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1. Introduction

LetA be the class of functions h of the form

h(z) = z +

∞∑
k=2

akzk, (1.1)

where h is analytic in U = {z ∈ C : |z| < 1}.
We denote S,S∗ and K the subclasses of A consisting of univalent, starlike and convex functions

respectively ( [1, 2]) and denote P = {p : p(0) = 1,Rep(z) > 0, z ∈ U}.
An analytic function s : U = {z : |z| < 1} → C is subordinate to an analytic function t : U → C, if

there is a function ν satisfying ν(0) = 0 and |ν(z)| < 1 (z ∈ U), such that s(z) = t(ν(z))(z ∈ U). Note
that s(z) ≺ t(z). Especially, if t is univalent in U, then the following conclusion is true (see [1]):

s(z) ≺ t(z)⇐⇒ s(0) = t(0) and s(U) ⊂ t(U).
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In 1933, a classical Fekete-Szegö problem for h(z) = z +
∞∑

n=2
anzn ∈ S was introduced by Fekete and

Szegö [3] as follows,

|a3 − µa2
2| ≤


3 − 4µ, µ ≤ 0,
1 + 2 exp(−2µ

1−µ ), 0 ≤ µ ≤ 1,
4µ − 3, µ ≥ 1.

The result is sharp.
Using the subordination, the classes S∗(φ) and K(φ) of starlike and convex functions were defined

by Ma and Minda [4] in 1994. The function h(z) ∈ S∗(φ) iff zh′(z)
h(z) ≺ φ(z) and zh′′(z)

h′(z) ≺ φ(z), where h ∈ A
and φ ∈ P. Moreover, Fekete-Szegö problems of the classes were obtained by Ma and Minda [4].
The problem of Fekete-Szegö has always been a hot topic in geometry function theory. Many authors
studied and obtained many results (see [5–7]).

Let φ(z) = 1+Az
1+Bz and −1 ≤ B < A ≤ 1. The classes S∗(φ) and K(φ) reduce to S∗(1+Az

1+Bz ) and K( 1+Az
1+Bz ),

which are the classes of Janowski starlike and convex functions respectively (see [8]).
Without loss of generality, both S ∗(1+z

1−z ) = S ∗ and K( 1+z
1−z ) = K represent the well-known classes of

starlike and convex function respectively.
In 2015, Mediratta et al. [9] introduced the family of exponential starlike functions S ∗(ez), that is

S ∗(ez) =

{
h ∈ A :

zh′(z)
h(z)

≺ ez, z ∈ U
}

or, equivalently

S ∗(ez) =

{
h ∈ A :

∣∣∣∣∣log
zh′(z)
h(z)

∣∣∣∣∣ < 1, z ∈ U
}
.

According to the properties of the exponential function ez and the subordination relationship, the
class S ∗(ez) maps the unit disc U onto a region, which is symmetric with respect to the real axis and 1.

In 1959, the class S∗s of starlike functions with respect to symmetric points was introduced by
Sakaguchi [10]. The function h ∈ S∗s if and only if

Re
zh′(z)

h(z) − h(−z)
> 0.

In 1987, the classes S∗c and S∗cs of starlike functions with respect to conjugate points and symmetric
conjugate points were introduced by El-Ashwa and Thomas [11] as follows,

h ∈ S∗c ⇐⇒ Re
zh′(z)

h(z) + h(z)
> 0 and h ∈ S∗sc ⇐⇒ Re

zh′(z)

h(z) − h(−z)
> 0.

For analytic functions h(z) and g(z)(z ∈ U). Let S H define the class of harmonic mappings with the
following form (see [12, 13])

f (z) = h(z) + g(z), z ∈ U, (1.2)

where

h(z) = z +

∞∑
k=2

akzk and g(z) =

∞∑
k=1

bkzk, |b1| = α ∈ [0, 1). (1.3)

In particular, h is called the analytic part and g is called the co-analytic part of f .
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It is well known that the function f = h + g is locally univalent and sense preserving in U if and
only if |h′(z)| > |g′(z)| (z ∈ U)( [14]).

According to the above conclusion, the coefficient estimations, distortion theorems, integral
expressions, Jacobi estimates and growth condition in geometric properties of covering theorem of the
co-analytic part can be obtained by using the analytic part of harmonic functions. In the recent years,
various subclasses of S H were researched by many authors as follows.

