of the generalized Riemann-Liouville fractional
integral operator, and provide new bounds for certain consequences of the Riemann-Liouville
fractional integral, Katugampola fractional integral, conformable fractional integral and Hadamard
fractional integral operators by varying the domain as special cases.

2. Prelude

In this section, we give some basic notions for the generalized Riemann-Liouville fractional integral
operators.

Definition 2.1. (See [51]) Let p ≥ 1, r ≥ 0 and υ1 < υ2. Then the function F (ξ) is said to be in
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Lp,r(υ1, υ2)-space if

‖F ‖Lp,r(υ1,υ2) =

( υ2∫
υ1

|F (ξ)|pξrdξ
) 1

p

< ∞.

If r = 0, then we denote

Lp(υ1, υ2) = Lp,0(υ1, υ2) =

{
F : ‖F ‖Lp(υ1,υ2) =

( υ2∫
υ1

|F (ξ)|pdξ
) 1

p

< ∞
}
.

Definition 2.2. (See [52]) Let F ∈ L1[0,∞) and u be an increasing and positive function defined on
[0,∞) such that u′ is continuous on [0,∞) and u(0) = 0. Then the space χp

u(0,∞) (1 ≤ p < ∞) is all
the real-valued Lebesgue measureable functions F defined on [0,∞) such that

‖F ‖χp
u

=
( ∞∫

0

|F (ξ)|pu′(ξ)dξ
) 1

p
< ∞ (1 ≤ p < ∞).

If p = ∞, then ‖F ‖χ∞u is defined by

‖F ‖χ∞u = ess sup
0≤ξ<∞

[
u
′(ξ)F (ξ)

]
.

In particular, if u(ς) = ς (1 ≤ p < ∞), then the space χp
u(0,∞) coincides with the Lp[0,∞)-space;

if u(ς) =
ςr+1

r+1 (1 ≤ p < ∞, r ≥ 0), the the space χp
u(0,∞) reduces to the Lp,u[0,∞)-space.

Definition 2.3. (See [51]) Let F ∈ L1([η1, η2]). Then the left-sided and right-sided Riemann-Liouville
fractional integrals of order δ > 0 are defined by

J
δ
η+

1
F (ς) =

1
Γ(δ)

ς∫
η1

(ς − ξ)δ−1F (ξ)dξ ς > η1

and

J
δ
η−2
F (ς) =

1
Γ(δ)

η2∫
ς

(ξ − ς)δ−1F (ξ)dξ ς < η2,

where Γ(δ) =
∞∫
0

e−wwδ−1dw is the Gamma function.

A generalization of the Riemann-Liouville fractional integrals with respect to another function can
be found in [51].

Definition 2.4. (See [51]) Let δ > 0, (η1, η2) (−∞ ≤ η1 < η2 ≤ ∞) be a finite or infinite real interval,
and u(ξ) be an increasing and positive function defined on (η1, η2] such that u′ is continuous on [0,∞)
and u(0) = 0. Then the left-sided and right-sided generalized Riemann-Liouville fractional integrals of
a function F with respect to another function u of order δ > 0 are defined by

J
δ
u,η+

1
F (ς) =

1
Γ(δ)

ς∫
η1

u
′(ξ)

(
u(ς) − u(ξ)

)δ−1
F (ξ)dξ (2.1)
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and

J
δ
u,η−2
F (ς) =

1
Γ(δ)

η2∫
ς

u
′(ξ)

(
u(ξ) − u(ς)

)δ−1
F (ξ)dξ. (2.2)

Remark 2.1. From Definition 2.4 we clearly see that
(1) If u(ς) = ς, then we get Definition 2.3.
(2) If u(ς) = log ς, then Definition 2.4 reduces to the Hadamard fractional integral operator given

in [51].
(3) If u(ς) =

ςβ

β
(β > 0), then Definition 2.4 becomes the Katugampola fractional integrals operators

[53].
(4) If u(ς) =

(ς−a)β

β
(β > 0), then it reduces to the conformable fractional integrals operator defined

by Jarad et al. [54].
(5) If u(ς) =

ςu+v

u+v , then it becomes the generalized conformable fractional integrals defined by Khan
et al. [55].

