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1. Introduction and Preliminaries

Czerwik [1] introduced b-metric and proved fixed point theorems in it. It was further extended
to partial b-metric and dislocated b-metric spaces in the past years. Chen et al. [2] introduced convex
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b-metric space and established various fixed point theorems. On the other hand, various authors
generalized the metric space into many other spaces (see [3-11]).

Wardowski [12] introduced the idea of F-contraction which was later followed by many authors
who delivered interesting results of F-contraction. One of them was presented by Cosentino et al. [13]
who expanded F-contraction in F-contraction of Hardy Roger’s type. For more generalization of
F-contraction, we refer the readers to see ([14-16]).

In this article we discuss F-contraction in the frame of convex b-metric space using generalized
Mann’s iteration algorithm. However, we have modified definition of F-contraction of Nadler type
by eliminating two of its conditions (F3) and (F4). Cosentino et al. [17] have proved the results for
multivalued simple F-contraction of Banach type, while our results have been proved for F-Reich
type contraction for single valued mappings. As the conditions (F3) and (F4) of the mappings
belonging to the set F have been removed, thus, our results are more generalized than the results
presented by Cosentino. Further we have presented application of our results in finding a unique
solution to the Fredholm integral equation of the second kind. The reader can study more about
Fredholm integral equation of the second kind in the article written by Teukolsky et al. [18].

Some fundamental definitions related to our work are given below:

Definition 1.1 ([17]): Letk > 1 be a real number. We denote by F the family of all functions
F:R* — R with the following properties:

(F1) F is strictly increasing;

(F2) for each sequence {x,} < R* of positive numbers lim,_,a, =0 if and only if
lim,,, F(a,) = —;

(F3) for each sequence {x, } ¢ R* of positive numbers with lim,,_,., a,, = 0, there exists m € (0,1)
such that lim,,_,, (a,,)™F(a,) = 0;

(F4) for each sequence (a,) < R* of positive numbers such that t + F(sa,) < F(sa,_,) foralln €
N and some t € R*, then 7 + F(s"a,) < F(s" 'a,_,) foralln eN.

Definition 1.2 ([17]): Let (X,d, s) be a b-metric space. A multivalued mapping T : X — CB(X)is
called an F-contraction of Nadler type if there exist F € F, and t € R™ such that

T + F(sH(Tx,Ty)) < Fd(x,y)

forall x,y € XwithTx = Ty.
Note that, in our theorems, we will consider F,, as the class of functions satisfying only (F1) and (F2)
which modifies the definition of F-contraction.

Definition 1.3 ([1]): Assume that E =@ with 1<k €R. If by: E X E - [0, 4+00) satisfies the
following axioms, for each a,b,c € E:

i). bi(a,b) = 0ifand only if a = b;

ii). by (a,b) = by (b, a);

iii). by (a, b) < k[by(a,c) + bi(c,b)]

Then the pair (E, by) is known as b-metric space with k > 1.

Definition 1.4 ([1]): Suppose (a,,) is a sequence in E. Then
1) (a,) is convergent to a point a € E if lim,,_,, d(a,,a) = 0.
2) (ay) is Cauchy if lim,, 0, d(ay, a;;) = 0.
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3) The space (E, by) is complete if every Cauchy sequence (a,) € E is convergent to a point
a€E.

Definition 1.5 ([2]): Assume that E = @ and define a mapping by: E X E = [0, 400). Let I = [0,1]
with a continuous mapping n: E X E X I — E such that

bi(0,n(a,b;¥)) < ybi(0,a) + (1 — ¥)by (o, b) (2.1)

foreacho € E and (a,b,y) €EE X E X I.

Definition 1.6 ([2]): Assume thatn: E X E X I — E is a convex structure on a b-metric space (E, by).
Then (E, b, n) is known as convex b-metric space.