In 2007, the subclass of S H with h ∈ K was studied by Klimek and Michalski [15].
In 2014, the subclass of S H with h ∈ S was studied by Hotta and Michalski [16].
In 2015, the subclasses of S H with h ∈ S ∗( 1+(1−2β)z

1−z ) and h ∈ K( 1+(1−2β)z
1−z ) were studied by Zhu and

Huang [17].
In this paper, by using subordination relationship, we studied the subclasses of S H with h(z)−h(−z)

2 ∈

S ∗(ez) and h(z)−h(−z)
2 ∈ K(ez).

Definition 1. Suppose f = h + g ∈ S H of the form (1.3). Let HS ∗,αsc (e) denote the class of harmonic
univalent exponential starlike functions with symmetric conjecture point consisting of f with h ∈ S ∗sc(e).
That is, the function f = h + g ∈ HS ∗,αsc (e) if and only if

2zh′(z)

h(z) − h(−z)
≺ ez.

Also, let HKα
sc(e) denote the class of harmonic univalent convex exponential functions with

symmetric conjecture point consisting of f with h ∈ Ksc(e), that is, f = h + g ∈ HKα
sc(e) if and only if

2(zh′(z))′

(h(z) − h(−z))′
≺ ez.

We know that h(z) ∈ Ksc(e)⇐⇒ zh′(z) ∈ S ∗sc(e).

2. Preliminary preparation

In order to obtain our results, we need Lemmas as follows.

Lemma 1. ( [18]). Let ω(z) = c0 + c1z + . . . + cnzn + . . . be analytic satisfying |ω(z)| ≤ 1 in U. Then

|cn| ≤ 1 − |c0|
2, n = 1, 2, . . . , (2.1)

and
|c2 − γc2

1| ≤ max{1, |γ|}. (2.2)

Lemma 2. Let
2zh′(z)

h(z) − h(−z)
= p(z),

we have

h(z) =

∫ z

0
p(η) exp

∫ η

0

p(t) + p(−t) − 2
2t

dtdη.
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Lemma 3. If h(z) = z +
∞∑

n=2
anzn ∈ S ∗sc(e), then

|a2n| ≤
(2n − 1)!!

(2n)!!
and |a2n+1| ≤

(2n − 1)!!
(2n)!!

. (2.3)

The estimate is sharp for h given by

h(z) =
1 + z
√

1 − z2
− 1.

If h(z) = z +
∞∑

n=2
anzn ∈ K∗sc(e), then

|a2n| ≤
(2n − 1)!!
2n(2n)!!

and |a2n+1| ≤
(2n − 1)!!

(2n + 1)(2n)!!
. (2.4)

The estimate is sharp for h given by

h(z) = arcsin z − log(1 +
√

1 − z2) + log 2.

Proof. Let h(z) = z +
∞∑

n=2
anzn ∈ S ∗sc(e). According to Definition 1, we have

2zh′(z)

h(z) − h(−z)
≺ ez.

There exists a function p(z) = 1 +
∞∑

k=1
pkzk satisfying

2zh′(z)

h(z) − h(−z)
= p(z), (2.5)

that is,

1 +

∞∑
k=1

pkzk ≺ ez = 1 + z +
z2

2!
+ · · · .

Using the results of Rogosinski [19], we have |pk| ≤ 1 for k ≥ 1.
By means of comparing the coefficients of the both sides of (2.5), we get

2na2n = p2n−1 + a3 p2n−3 + · · · + a2n−1 p1,

and
2na2n+1 = p2n + a3 p2n−2 + · · · + a2n−1 p2.

Let φ(n) = 1 + |a3| + · · · + |a2n−1|. It is easy to verify that

|a2n| ≤
1

2n
φ(n) (2.6)
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and

|a2n+1| ≤
1

2n
φ(n). (2.7)

From (2.7), we have

φ(n + 1) ≤
(2n + 1)!!

(2n)!!
. (2.8)

According to (2.6), (2.7) and (2.8), we can obtain (2.3).

If h(z) = z +
∞∑

n=2
anzn ∈ Ksc(e), then zh′(z) ∈ S ∗sc(e). Using the results in (2.3), we can obtain (2.4)

easily. �

Lemma 4. Let µ ∈ C.

(1) If h(z) = z +
∞∑

n=2
anzn ∈ S ∗sc(e), then

|a3 − µa2
2| ≤

1
2

max{1,
1
2
|µ − 1|}. (2.9)

(2) If h(z) = z +
∞∑

n=2
anzn ∈ Ksc(e), then

|a3 − µa2
2| ≤

1
6

max{1,
1
8
|3µ − 4|}. (2.10)

The estimates are sharp.