Definition 2.5. Let Y be a random variable with a positive probability density function F defined
on [η1, η2] and u(ξ) be an increasing and positive function defined on (η1, η2]. Then the fractional
expectation function EY,δ(ς) of order δ ≥ 0 is defined by

EY,δ(ς) = Ju,δ
η+

1
[ςF (ς)] =

1
Γ(δ)

ς∫
η1

u
′(ξ)

[
u(ς) − u(ξ)

]δ−1
ξF (ξ)dξ (η1 < ξ ≤ η2). (2.3)

Similarly, we define the fractional expectation function of Y − E(Y) as follows.

Definition 2.6. Let u(ξ) be an increasing and positive function defined on (η1, η2]. Then the fractional
expectation function EY−E(Y),δ(ς) of order δ ≥ 0 for a random variable Y − E(Y) with a positive
probability density function F defined on [η1, η2] is defined by

EY−E(Y),δ(ς) = Ju,δ
η+

1
[ςF (ς)] =

1
Γ(δ)

ξ∫
η1

u
′(ξ)

[
u(ς) − u(ξ)

]δ−1(
ξ − E(Y)

)
F (ξ)dξ, η1 < ξ ≤ η2, (2.4)

where F : [η1, η2]→ R+ is the probability density function.

If ξ = η2, then we present the following definitions.

Definition 2.7. Let η1 ≥ 0 and u(ξ) be an increasing and positive function defined on (η1, η2]. Then
the fractional expectation function of order δ ≥ 0 for a random variable Y with a positive probability
density function F defined on [η1, η2] is defined by

EY,δ(ς) := Ju,δ
η+

1
[ςF (ς)] =

1
Γ(δ)

η2∫
η1

u
′(ξ)

[
u(η2) − u(ξ)

]δ−1
ξF (ξ)dξ (η1 < ξ ≤ η2). (2.5)
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Definition 2.8. Let η1 ≥ 0 and u(ξ) be an increasing and positive function defined on (η1, η2]. Then
the generalized fractional variance function of order δ ≥ 0 for a random variable Y with a positive
probability density function F defined on [η1, η2] is defined by

σ2
Y,δ(ξ) := Ju,δ

η+
1

[
(
ς − E(Y)

)2
F (ς)] =

1
Γ(δ)

ς∫
η1

u
′(ξ)

[
u(ς) − u(ξ)

]δ−1(
ξ − E(Y)

)2
F (ξ)dξ (η1 < ξ ≤ η2),

(2.6)

where E(Y) =

η2∫
η1

ξF (ξ)dξ represents the classical expectation of Y.

If ξ = η2, then we have the following definition.

Definition 2.9. Let η1 ≥ 0 and u(ξ) be an increasing and positive function defined on (η1, η2]. Then
the generalized fractional variance function of order δ ≥ 0 for a random variable Y with a positive
probability density function F : [η1, η2]→ R+ is defined by

σ2
Y,δ(ξ) :=

1
Γ(δ)

η2∫
η1

u
′(ξ)

[
u(η2) − u(ξ)

]δ−1(
ξ − E(Y)

)2
F (ξ)dξ. (2.7)

Remark 2.2. Definitions 2.5–2.9 lead to the conclusions that
(1) It δ = 1 and u(ς) = ς, then Definition 2.5 leads to definition of the classical expectation.
(2) If δ = 1 and u(ς) = ς, then Definition 2.8 becomes the definition of the classical variance.
(3) If u(ς) = ς, then from Definitions 2.5–2.9 we obtain Definitions 2.2–2.6 in [56].

3. Main results

The key aim of this section is to establish several results for the continuous random variable having
probability density functions via generalized Riemann-Liouville fractional integral operator.
Throughout this paper, we assume that u(ξ) is an increasing and positive function defined defined on
[0,∞) such that u(0) = 0 and u′(ξ) is continuous on [0,∞).

Lemma 3.1. Let Y be a continuous random variable with probability density function F : [η1, η2] →
R+. Then

σ2
Y,δ = EY2,δ − 2E(Y)EY,δ + E(Y)2

J
u,δ
η+

1

[
F (η2)

]
(3.1)

for all δ ≥ 0.