Suppose that (E, by, n) is convex b-metric space with a self mapping f. Then for a,, € E and
¥, € [0,1], a generalize Mann’s iteration sequence {a,, } is defined as;

an+1 = n(an' Tay; Yn); n e N.
2. Fixed point results of F-Kannan contraction in convex b-metric spaces

This section evaluates F-Kannan contraction for the existence of unique fixed point results.
Definition 2.1: Assume that F € F,, (E, bg,n) be a convex b-metric space with k > 1. Then

f:E = E is known as F-Kannan contraction if for h: E X E — [0, %) the following hold:

T+ F(kby(fa, fb)) < F[h(a,b){by(a, fa) + by (b, fb)}] (2.2)
foreverya,b € E.
Theorem 2.2: Suppose (E,by,m) is a complete convex b-metric space with

a, =n(ay_1,fan_1;¥n-1) n € N having y,,_, € (0, ﬁ] and f: E — E is an F-Kannan contraction.

Ifh:EXE - [0, ﬁ] then f has a unique fixed pointin E.

Proof. By (2.1) and hypothesis, we write

bk(anr fan) = bk(fan: n(an—b fan_1; )/n—l)) < )/n—lbk(an—l' fan) + (1 - Vn—l)bk(fan—b fan)

= yn—l{kbk(an—l' fan—l) + kbk(fan—lr fan)} + bk(fan—lf fan)
= kyn—lbk(an—l' fan—l) + (k)/n—l + 1)bk(fan—1' fan)
= kyn—lbk(an—lr fan—l) + ()/n—l + 1)kbk(fan—1» fan)-

Now, Since

T+ F(kbi(fan-1, fan)) < Flh(an_1, ap){bx(an-1, fan_1) + b (ay, faz)}].

Therefore,
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T+ F(kyn—lbk(an—l' fan—l) + (yn—l + 1)kbk(fan—1) fan))
< Flkyn_1br(an_1, fan_1)
+ (yn—l + 1)h(an—1' an){bk(an—l' fan—l) + bk(anr fan)}]

This implies that

F(bk (an: fan))

< F[kyn—lbk(an—lr fan—l)
+ (Yn-1 + Dhlan-1, an){bx(an-1, fan-1) + br(an, fan)}] — 7.

Using (F1), we write

(1 - (h(an—ll an)yn—l + h(an—lv an))) ) bk(an: fan)
< {(kyn-1) + h(an-1,an)¥Vn-1 + h(an_1,an)} - bp(an_1, fan_1).

As
1 1
h(an—l' an)yn—l + h(an—l' an) < (m + 1) m < 1;
hence
(kyn-1)+h(an—1,an)¥n-1+h(an_1,an)

bk(an' fan) < 1_(h(an—1'an))’n—1+h(an—1:an)) -bk(an—lf fan—l)' (2-3)

Say
(k)/n—l) + h(an—l' an))/n—l + h(an—lJ an) -0
1- (h(an—b an))’n—l + h(an—ll an)) n
then
5
o — (kyn—l) + h(an—l' an)yn—l + h(an—l' an) < Z -1
n 1- (h(an—l' an)yn—l + h(an—l' an)) 1- (h(an—lf an)yn—l + h(an—lf an))
> 9
_ 4 Z
< T £ 1< T
16k?
Therefore (2.3) becomes
9
bk(an: fan) < O-n—lbk(an—l' fan—l) < ku(an—ll fan—l)- (2-4)
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Operating (F1) again, we write

9
F(bk(an'fan)) <F (E bk(an—lrfan—1)> —7< F(bk(an—ltfan—l)) —T.

Similarly,
F(bk(an_l,fan_l)) < F(bk(an_Z,fan_z)) —T.
Consequently, we note
F(bk(an, fan)) < F(bk(an_l,fan_l)) —17< F(bk(an_z,fan_z)) — 27 < -

< F(b(ao, fay)) — nt.