Proof. Let h(z) = z +
∞∑

n=2
anzn ∈ S ∗sc(e). According to the subordination relationship and Definition 1,

we get
2zh′(z)

h(z) − h(−z)
= eν(z),

that is,

log
2zh′(z)

h(z) − h(−z)
= ν(z), (2.11)

where ν(z) = c1z + c2z2 + · · · is an analytic function with ν(0) = 0 and |ν(z)| < 1 (z ∈ U).
By means of comparing the coefficients of two sides of (2.11), we get

a2 =
1
2

c1, a3 =
1
2

c2 +
1
4

c2
1 and a4 =

1
4

c3 +
3
8

c2c1 +
5

48
c3

1.

Therefore, we have

a3 − µa2
2 =

1
2
{c2 −

1
2

(µ − 1)c2
1}.

Using the fact that (2.2) in Lemma 1, we obtain

|a3 − µa2
2| ≤

1
2

max{1,
1
2
|µ − 1|}.
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The bound is sharp for h given as follows,

h(z) =

∫ z

0
exp (ξ +

∫ ξ

0

et + e−t − 2
2t

dt)dξ or h(z) =

∫ z

0
exp (ξ2 +

∫ ξ

0

et2 − 1
t

dt)dξ.

Taking h(z) = z +
∞∑

n=2
anzn ∈ Ksc(e) ⇐⇒ zh′(z) = z +

∞∑
n=2

nanzn ∈ S ∗sc(e) into consideration, it is easy

to obtain (2.10). The bound is sharp for h given as follows,

h(z) =

∫ z

0

1
η

∫ η

0
exp (ξ +

∫ ξ

0

et + e−t − 2
2t

dt)dξdη or h(z) =

∫ z

0

1
η

∫ η

0
exp (ξ2 +

∫ ξ

0

et2 − 1
t

dt)dξdη.

�

Lemma 5. Suppose h(z) ∈ A and |z| = r ∈ [0, 1).
(1) Let h(z) ∈ S ∗(e). Then

exp(−r +

∫ r

0

e−η − 1
η

dη) < |h′(z)| < exp(r +

∫ r

0

eη − 1
η

dη) (2.12)

and

r exp
∫ r

0

e−η − 1
η

dη < |h(z)| < r exp
∫ r

0

eη − 1
η

dη. (2.13)

(2) Let h(z) ∈ K(e). Then

exp
∫ r

0

e−η − 1
η

dη < |h′(z)| < exp
∫ r

0

eη − 1
η

dη (2.14)

and

r exp
∫ r

0

e−η − 1
2η

dη < |h(z)| < r exp
∫ r

0

eη − 1
2η

dη. (2.15)

Proof. Let h(z) ∈ S ∗(e) and |z| = r ∈ [0, 1). According to the subordination relationship and Definition
1, there exists an analytic function ν(z) = c1z + c2z2 + · · · satisfying ν(0) = 0 and |ν(z)| < |z|, such that

zh′(z)
h(z)

= eν(z).

Thus, it is concluded that

e−r < |
zh′(z)
h(z)

| < er, (2.16)

that is,

e−r < Re
zh′(z)
h(z)

< er. (2.17)

Since
Re

zh′(z)
h(z)

= r
∂

∂r
log |h(z)|. (2.18)

By (2.17) and (2.18), we get

r exp
∫ r

0

e−η − 1
η

dη < |h(z)| < r exp
∫ r

0

eη − 1
η

dη. (2.19)

AIMS Mathematics Volume 5, Issue 6, 6800–6816.



6806

From (2.16) and (2.19), we have

r exp(−r +

∫ r

0

e−η − 1
η

dη) < |zh′(z)| < r exp(r +

∫ r

0

eη − 1
η

dη).

Similar to the previous proof. We let h(z) ∈ K(e) and |z| = r ∈ [0, 1), then

e−r < |1 +
zh′′(z)
h′(z)

| < er.

After simple calculation, we have

e−r − 1 < Re
zh′′(z)
h′(z)

< er − 1. (2.20)

By (2.18) and (2.20), we get

exp
∫ r

0

e−η − 1
η

dη < |h′(z)| < exp
∫ r

0

eη − 1
η

dη.