Proof. It follows from Definition (2.9) that

σ2
Y,δ =

1
Γ(δ)

η2∫
η1

[
u(η2) − u(ξ)

]δ−1
u
′(ξ)

[
ξ2 + E(Y)2 − 2ξE(Y)

]
F (ξ)dξ

and

σ2
Y,δ =

1
Γ(δ)

η2∫
η1

[
u(η2) − u(ξ)

]δ−1
u
′(ξ)ξ2F (ξ)dξ +

E(Y)2

Γ(δ)

η2∫
η1

[
u(η2) − u(ξ)

]δ−1
u
′(ξ)F (ξ)dξ

AIMS Mathematics Volume 5, Issue 6, 7041–7054.



7046

−
2E(Y)
Γ(δ)

η2∫
η1

[
u(η2) − u(ξ)

]δ−1
u
′(ξ)ξF (ξ)dξ.

Therefore,
σ2

Y,δ = EY2,δ − 2E(Y)EY,δ + E(Y)2
J
u,δ
η+

1

[
F (η2)

]
.

�

Theorem 3.2. Let Y be a continuous random variable wtih probability density function F : [η1, η2]→
R+. Then the following statements are true:

(1) For all δ ≥ 0 and η1 < ξ ≤ η2, one has

J
u,δ
η+

1

[
F (ξ)

]
σ2

Y,δ −
(
EY−E(Y),δ(ξ)

)2
≤ ‖F ‖2∞

[
2
(
u(ξ) − u(η1)

)δ
Γ(δ + 1)

J
u,δ
η+

1
[ξ2] − 2

(
J
u,δ
η+

1
[ξ]

)2
]

(3.2)

if F ∈ L∞([η1, η2]).

(2) The inequality

J
u,δ
η+

1

[
F (ξ)

]
σ2

Y,δ −
(
EY−E(Y),δ(ξ)

)2
≤

1
2
(
u(ξ) − u(η1)

)2(
J
u,δ
η+

1
F (ξ)

)2 (3.3)

holds for all δ ≥ 0 and η1 < ξ ≤ η2.

Proof. Let η1 < ξ ≤ η2 and x, y ∈ (η1, ξ). Then

J(x, y) =
(
G(x) − G(y)

)(
H(x) −H(y)

)
= G(x)H(x) + G(y)H(y) − G(x)H(y) − G(y)H(x). (3.4)

Multiplying both sides of (3.4) by
[
u(ξ)−u(x)

]δ−1
u′(x)P(x)

Γ(δ) (x ∈ (η1, ξ)) and then integrating the obtained
result with respect to x from (η1, ξ) leads to

1
Γ(δ)

ξ∫
η1

[
u(ξ) − u(x)

]δ−1
u
′(x)P(x)J(x, y)dx

=
1

Γ(δ)

ξ∫
η1

[
u(ξ) − u(x)

]δ−1
u
′(x)P(x)G(x)H(x)dx +

1
Γ(δ)

ξ∫
η1

[
u(ξ) − u(x)

]δ−1
u
′(x)P(x)G(y)H(y)

−
1

Γ(δ)

ξ∫
η1

[
u(ξ) − u(x)

]δ−1
u
′(x)P(x)G(x)H(y) −

1
Γ(δ)

ξ∫
η1

[
u(ξ) − u(x)

]δ−1
u
′(x)P(x)G(y)H(x)dx.

Therefore, we obtain

1
Γ(δ)

ξ∫
η1

[
u(ξ) − u(x)

]δ−1
u
′(x)P(x)J(x, y)dx
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=
(
J
u,δ
η+

1
PGH(ξ)

)
+

(
J
u,δ
η+

1
P(ξ)

)
G(y)H(y) −

(
J
u,δ
η+

1
PG(ξ)

)
H(y) −

(
J
u,δ
η+

1
PH(ξ)

)
G(y). (3.5)

Again, multiplying both sides of (3.5) by
[
u(ξ)−u(y)

]δ−1
u′(y)P(y)

Γ(δ) (y ∈ (η1, ξ)) and then integrating the
obtained result with respect to y from (η1, ξ) gives

1(
Γ(δ)

)2

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[
u(ξ) − u(y)

]δ−1
u
′(x)P(x)u′(y)P(y)J(x, y)dxdy

= 2
(
J
u,δ
η+

1
P(ξ)

)(
J
u,δ
η+

1
PGH(ξ)

)
− 2

(
J
u,δ
η+

1
PH(ξ)

)(
J
u,δ
η+

1
PG(ξ)

)
. (3.6)