taking limit n — oo, we obtain
1im F(by(an, fay)) = —co.
By (F2), we get
lim by (ay, fay) = 0.
Now, Since

bk(anr Ani1) = bk(an' n(ay,, fay; )/n)) < (1 — v bi(ay, fan)r

therefore, we note that lim b, (a,, a,,1) = 0. Next, we prove that the sequence {a,} is Cauchy.
n—oo

Suppose on the contrary that {a,} is not Cauchy. Then we can find subsequences {a,,,)} and {a,, )}
of {a,,} and a positive real number ¢, u(u) > w(u) > u with u(u) as the smallest natural index
such that

bi (G Gow) = €

and
bi (-1, Gow) < €o-
We deuce that

€0 < br( @y Gww) < k[bi(@ue) Gwa+1) + bi(@ow+t Cow)]

€o
k
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Now,
bie(auy Away+1) < bk ((n(au(u)—ltfau(u)—l; Yu@)-1)» aw(u)+1>

= Yuw-1i(@uo-1 Gow+1) + (1= Yueo-1)be (f@uw-1 Goa+1)

be(f -1 fAwq+1) } (2.6)

< _1bela,n—1,a +1-v —k{
Yuw-1 k( u(w)-1 w(u)+1) ( w(w 1) +bk(faw(u)+1»aw(u)+1)

Since, by (2.1) we can write
F (b (f -1, fawisr))
< F {h(au-1 Gwt+1) (Be(@ueo-1 faga-1) + be(fauesn Gus))} = 7
Therefore,
FlYu-10e(@ua -1 @o+1)

+ (1 - Vu(u)—l){kbk(fau(u)—ll faw(u)+1) + kbk(faw(u)+1: aw(u)+1)}]

< F [Vuw-1be(@pan-1 Qo +1)

bic(@uawy-1 fau-1) >

+ (1 = Yu@-1) {h(aﬂ(w-l’a‘*’(“)“) <+bk(fa @+1> Qoo (w)+1)
oW+ “Yw(u

+ kbk(faw(u)+1r aw(u)+1)}l —T.

Hence, using (F1) and (2.6), we write
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bk(au(u)' aw(u)+1)
= Vu(u)—lbk(au(u)—l’ aw(u)+1)

h(au(u)—l' aw(u)+1)bk(au(u)—1'fa/t(u)—l)

(1= Yuw- l
(1= Yuw-1) HA(@ua-1 @oay+1) + K3be(f o1 o)

= yﬂ(u)—l{kbk(au(u)—l' aw(u)) + kbk(aw(u)' aw(u)+1)}

h(u -1 G +1) Pr(Gua -1 fOuay-1) l

N
( u(w-1) +(h(auw-1, @way+1) + k) - be(faoa+1 Qwayr1)

Exerting limit u — oo, we obtain

. . 1
Jim sup by (@), eoy+1) < MM sup ¥y -1kbi (Qu-1 Gow) < 2k o

This shows that

€o . €o
% = Him supbi (@), Awa+1) < T

which is a contradiction. Hence, {a,} is a Cauchy sequence. The completeness of E assure the
existence of an element a* such that

lim by (a,,a*) =0.
n—->oo

Next, we prove that a* is the fixed point of f. For this, we know that

be(a*, fa*) < k{be(a*, a,) + by (an, fa*)} < kby(a*, ay) + k2 {Jf;’; ((C]‘:; : C]‘C’g)} 2.7)
As
F(kbi(fan, fa")) < Flh(a*, an){bi(an, fan) + bi(a", fa)}] - ¢
therefore,

+IZ)I;((CIIC7;{ C]l!;)* ) }>

S F [kbk(a*l an) + kzbk(anl fan) + kh(a*, an){

F(be(a’, fa)) < F (kbk(a*, a,) + k2 {

bi(an, fan)
+Zk(a*,fa*)}] -t
Utilizing (F1), we obtain
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n

F ((1 — kh(a®, an))bk(a*,fa*)) < F |kby(a*, a,) + (k2 + kh(a”, an)) (19—1> bk(ao,fao)l — nrt.