Using the conclusion in [19], for h(z) ∈ K(e), we have 2zh′(z)
h(z) −1 ≺ ez. According to the subordination

relationship, we have

e−r < |
2zh′(z)

h(z)
− 1| < er,

After simple calculation, we have

e−r − 1
2

< Re
zh′(z)
h(z)

− 1 <
er − 1

2
. (2.21)

By (2.18) and (2.21), we get

r exp
∫ r

0

e−η − 1
2η

dη < |h(z)| < r exp
∫ r

0

eη − 1
2η

dη.

Therefore, we complete the proof of Lemma 5. �

Lemma 6. ( [20]). If h(z) ∈ S∗sc(e), then h(z)−h(−z)
2 ∈ S∗(e).

Lemma 7. If h(z) ∈ Ksc(e), then h(z)−h(−z)
2 ∈ K(e).

Lemma 8. Suppose h(z) ∈ A and |z| = r ∈ [0.1).
(1) Let h ∈ S∗sc(e). Then

φ1(r) < |h′(z)| < φ2(r),

where

φ1(r) = exp(−r +

∫ r

0

e−η − 1
η

dη), φ2(r) = exp(r +

∫ r

0

eη − 1
η

dη). (2.22)

(2) Let h ∈ Ksc(e). Then
ψ1(r) < |h′(z)| < ψ2(r),

where

ψ1(r) =
1
r

∫ r

0
exp(−t +

∫ t

0

e−η − 1
η

dη)dt, ψ2(r) =
1
r

∫ r

0
exp(t +

∫ t

0

eη − 1
η

dη)dt. (2.23)
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Proof. Suppose h(z) ∈ S∗sc(e). It is quite similar to the proof of Lemma 5, we have

e−r|
h(z) − h(−z)

2
| ≤ |zh′(z)| ≤ er|

h(z) − h(−z)
2

|. (2.24)

According to Lemma 6 and (2.13) of Lemma 5, we have

r exp
∫ r

0

e−η − 1
η

dη < |
h(z) − h(−z)

2
| < r exp

∫ r

0

eη − 1
η

dη. (2.25)

By (2.24) and (2.25), we can obtain (2.22).
If h(z) ∈ Ksc(e), then

e−r|
(h(z) − h(−z))′

2
| ≤ |(zh′(z))′| ≤ er|

(h(z) − h(−z))′

2
|. (2.26)

According to Lemmas 7 and (2.14) of Lemma 5, we have

exp
∫ r

0

e−η − 1
η

dη < |
(h(z) − h(−z))′

2
| < exp

∫ r

0

eη − 1
η

dη. (2.27)

By (2.26) and (2.27), we get

exp(−r +

∫ r

0

e−η − 1
η

dη) ≤ |(zh′(z))′| ≤ exp(r +

∫ r

0

eη − 1
η

dη). (2.28)

By (2.28), integrating along a radial line ξ = teiθ, we obtained immediately,

|zh′(z)| ≤
∫ r

0
exp(t +

∫ t

0

eη − 1
η

dη)dt

The verification for the remainder of (2.23) is given as follows. Let H(z) := zh′(z), which is
univalent. Suppose that ξ1 ∈ Γ = H({z : |z| = r}) is the nearest point to the origin. By means of
rotation, we suppose that ξ1 > 0 and z1 = H−1(ξ1). Let γ = {ξ : 0 ≤ ξ ≤ ξ1} and L = H−1(γ). If
ς = H−1(ξ), then dξ = H′(ς)dς. Hence

ξ1 =

∫ ξ1

0
dξ =

∫ z1

0
H′(ς)dς ≥

∫ r

0
|H′(teiθ)|dt ≥

∫ r

0
exp(−t +

∫ t

0

e−η − 1
η

dη)dt.

Thus the proof of Lemma 8 is completed. �

3. Main results

Next, the integral expressions for functions of the classes defined in Definition 1 are obtained.

Theorem 1. Let ω and ν be analytic in U with |ω(0)| = α, ν(0) = 0, |ω(z)| < 1 and |ν(z)| < 1. If
f = h + g ∈ HS ∗,αsc (e). Then

f (z) =

∫ z

0
ϕ(ξ)dξ +

∫ z

0
ω(ξ)ϕ(ξ)dξ, (3.1)

where

ϕ(ξ) = eν(ξ) exp
∫ ξ

0

eν(t) + eν(−t) − 2
2t

dt. (3.2)
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Proof. Let f = h + g ∈ HS ∗,αsc (e). Using Definition 1 and the subordination relationship, there exist
analytic functions ω and ν satisfying ω(0) = b1, ν(0) = 0, |ω(z)| < 1 and |ν(z)| < 1 (z ∈ U), such that