Substituting P(ξ) = F (ξ) and G(ξ) = H(ξ) = u(ξ) − E(Y) (ξ ∈ (η1, η2)), we have

1(
Γ(δ)

)2

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[
u(ξ) − u(y)

]δ−1
u
′(x)P(x)u′(y)P(y)F (x)F (y)

(
u(x) − u(y)

)2dxdy

= 2
(
J
u,δ
η+

1
F (ξ)

)(
J
u,δ
η+

1
F (ξ)

(
u(ξ) − E(Y)

)2
)
− 2

(
J
u,δ
η+

1
F (ξ)

(
u(ξ) − E(Y)

)2
)
. (3.7)

Similarly, we have

1(
Γ(δ)

)2

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[
u(ξ) − u(y)

]δ−1
u
′(x)P(x)u′(y)P(y)F (x)F (y)

(
u(x) − u(y)

)2dxdy

≤ ‖F ‖2∞
1(

Γ(δ)
)2

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[
u(ξ) − u(y)

]δ−1
u
′(x)P(x)u′(y)P(y)

(
u(x) − u(y)

)2dxdy

≤ ‖F ‖2∞

[
2
(
u(ξ) − u(η1)

)δ
Γ(δ + 1)

J
u,δ
η+

1
[ξ2] − 2

(
J
u,δ
η+

1
[ξ]

)2
]
. (3.8)

From (3.7) and (3.8) we get the first inequality of Theorem 3.2.
Next, we prove the the second part of Theorem 3.2. Note that

1(
Γ(δ)

)2

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[
u(ξ) − u(y)

]δ−1
u
′(x)P(x)u′(y)P(y)F (x)F (y)

(
u(x) − u(y)

)2dxdy

≤ sup
x,y∈[η1,ξ]

∣∣∣(u(x) − u(y)
)∣∣∣2(Ju,δ

η+
1
F (ξ)

)2

=
(
u(ξ) − u(η1)

)2(
J
u,δ
η+

1
F (ξ)

)2
. (3.9)

From (3.7) and (3.9) we derive the inequality (3.3). �

Theorem 3.2 leads to Corollary 3.3 immediately.

Corollary 3.3. Let Y be a continuous random variable with probability density function F : [η1, η2]→
R+. Then one has the following two conclusion.
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(1) For all δ ≥ 0 and η1 < ξ ≤ η2, we have the inequlaity(
u(η2) − u(η1)

)δ−1

Γ(δ)
σ2

Y,δ − E2
Y,δ ≤ ‖F ‖

2
∞

[2
(
u(η2) − u(η1)

)2δ+2

Γ(δ + 1)Γ(δ + 3)
−

((
u(η2) − u(η1)

)δ+1

Γ(δ + 2)

)2]
.

(2) The inequality (
u(η2) − u(η1)

)δ−1

Γ(δ)
σ2

Y,δ −
(
EY−E(Y),δ(ξ)

)2
≤

1
2

(
u(η2) − u(η1)

)2δ

Γ2(δ)
,

holds for all δ ≥ 0 and η1 < ξ ≤ η2.

Remark 3.1. We clearly see that

(1) If we choose Ψ(ς) = ς, then Theorem 3.2 reduces to Theorem 3.1 of [56].

(2) If we choose Ψ(ς) = ς, then Corollary 3.3 becomes Corollary 3.1 of [56].

(3) If we choose δ = 1 and Ψ(ς) = ς in part (1) of Corollary 3.3, then we get the first part of Theorem
1 in [48].

(4) If we choose δ = 1 and Ψ(ς) = ς in part (2) of Corollary 3.3, then we get the last part of Theorem
1 in [48].

Next we provide more general form of Theorem 3.2 by proposing two fractional parameters.

Theorem 3.4. Let Y be a continuous random variable with probability density function F : [η1, η2]→
R+. Then the following statements are true:

(1) For all δ, γ ≥ 0 and η1 < ξ ≤ η2, one has(
J
u,δ
η+

1
F (ξ)

)
σ2

Y,β +
(
J
u,γ

η+
1
F (ξ)

)
σ2

Y,α −
(
EY−E(Y),δ(ξ)

)(
EY−E(Y),γ(ξ)

)
≤ ‖F ‖2∞

[(
u(ξ) − u(η1)

)δ
Γ(δ + 1)

(
J
u,δ
η+

1
ξ2

)
+

(
u(ξ) − u(η1)

)γ
Γ(γ + 1)

(
J
u,γ

η+
1
ξ2

)
−

(
J
u,δ
η+

1
ξ
)(
J
u,γ

η+
1
ξ
)]
, (3.10)

where F ∈ L∞([δ, γ]).