Now, clearly

n

9
lim kb (a*, a,) + (k? + kh(a*, ay,)) (—) by(ay, fay) =0,
nmwoo 11
therefore,

7lli_r){)loF ((1 — kh(a*,an))bk(a*,fa*))

n

9
= lim F <kbk(a*, a) + (k% + kh(a’, ay)) (H) by (ay, fa0)> = —co,
nrmoo

Consequently,
lim (1 — kh(a®, an))bk(a*,fa*) =0.
n—->oo

Hence, b, (a*, fa*) = 0, i.e., a” is the fixed point of f. It remains to prove that a* is the only fixed
point f. Suppose on the contrary that a** be another fixed point of f. Then

bk(a*' a**) < k{bk(a*' fa*) + bk(fa*' fa**)}
By hypothesis,

F(kbk(a*' fan)) = F(kbk(fa*r fan)) < F(h(a*' an){bk(a*r fa*) + bk(an' fan)})

= F(h(a*, an)bk(an,fan)) < F(bk(ao,fao)) — nrt.

As a result, we get F(kbk(a*,fan)) = —oo, By (F2), we obtain lim,,_,., kb, (a*, fa,) = 0. Similarly,

lim,_,. kbi(a™, fa,) = 0. i.e., lim,_ . kbi(a*, fa,) +lim,_ kb, (a*, fa,) = 0. Thus, using
(F2), we obtain

lim F(by(a*,a™)) < lim F(kb(a*, fa,) + kb (fa,, a™)) = —oo,
n—oo n—-oo

Consequently, lim,,_,,, by (a*,a*) = 0. This shows that a* = a™*.

3. Fixed point results of F-Reich contraction

This section examines F-Reich contraction for the possible existence of a unique fixed point.
Also, an example is given to explain the proved theorem.

AIMS Mathematics Volume 5, Issue 6, 6929-6948.
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Definition 3.1: Assume that F € F,, (E, bg,n) be a convex b-metric space with k > 1. Then

f:E — E is known as F-Reich contraction if for g, h: E X E - [0, %) the following holds:

T+ F(kby(fa, fb)) < Flg(a,b)by(a,b) + h(a,b){b(a, fa) + b (b, fb)}]  (3.1)
for every a, b € E provided that (g + 2h)(a, b) < 1.
Theorem 3.2: Suppose (E,by,m) is a complete convex Db-metric space with

a, =n(ap_1, fan-1;¥n-1) n € N having y,_, € (0, ﬁ] and f:E — E is an F-Reich contraction.

If g(a,b) + 2h(a,b) < ﬁ, then f has a unique fixed point in E.

Proof. By hypothesis and (2.1)

bk(an' fan) = bk(fanr T](an—b fan—l; )/n—l)) < )/n—lbk(an—l' fan) + (1 - Vn—l)bk(fan—b fan)

< Vn—l{kbk(an—l' fan—l) + kbk(fan—lr fan)} + bk(fan—ll fan)
= kVn—lbk(an—lr fan—l) + (k)/n—l + 1)bk(fan—1l fan)
< kVn-1bk(@n-1, fan_1) + (Yn—1 + Dkbi(fan_4, fay).

Now, since

T+ F(kbi(fan-1, fan))
< F[g(an—l' an)bk (an—l' an) + h(an—lr an){bk (an—lJ fan—l) + bk (an' fan)}];

therefore,

T+ F(kyn—lbk(an—l' fan—l) + (Yn—l + 1)kbk(fan—b fan))
< F[k)/n—lbk(an—b fan—l) + g(an—l' an)(yn—l + 1)bk(an—11 an)
+ ()/n—l + 1)h(an—1' an){bk(an—ll fan—l) + bk(aw fan)}]

This leads to

F(bk(an'fan))
< F[k)/n—lbk(an—l' fan—l) + g(an—l' an)(l + Vn—l)(l - Yn—l)bk(an—l' fan—l)
+ (Yn—1 + Dh(ay—1, ap){bi(an—1, fan_1) + b(an, fa,)}] — 7.