2zh′(z)

h(z) − h(−z)
= eν(z), (3.3)

and
g′(z) = ω(z)h′(z). (3.4)

If we substitute z by −z in (3.4), we obtain

−2zh′(−z)

h(−z) − h(z)
= eν(−z). (3.5)

It follows from (3.4) and (3.5) that

2z(h(z) − h(−z))′

h(z) − h(−z)
= eν(z) + eν(−z). (3.6)

A routine computation for the equality (3.6) gives rise to the following equation,

h(z) − h(−z)
2

= z exp
∫ z

0

eν(t) + eν(−t) − 2
2t

dt. (3.7)

Plugging (3.7) back into (3.3), we have

h′(z) = eν(z) exp
∫ z

0

eν(t) + eν(−t) − 2
2t

dt. (3.8)

If the equality (3.8) is integrated from the both sides of it, then

h(z) =

∫ z

0
eν(ξ) exp

∫ ξ

0

eν(t) + eν(−t) − 2
2t

dtdξ.

Inserting (3.8) into (3.4), it is easy to show that

g(z) =

∫ z

0
ω(ξ)eν(ξ) exp

∫ ξ

0

eν(t) + eν(−t) − 2
2t

dtdξ.

Thus, the proof of Theorem 1 is completed. �

Taking Theorem 1 and h ∈ Ksc(e) ⇐⇒ zh′(z) ∈ S ∗sc(e) into consideration, we get the following
result.

Theorem 2. Let ω and ν be analytic in U satisfying |ω(0)| = α, ν(0) = 0, |ω(z)| < 1 and |ν(z)| < 1. If
f ∈ HKα

sc(e), then

f (z) =

∫ z

0

1
η

∫ η

0
ϕ(ξ)dξdη +

∫ z

0

ω(η)
η

∫ η

0
ϕ(ξ)dξdη.

where ϕ(ξ) is defined by (3.2).
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In the following, the coefficient estimates of the class HS ∗,αsc (e) will be obtained.

Theorem 3. Let h and g be given by (1.3). If f = h + g ∈ HS ∗,αsc (e), then

|b2n| ≤


1−α2

2 + α
2 , n = 1,

(1−α2)
2n

(
1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!!

)
+ α (2n−1)!!

(2n)!! , n ≥ 2,
(3.9)

and

|b2n+1| ≤


2(1−α2)

3 + α
2 , n = 1,

(1−α2)
2n+1

(
1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!! +

(2n−1)!!
(2n−2)!!

)
+ α (2n−1)!!

(2n)!! , n ≥ 2.
(3.10)

The estimates are sharp and the extremal function is

f α0 (z) =
1 + z
√

1 − z2
− 1 +

∫ z

0

(α + (1 − α2 − α)t)

(1 − t)2
√

(1 − t2)
dt.

Specially, if f ∈ HS ∗,0sc (e), then

|b2n| ≤


1
2 , n = 1,
1

2n

(
1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!!

)
, n ≥ 2,

and

|b2n+1| ≤


2
3 , n = 1,

1
2n+1

(
1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!! +

(2n−1)!!
(2n−2)!!

)
, n ≥ 2.

The estimates are sharp and the extremal function is

f 0
1 (z) =

1 + z
√

1 − z2
− 1 +

2z3 + 3z2 − 1

3(1 − z2)
3
2

+
1
3
.

Proof. Let h and g be given by (1.3). Using the fact that g′ = ωh′ satisfying ω(z) = c0 + c1z + c2z2 + · · ·

analytic in U, we obtain

2nb2n =

2n∑
p=1

papc2n−p (a1 = 1, n ≥ 1) (3.11)

and

(2n + 1)b2n+1 =

2n+1∑
p=1

papc2n+1−p (a1 = 1, n ≥ 1). (3.12)

It is easy to show that

2n|b2n| ≤

2n∑
p=1

p|ap||c2n−p|
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and

(2n + 1)|b2n+1| ≤

2n+1∑
p=1

p|ap||c2n+1−p|.