(2) The inequality(
J
u,δ
η+

1
F (ξ)

)
σ2

Y,β +
(
J
u,γ

η+
1
F (ξ)

)
σ2

Y,α −
(
EY−E(Y),δ(ξ)

)(
EY−E(Y),γ(ξ)

)
≤

(
u(ξ) − u(η1)

)2
(
J
u,δ
η+

1
F (ξ)

)(
J
u,γ

η+
1
F (ξ)

)
(3.11)

holds for any η1 < ξ ≤ η2, δ ≥ 0 and γ ≥ 0.

Proof. Taking product on both sides of (3.5) by [u(ξ)−u(y)]γ−1u′(y)P(y)
Γ(γ) , we obtain

1
Γ(δ)

1
Γ(γ)

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[u(ξ) − u(y)]γ−1
u
′(y)P(y)u′(x)P(x)J(x, y)dxdy
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=
(
J
u,γ

η+
1
P(ξ)

)(
J
u,δ
η+

1
PGH(ξ)

)
+

(
J
u,δ
η+

1
P(ξ)

)(
J
u,γ

η+
1
PGH(ξ)

)
−

(
J
u,δ
η+

1
PG(ξ)

)(
J
u,γ

η+
1
PH(ξ)

)
−

(
J
u,δ
η+

1
PH(ξ)

)(
J
u,γ

η+
1
PG(ξ)

)
. (3.12)

Taking P(ξ) = F (ξ) and G(ξ) = H(ξ) = u(ξ) − E(Y) (ξ ∈ (η1, η2)) in (3.12), we get

1
Γ(δ)

1
Γ(γ)

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[u(ξ) − u(y)]γ−1
u
′(y)u′(x)

(
u(x) − u(y)

)2
F (x)F (y)dxdy

=
(
J
u,γ

η+
1
F (ξ)

)(
J
u,δ
η+

1
F (ξ)

[
u(ξ) − E(Y)

]2
)

+
(
J
u,δ
η+

1
F (ξ)

)(
J
u,γ

η+
1
F (ξ)

[
u(ξ) − E(Y)

]2
)

− 2
(
J
u,δ
η+

1
F (ξ)

[
u(ξ) − E(Y)

])(
J
u,γ

η+
1
F (ξ)

[
u(ξ) − E(Y)

])
. (3.13)

Moreover, we have

1
Γ(δ)

1
Γ(γ)

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[u(ξ) − u(y)]γ−1
u
′(y)u′(x)

(
u(x) − u(y)

)2
F (x)F (y)dxdy

≤ ‖F ‖2∞
1

Γ(δ)
1

Γ(γ)

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[u(ξ) − u(y)]γ−1
u
′(y)u′(x)

(
u(x) − u(y)

)2dxdy

≤ ‖F ‖2∞

[(
u(ξ) − u(η1)

)δ
Γ(δ + 1)

(
J
u,δ
η+

1
ξ2

)
+

(
u(ξ) − u(η1)

)γ
Γ(γ + 1)

(
J
u,γ

η+
1
ξ2

)
− 2

(
J
u,δ
η+

1
ξ
)(
J
u,γ

η+
1
ξ
)]
. (3.14)

Therefore, (3.10) follows from (3.12) and (3.14).
For inequality (3.11), using (3.12) and the fact that sup

x,y∈[η1,ξ]
|u(x) − u(y)|2 =

(
u(ξ) − u(η1)

)2, we have

1
Γ(δ)

1
Γ(γ)

ξ∫
η1

ξ∫
η1

[
u(ξ) − u(x)

]δ−1[u(ξ) − u(y)]γ−1
u
′(y)u′(x)

(
u(x) − u(y)

)2
F (x)F (y)dxdy

≤
(
u(ξ) − u(η1)

)2
(
J
u,δ
η+

1
F (ξ)

)(
J
u,γ

η+
1
F (ξ)

)
, (3.15)

which gives the desired inequality (3.11). �

Remark 3.2. We clearly see that

(1) If we choose δ = γ, then Theorem 3.4 reduces to Theorem 3.2.