Using (F1), we write
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(-

(h(an—lt an))/n—l + h(an—lt an))) ’ bk(an: fan)

< {(k)/n—l) + h(an—b an))/n—l + h(an—lv an) + g(an—ll an)(l - Vn—lz)}
' bk(an—lv fan—l)
< {(kyn—l) + h(an—lr an)yn—l + h(an—lr an) + g(an—l' an)} ' bk (an—lJ fan—l)-

As,
1 1
h(an-1, an)¥Vn-1 + h(an_y,a,) < (m + 1) Ve <1
and
1 1 1
h(an—lr an))’n—l + h(an—lr an) + g(an—l' an) = 4k2 ' 4k2 + 4k2 < 1;
hence
(kyn-1)+h(an—1,an)¥n—1t+h(an—_1,.an)+g(an_1,an)
bk (an' fan) S 1_(h(an—1:an)yn—1+h(an—1van)) " bk(an—l' fan—l)' (3'2)
Say
(kyn—l) + h(an—l' an)yn—l + h(an—l' an) + g(an—b an) -0
1- (h(an—lr an))’n—l + h(an—ll an)) nv
then
o _ (kyn—l) + h(an—lr an)yn—l + h(an—lr an) + g(an—l; an)
nl 1- (h(an—l' an)yn—l + h(an—l' an))
(kyn—l) + h(an—l' an)yn—l + h(an—l' an) + g(an—ll an)
1- (h(an—ll an))/n—l + h(an—ll an) + g(an—lf an))
1
T+7¢ 4k -5

< -1<——><1.
1- (h(an—l' an)¥n-1 + h(an_1,an) + glan_y, an)) 16k? —5

Therefore (3.2) becomes

4k—-5

bi(an, fa,) < 0p—1bg(ay_1,fa,—1) < mbk(an—lifan—l)- (3.3)

Operating (F1) again, we write
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4k —5
F(bk(anrfan)) <F mbk(an—l'fan—l) —T7< F(bk(an—l'fan—l)) - T

Similarly,
F(bk(an_l,fan_l)) < F(bk(an_Z,fan_z)) —T.
Consequently, we note
F(bk(an, fan)) < F(bk(an_l,fan_l)) —17< F(bk(an_z,fan_z)) —27< -

< F(bk(ao,fao)) —nrt,

applying limitn - oo
lim F(by(an, fay)) = —co.
By (F2), we get
lim by (an, fan) =0
Now, since

by (an, an41) = bk(anv n(an' fan, Vn)) < (1 = yp)bi(ay, fan)'

therefore, we note that lim by (a,, a,+1) = 0. It remains to prove that the sequence {a,} is Cauchy.
n—oo

Suppose on the contrary that {a,} is not Cauchy. Then we can find subsequences {a,,,)} and {a,, )}
of {a,,} and a positive real number €, u(u) > w(u) > u with u(u) as the smallest natural index
such that

bi (G Gow) = €

and
bie(@uy-1, Gww) < €o
We deduce that
€0 < bre( @y Gww) < k[bi(@uey dway+1) + bi(@ow+t Cow)]
E_ko < limy o Supbk(au(l)' aw(u)+1)' (3.4)
Now,
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bie(auy way+1) < bk ((n(au(u)—ltfau(u)—l'yu(u)—l)' aw(u)+1>
= Vu(u)—lbk(au(u)—l' aw(u)+1) + (1 - Vu(u)—l)bk(fau(u)—lr aw(u)+1)

< Yuw-1e(@u-1 o +1)

+(1 - Yu(u)—l)k{bk(fau(u)—lr faw(u)+1) + bk(faw(u)+1' aw(u)+1)}' (35)

Since, by (3.1)
F (kbk(fau(u)—lrfaw(u)+1))
<F {g(au(u)—l' aw(u)+1)bk(au(u)—1' aw(u)+1)