Since g′ = ωh′, it follows that c0 = b1. By (2.1), it is obvious that |ck| ≤ 1−α2 for k ∈ N. Therefore,

|b2n| ≤


1−α2

2 + |a2|α, n = 1,
(1−α2)

2n (1 +
2n−1∑
k=2

k|ak|) + α|a2n|, n ≥ 2,
(3.13)

and

|b2n+1| ≤


1−α2

3 (1 + 2|a2|) + |a3|α, n = 1,
(1−α2)
2n+1 (1 +

2n∑
k=2

k|ak|) + α|a2n+1|, n ≥ 2.
(3.14)

According to Lemma 3, (3.13) and (3.14), after the simple calculation, (3.9) and (3.10) can be
obtained easily. We also obtain the extreme function. �

By using the same methods in Theorem 3, the following results are obtained.

Theorem 4. Let h and g of the form (1.3). If f = h + g ∈ HKα
sc(e), then

|b2n| ≤


1−α2

4 + α
4 , n = 1,

(1−α2)
(2n)2

(
1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!!

)
+ α (2n−1)!!

2n(2n)!! , n ≥ 2,

and

|b2n+1| ≤


2(1−α2)

9 + α
6 , n = 1,

(1−α2)
(2n+1)2

(
1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!! +

(2n−1)!!
(2n−2)!!

)
+ α (2n−1)!!

(2n+1)(2n)!! , n ≥ 2.

For functions of the classes defined in the paper, Fekete-Szegö inequality of which are listed below.

Theorem 5. Let f = h + g with h and g given by (1.3) and µ ∈ C.
(1) If f ∈ HS ∗,αsc (e) , then

|b3 − µb2
2| ≤

(1−α2)
3

{
1 +

3|µ|(1−α2)
4 +

|2−3µb1 |

2

}
+ α

2 max
{
1, |µb1−1|

2

}
,

|b2n − b2n−1| ≤


1
2 (1 − α2) + 3α

2 , n = 1,

(1 − α2)
(
( 1

2n + 1
2n−1 )(1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!! ) −

(2n−3)!!
(2n−1)(2n−4)!!

)
+α

(
(2n−1)!!

(2n)!! +
(2n−3)!!
(2n−2)!!

)
, n ≥ 2,

and

|b2n+1 − b2n| ≤ (1 − α2)
(
( 1

2n+1 + 1
2n )(1 +

n∑
k=2

(4k − 3) (2k−3)!!
(2k−2)!! ) +

(2n−1)!!
(2n+1)(2n−2)!!

)
+2α (2n−1)!!

(2n)!! , n ≥ 1.

(2) If f ∈ HKα
sc(e), then

|b3 − µb2
2| ≤

(1−α2)
3

{
1 +

3|µ|(1−α2)
4 +

|2−3µb1 |

4

}
+ α

6 max
{
1, |4−3µb1 |

8

}
,
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|b2n − b2n−1| ≤


1
2 (1 − α2) + 5α

4 , n = 1,

(1 − α2)
(
( 1

2n + 1
2n−1 )(1 + 2

n∑
k=2

(2k−3)!!
(2k−2)!! ) −

(2n−3)!!
(2n−1)(2n−2)!!

)
+α

(
(2n−1)!!

(2n)(2n)!! +
(2n−3)!!

(2n−1)(2n−2)!!

)
, n ≥ 2,

and

|b2n+1 − b2n| ≤ (1 − α2)
(
( 1

2n+1 + 1
2n )(1 + 2

n∑
k=2

(2k−3)!!
(2k−2)!! ) +

(2n−1)!!
(2n+1)(2n)!!

)
+α( 1

2n+1 + 1
2n ) (2n−1)!!

(2n)!! , n ≥ 1.

Proof. From the relation (3.11) and (3.12), we have

2b2 = c1 + 2a2c0, 3b3 = c2 + 2a2c1 + 3a3c0,

and

2nb2n =

2n∑
p=1

papc2n−p, (2n + 1)b2n+1 =

2n+1∑
p=1

papc2n+1−p (a1 = 1, n ≥ 1).

By (2.1), we have

|b3 − µb2
2| ≤

1 − α2

3

{
1 +

3|µ|(1 − α2)
4

+ |a2||2 − 3µb1|

}
+ α

∣∣∣a3 − µb1a2
2

∣∣∣ ,
|b2n − b2n−1| ≤


1
2 (1 − α2) + α(1 + |a2|), n = 1,

(1 − α2)
(

1
2n

2n−1∑
p=1

p|ap| +
1

2n−1

2n−2∑
p=1

p|ap|

)
+ α(|a2n| + |a2n−1|), n ≥ 2,

and

|b2n+1 − b2n| ≤ (1 − α2)

 1
2n + 1

2n∑
p=1

p|ap| +
1
2n

2n−1∑
p=1

p|ap|

 + α(|a2n+1| + |a2n|), n ≥ 1.