(2) If we choose u(ς) = ς, then Theorem 3.4 reduces to Theorem 3.2 of [56].

(3) If we choose u(ς) = ς and δ = γ = 1, then Theorem 3.4 becomes the first inequality given in [48].

(4) If we choose u(ς) = ς and δ = γ = 1, then Theorem 3.4 reduces to the first inequality of Theorem
1 given in [48].

(5) If we choose u(ς) = ς and δ = γ = 1, then Theorem 3.4 becomes the last part of Theorem 1 in [48].
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Theorem 3.5. Let Y be a continuous random variable with probability density function F : [η1, η2]→
R+. Then (

J
u,γ

η+
1
F (ξ)

)
σ2

Y,δ(ξ) −
(
EY−E(Y),δ(ξ)

)2
≤

1
4

(
u(η2) − u(η1)

)2(
J
u,γ

η+
1
ξ
)2
. (3.16)

Proof. It follows from Theorem 1 of [57] that∣∣∣∣(Ju,γη+
1
P(ξ)

)(
J
u,γ

η+
1
PG2(ξ)

)
−

(
J
u,γ

η+
1
PG(ξ)

)2∣∣∣∣ ≤ 1
4

(
J
u,γ

η+
1
P(ξ)

)2(
Υ − γ

)2
. (3.17)

SubstitutingP(ξ) = F (ξ) and G(ξ) = u(ξ)−E(Y) (ξ ∈ (η1, η2)), then Υ = u(η2)−E(Y), γ = u(η1)−E(Y)
and (3.18) can be rewritten as

0 ≤
(
J
u,γ

η+
1
F (ξ)

)(
J
u,γ

η+
1
F (ξ)

(
u(ξ) − E(Y)

)2)
−

(
J
u,γ

η+
1
F (ξ)

(
u(ξ) − E(Y)

))2

≤
1
4

(
J
u,γ

η+
1
F (ξ)

)2(
u(η2) − u(η1)

)2
. (3.18)

Therefore, we get (
J
u,γ

η+
1
F (ξ)

)
σ2

Y,δ(ξ) −
(
EY−E(Y),δ(ξ)

)2
≤

1
4

(
u(η2) − u(η1)

)2(
J
u,γ

η+
1
ξ
)2
,

which is the required result. �

Let ξ = η2. Then Theorem 3.5 leads to Corollary 3.6.

Corollary 3.6. Let Y be a continuous random variable with probability density function F : [η1, η2]→
R+. Then (

u(η2) − u(η1)
)δ−1

Γ(δ)
σ2

Y,δ(ξ) −
(
EY−E(Y),δ(ξ)

)2
≤

1
4

(
u(η2) − u(η1)

)2α

Γ2(δ)
.

Remark 3.3. We clearly see that

(1) If we choose u(ς) = ς, then Theorem 3.5 reduces to Theorem 3.3 of [56].

(2) If we choose u(ς) = ς, then Corollary 3.6 reduces to Corollary 3.2 of [56].

(3) If we choose u(ς) = ς and δ = 1, then Corollary 3.6 becomes Theorem 2 of [48].

4. Conclusions

In the aritcle, we have derived numerous new inequalities in the frame of generalized Riemann-
Liouville fractional integral operators via a continuous random variable, our obtained results are the
generalizations and refinements of the known results given in [47] and [56]. In the special case of δ = 1,
it is worth mentioning that our results can recapture many previously existing operators. Adopting
our ideas and approach, researchers can also generate several variants by use of the Hadamard and
conformable fractional integral operators and obtain many new inequalities for the probability density
functions using different parameters and random variables.
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15. P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for n-times differentiable convex
functions, Mathematics, 8 (2020), 1–11.

16. M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and
associated integral inequalities, AIMS Math., 5 (2020), 4662–4680.

17. P. Y. Yan, Q. Li, Y. M. Chu, et al. On some fractional integral inequalities for generalized strongly
modified h-convex function, AIMS Math., 5 (2020), 6620–6638.

18. S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional
Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1–15.

19. J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory
on time scales, AIMS Math., 5 (2020), 6073–6086.

20. S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via
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