+ h(@u()-1 Gw+1) (bk(au(u)—l'fau(u)—l) + bi(faw@y+r, aa)(u)+1))} -

Therefore,

F[Vu(u)—lbk(au(u)—l' aw(u)+1)

+ (1 - Vu(u)—l){kbk(fa/x(u)—l' faw(u)+1) + kbk(faw(u)+1v aw(u)+1)}]

<F l)/u(u)—lbk (au(u)—l' aw(u)+1)

+ (1= Yu-1) {g(a#(u)—l' o) +1) P (G -1 Gy +1)

bie( Q-1 fu-1)

+ kb (Fawnet, Gunes }l_r_
+bk(faw(u)+1, aw(u)+1)> ( w(u)+ w(u)+ )

+ h(@u)-1 Qo wy+1) <

Hence, using (F1) and (3.5), we write
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bk(au(u)' aw(u)+1)
= Vu(u)—lbk(au(u)—l' aw(u)+1)

9(@u0)-1 @ +1) P (A -1, Qo +1)
+(1=vu-1) | (-1 Gwoa+1) (@ -1 faua-1)
+Hh(auw)-1, Ga+1) + kb (Faway+1 Qo +1)

= Vu(u)—lbk(au(u)—l' aw(u)+1)

9(@u-1 o+ )@ -1 o) + bi(@ow) Gwa+1)}
+ (1 - Vu(u)—l) +h(au(u)—1' aw(u)+1)bk(au(u)—1'fau(u)—l)
+{h(au(u)—1' aw(u)+1) + k}bk(faw(u)+1' aw(u)+1)

< Vu-11kbic( -1 o) + kbi(@o@) Gww+1))

9(@u-1 2o +1){bi(@ueo-1 Qo) + bi(@o@) Q4w +1))
+ (1= Yu-1) +h(au) -1 Aw+1) b (@ -1 fAua-1) :
+(h(au(u)—1r aw(u)+1) + k) ' bk(faw(u)+1: aw(u)+1)

exerting limit u — oo, we obtain

. 1 1
&lj{}osul’ bk(au(u)' aw(u)+1) = 111_{{}05“29 Vu(u)—1kbk(au(u)—1; aw(u)) = (4_k2k + 4_k2) " €o-
This shows that

€o

€o .
% = lim supbi (@), dwa+1) < ok

which is a contradiction. Hence, {a,} is a Cauchy sequence. The completeness of E assure the
existence of an element a* such that

lim b (a,,a*) = 0.
n—-oo

Next, we prove that a* is the fixed point of f.

by (an, fan)

bk(a*;fa*) < k{bk(a*'an) + bk(an; fa*)} < kbk(a*; an) + k? {+bk(fa 'fa*)

}. (3.6)

As

F(kby(fan, fa") < Flg(a*, a,)b(a’, a,) + h(a*, a,){bx(ay, fay) + b(a”, fa)}] — 1,
AIMS Mathematics Volume 5, Issue 6, 6929-6948.
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therefore, using above equation and (3.6)

+I;JZ((?;: ?;)* ) }>

<F [kbk(a*, a,) + k?b(a,, fa,) + k- g(a*, a,)b,(a*, a,)

o)l

F(bc(a*,fa))<F (kbk(a*,an) + kz{

+ kh(a®, an){

Utilizing (F1), we obtain
kb, (a*,a,) + k- g(a*, a,)b,(a* a,)

9\" —-T.
+I? + kh(a' @} (77) belao fa)|

F ((1 — kh(a*,an))bk(a*,fa*)) <F

Clearly,

kbk(a*! a‘n) + kzbk(an' fan) + k- g(a*' an)bk(a*f an)
lim g\" —
e +k? + kh(a’, @)} (77) belao fao)

therefore,

7111_1)1;10 F ((1 — kh(a*, an))bk(a*,fa*))