According to Lemma 3 and Lemma 4, we can compete the proof of Theorem 5. The estimates
above are sharp. �

Paralleling the results of Zhu et al. [17], the corresponding results for functions of the classes defined
in the paper can be obtained. For example, the estimates of distortion, growth of g and Jacobian of f
and so on.

Theorem 6. Let |z| = r ∈ [0, 1).
(1) If f = h + g ∈ HS ∗,αsc (e), then

max{α − r, 0}
(1 − αr)

φ1(r) ≤ |g′(z)| ≤
α + r

(1 + αr)
φ2(r), (3.15)

where φ1(r) and φ2(r) are given by (2.22).
Especially, let α = 0, we have

|g′(z)| ≤ r exp
(
r +

∫ r

0

eη − 1
η

dη
)
.
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(2) If f = h + g ∈ HKα
sc(e), then

max{α − r, 0}
(1 − αr)

ψ1(r) ≤ |g′(z)| ≤
(α + r)
(1 + αr)

ψ2(r), (3.16)

where ψ1(r) and ψ2(r) are given by (2.23).
Especially, let α = 0, we have

|g′(z)| ≤
∫ r

0
exp(t +

∫ t

0

eη − 1
η

dη)dt.

Proof. According to the relation g′ = ωh′, it is easy to see ω(z) satisfying |ω(0)| = |g′(0)| = |b1| = α

such that ( [21]): ∣∣∣∣∣ ω(z) − ω(0)
1 − ω(0)ω(z)

∣∣∣∣∣ ≤ |z|.
It is easy to show ∣∣∣∣∣∣ω(z) −

ω(0)(1 − r2)
1 − |ω(0)|2r2

∣∣∣∣∣∣ ≤ r(1 − |ω(0)|2)
1 − |ω(0)|2r2 .

A tedious calculation gives

max{α − r, 0}
1 − αr

≤ |ω(z)| ≤
α + r
1 + αr

, z ∈ U. (3.17)

Applying (3.17) and (2.22), we get (3.15). Similarly, applying (3.17) and (2.23), we get (3.16).
Thus we complete the proof of Theorem 6. �

Using the method analogous to that in proof of Lemma 8, we can obtain the following results.

Theorem 7. Let |z| = r ∈ [0, 1).
(1) If f = h + g ∈ HS ∗,αsc (e), then∫ r

0

max{α − ξ, 0}
(1 − αξ)

φ1(ξ)dξ ≤ |g(z)| ≤
∫ r

0

α + ξ

(1 + αξ)
φ2(ξ)dξ,

where φ1(ξ) and φ2(ξ) are given by (2.22).
Especially, let α = 0, we have

|g(z)| ≤
∫ r

0
ξ exp

(
ξ +

∫ ξ

0

eη − 1
η

dη
)

dξ.

(2) If f = h + g ∈ HKα
sc(e), then∫ r

0

max{α − ξ, 0}
(1 − αξ)

ψ1(ξ)dξ ≤ |g(z)| ≤
∫ r

0

(α + ξ)
(1 + αξ)

ψ2(ξ)dξ,

where ψ1(ξ) and ψ2(ξ) are given by (2.23).
Especially, let α = 0, we have

|g(z)| ≤
∫ r

0

∫ ξ

0
exp(t +

∫ t

0

eη − 1
η

dη)dtdξ.
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Next, the Jacobian estimates and growth estimates of f are obtained.

Theorem 8. Let |z| = r ∈ [0, 1).
(1) If f = h + g ∈ HS ∗,αsc (e), then

(1 − α2)(1 − r2)
(1 + αr)2 φ2

1(r) ≤ J f (z) ≤

 (1−α2)(1−r2)
(1−αr)2 φ2

2(r), r < α,
φ2

2(r), r ≥ α.
,

where φ1(r) and φ2(r) are given by (2.22).
(2) If f = h + g ∈ HKα

sc(e), then

(1 − α2)(1 − r2)
(1 + αr)2 ψ2

1(r) ≤ J f (z) ≤

 (1−α2)(1−r2)
(1−αr)2 ψ2

2(r), r < α,
ψ2

2(r), r ≥ α,

where ψ1(r) and ψ2(r) are given by (2.23).