- rlllnrg i (kbk (a*: an) + kzbk (an' fan) +k- g(a*; an)bk (a*' an)

n

9
+ {kz + kh(a*' an)} (E) bk(aOJ fa0)> = — 0,

consequently,
lim (1 — kh(a*, an))bk(a*,fa*) =0.
n—->oo

Hence, b, (a*, fa*) = 0, i.e., a” is the fixed point of f. It remains to prove that a* is the only fixed
point f. Suppose on the contrary that a** be another fixed point of f. Then

F(kbi(a,a™)) = F(kbi(fa’, fa™)

< Flg(a®,a™)by(a®,a™) + h(a®,a™){by(a", fa*) + be(a™, fa™)}] — 7
= Flg(a’,a™)by(a*,a™)] — 7

which is a contradiction. Hence, b, (a*,a**) = 0. This shows that a* = a**.
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Example 3.3: Suppose E = [0,+x), fa = % for all a € E and choose a mapping by:E X E —
[0, +) defined as by (a,b) = (a — b)*>. Demonstrate n: E X E X [0,1] - E as n(a, b;y) = ya +

1 1

(1 —y)b for all a,b € E. Fix a, =n(ay_1,fan_1;¥n-1) and y,_; = = 1o Now, for all

o,a,b € E, we write
be(o,(a,b,y)) =[y(0—a)+ (1 —y)(0—Db)* < [ylo—al + (1 —y)lo — b|]?
= (ylo —al)? + (1 =)o — bl)* + 2y(1 = p)lo — allo — b|

< (vlo —aD? + (1 = Y)lo = bI)* +y(1 = )((0 — @) + (0 — b)?)
=y(0o—a)? + (1 —y)(o —b)? = ybe(o,a) + (1 — )by (o, b).

Hence, (E, by, n) is a convex b-metric space with k = 2. Next, define g,h: E X E — [0, %) by

1
— ifx<y
4k2
gxy)=4 7
otherwise
4k2 +1

and fix h(x,y) = 0. Observe that g (a, b) + 2h(a, b) < — - Then

In(kby(fa, fb)) = In {k (% _ g) } —In (k3—16 (a— b)z) < In[g(a, b)(a — b)?]

= In[g(a, b)b(a, b) + h(a, b){by(a, fa) + by (b, fb)}],

i.e., F(kbk(fa, fb)) < F[g(a,b)by(a,b) + h(a,b){b,(a, fa) + by (b, fb)}]. Observe that F(x) =

In(x) satisfies (F1) and (F2). Thus, the inequality (3.1) is satisfied for 7 € In (::z:i) Now
An-1
An = Yn-1an-1 t (1- Yn—l)fan—l = Yn-1an-1 + (1 —¥n_1) 6

5 1 17
= (gyn—l + 8) ap-1 = %an—l-

Similarly

17 17 17

%an_z, an—2 = %an—& e, a1 = %ao-

an-1 =
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17\" 1 17\" . .
Therefore, a,, = (;) apand fa, = g(;) a,. Lettingn — oo, we geta,, » 0and fa,, - 0.i.e., 0

is the fixed point of f. For uniqueness, suppose on contrary that r is another fixed point of f then
b, (0,7) > 0, say b, (0,7) = &. Hence

2 y2

1 1
6 = be(0,r) = b (f0,fr) = (0~ ) =22 = 5o b(0,7) = 56

which is a contradiction. Therefore, 0 is the only fixed point of f.

Figure 1. The higher the graph is at z-axis, the greater the value of the function by, is.

In Figure 1, the graph in blue and purple colour represent

g(a,b)b,(a,b) + h(a, b){ bi(a, fa) }While that in red and green shows kb (a, b). The first one
+bk(b, fb)

clearly dominates the later one, hence confirming the contractive inequality.