Proof. It is well known that Jacobian of f = h + g is

J f (z) = |h′(z)|2 − |g′(z)|2 = |h′(z)|2(1 − |ω(z)|2), (3.18)

where ω satisfying g′ = ωh′ with ω(0) = 0 and |ω(z)| < 1 for z ∈ U.
Let f ∈ HS ∗,αsc (e), plugging (3.17) and (2.22) back into (3.18), we get

J f (z) ≥
(1 − α2)(1 − r2)

(1 + αr)2 exp
(
−2r + 2

∫ r

0

e−η − 1
η

dη
)
,

and

J f (z) ≤ exp
(
2r + 2

∫ r

0

eη − 1
η

dη
) (

1 −
(max{(α − r), 0})2

(1 − αr)2

)
=

 exp
(
2r + 2

∫ r

0
eη−1
η

dη
)
·

(1−α2)(1−r2)
(1−αr)2 , r < α,

exp
(
2r + 2

∫ r

0
eη−1
η

dη
)
, r ≥ α.

Thus this completes the proof of (1). Plugging (3.17) and (2.23) back into (3.18), (2) of Theorem 8
can be proved by the same method as employed before. �

Theorem 9. Let |z| = r, 0 ≤ r < 1.
(1) If f = h + g ∈ HS ∗,αsc (e), then∫ r

0

(1 − α)(1 − ξ)
(1 + αξ)

φ1(ξ)dξ ≤ | f (z)| ≤
∫ r

0

(1 + α)(1 + ξ)
(1 + αξ)

φ2(ξ)dξ, (3.19)

where φ1(ξ) and φ2(ξ) are given by (2.22).
(2) If f = h + g ∈ HKα

sc(e), then∫ r

0

(1 − α)(1 − ξ)
(1 + αξ)

ψ1(ξ)dξ ≤ | f (z)| ≤
∫ r

0

(1 + α)(1 + ξ)
(1 + αξ)

ψ2(ξ)dξ, (3.20)

where ψ1(ξ) and ψ2(ξ) are given by (2.23).
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Proof. For any point z = reiθ ∈ U, let Ur = {z ∈ U : |z| < r} and denote

d = min
z∈Ur
| f (Ur)|.

It is easy to see that U(0, d) ⊆ f (Ur) ⊆ f (U). Thus, there is zr ∈ ∂Ur satisfying d = | f (zr)|. Let
L(t) = t f (zr) for t ∈ [0, 1], then `(t) = f −1(L(t)) is a well-defined Jordan arc. For f = h + g ∈ HS ∗,αsc (β),
by (2.22) and (3.17), we get

d = | f (zr)| =
∫

L
|dω| =

∫
`

|d f | =
∫
`

|h′(ρ)dρ + g′(ρ)dρ̄|

≥

∫
`

|h′(ρ)|(1 − |ω(ρ)|)|dρ|

≥

∫
`

(1 − α)(1 − |ρ|)
(1 + α|ρ|)

exp(−|ρ| +
∫ |ρ|

0

e−η − 1
η

dη)|dρ|,

=

∫ 1

0

(1 − α)(1 − |`(t)|)
(1 + α|`(t)|)

exp(−|`(t)| +
∫ |`(t)|

0

e−η − 1
η

dη)dt,

≥

∫ r

0

(1 − α)(1 − ξ)
(1 + αξ)

exp(−ξ +

∫ ξ

0

e−η − 1
η

dη)dξ.

Using (2.22) and (3.17), the right side of (3.19) is obtained. The remainder of proofs is similar to
that in (3.20) and so we omit. �

According to (3.19) and (3.20), it follows that the covering theorems of f .

Theorem 10. Let f = h + g ∈ S H.
(1) If f ∈ HS ∗,αsc (e), then UR1 ⊂ f (U), where

R1 =

∫ 1

0

(1 − α)(1 − ξ)
(1 + αξ)

exp(−ξ +

∫ ξ

0

e−η − 1
η

dη)dξ.

(2) If f ∈ HKα
sc(e), then UR2 ⊂ f (U), where

R2 =

∫ 1

0

(1 − α)(1 − ξ)
ξ(1 + αξ)

∫ ξ

0
exp(−t +

∫ t

0

e−η − 1
η

dη)dtdξ.

4. Conclusion

In this paper, with the help of the analytic part h satisfying certain conditions, we obtain the
coefficients estimates of the co-analytic part g and the geometric properties of harmonic functions.
Applying the methods in the paper, the geometric properties of the co-analytic part and harmonic
function with the analytic part satisfying other conditions can be obtained, which can enrich the
research field of univalent harmonic mapping.
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