Figure 2. The higher the graph is at z-axis, the greater the value of the function F is.
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In Figure 2, the graph in red colour represent F [g(a, b)by(a,b) + h(a,b) {fg(?l;f;lg)}] while
k )

that in blue shows F(kbk (a, b)). Note that the higher is the graph at z-axis, the bigger is the value of
the mapping F. Hence, both the figures clearly demonstrate that the inequality (3.2) holds true.
In the next section, we discuss the application of our results to Fredholm integral equation of the

second type.
4. Application

Fredholm integral equation can be classified as an Equation of the first kind and Equation of the
second kind. The solution of Fredholm integral equation leads to Fredholm theory. Fredholm linear
equation has key importance in inverse problems, linear forward modeling, the theory of signal
processing and distributions, etc. Adomian decomposition method is an effective tool for solving
Fredholm integral equation. In this section we provide an application of our results to the solution of
Fredholm integral equations:

p(t) = S() + o [ T(t, Dp()de (4.1)

Theorem 4.1: Suppose Eq (4.1) witha < t,7 < b, S € E[a, b] and the continuous mapping T (¢, 7).
Let W = max,<;,<p T(t,7), g: E[a,b] = E[a,b] and a, 5: E[a, b] X E[a, b] — [0,1) with a(p, q) +

2B(p,q) < ﬁ satisfy the following condition;

— p
lp — gpl }] .

FlW@® - @)lolP max Ip@ - a@P] < F|a@.olp - P + s@.0 {7,

forall p,q € E[a, b]. Then the integral equation (4.1) has a unique solution.
Proof. Suppose E = c[p,q] and by: E X E — [0, +0) is defined by

bi(p, @) = maxg<e <plp(t) — q(OI7, (4.2)

and define a mapping T by

g(p@®) =5@) + af:T(t, »)p(r)dt for all p € H[a, b]. (4.3)

Set

a, = n(an—l' Tay,_q; Vn—l) = Yn-1ap-1 + (1 = ¥Yp-1)an_,MEN

where y,,_, € (0, ﬁ] Clearly (E, by, n) is a convex b-metric space with k = 2P~1, Now
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Flkbi(9(@). 9(@)] = F| max |g(p(®) ~ g(@(®)|"]

]

[ b v
= F |k max af T(t,o)p(t)dt — O'J. T(t,t)q(t)dt
| ast,t<b a u
|

- b
= F |k max af (T(t, T)p(t) — T(t, T)q(r)) dt

ast,t<b
pl

< F |k max |og|P
| ast,t<b

b
f IT(t,D)lIp() — q(0)] d

< F [k[W( ~ @)loll” max [p(z) —q()I?]

max |p(t) — gp(t)[?

<F a(p(t),q(t))arsrgggblp(t) —q®IP + B(p®), q(®)) {frtrfai lq(t) — gq(t)|p}]
L ast,t<b

by (p, Tp) }] _r

I =F [a(p, Qb (v, q) + B, q) {+bk(q. Tq)

Hence, g is an F-Reich contraction. Therefore, by Theorem (3.2) there exist a unique solution of

9.
Corollary 4.2: Consider Eq (4.1) witha < t,7 < b, S € E[a, b] and the continuous mapping T (¢, 7).

If W =max,<.<p T(t,7), g:E[a,b] > E[a,b] and B:E|a, b] X E[a, b] — [O,%) with 8: H[a, b] X

Hla,b] = (O, ﬁ] satisfy the following condition;

F [kl - @)loll? max [p() - q@I?] < FIB(, 9)lp - gpI? + lg — gal?} - 7,
for all p, q € E[a, b]. Then the integral equation (4.1) has a unique solution.
5. Conclusion

This paper has modified the definition of generalized F -contractions by eliminating the
conditions (F3) and (F4) and thus proved some principal fixed point results in the setting of convex
b-metric spaces. Throughout this research, it was observed that the elements a,, are taken from the
convex structure n(a, b,y). Thus, investigated fixed point for F-Reich contractions and F-Kannan
contractions followed by the verification of our results with the help of example and graphs. Further,
an application of our results in finding a unique solution to the Fredholm integral equation is
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described. The paper furthers the research already done on the topic of F-contractions and fixed point
theory.
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