AIMS Mathematics, 5(6): 6800-6816.
AIMS Mathematics DOI:10.3934/math.2020437
% : Received: 07 June 2020

o Accepted: 24 August 2020
http://www.aimspress.com/journal/Math Published: 02 September 2020

Research article

Geometric properties of harmonic functions associated with the symmetric
conjecture points and exponential function

Lina Ma'>*, Shuhai Li'> and Huo Tang'?

I School of Mathematics and Computer Sciences, Chifeng University, Chifeng 024000, Inner
Mongolia, China

2 Laboratory of Mathematics and Complex Systems, Chifeng University, Chifeng 024000, Inner
Mongolia, China

* Correspondence: Email: malinaO0@ 163.com.

Abstract: In this paper, some classes of univalent harmonic functions are introduced by subordination,
where the analytic parts of which are exponential starlike (or convex) functions with respect to the
symmetric conjecture points. According to the relationships of the analytic part and the co-analytic
part, the geometric properties, such as coeflicient estimates, distortion theorems, integral expressions,
estimates and growth conditions and covering theorem, of the classes are obtained.

Keywords: harmonic function; exponential function; subordination; symmetric conjecture point;
coeflicient estimates
Mathematics Subject Classification: 30C45, 30C65

1. Introduction

Let A be the class of functions 4 of the form
h(z) =Z+Zakz", (1.1)
k=2

where /4 is analyticinU = {z € C : |z] < 1}.

We denote S, S* and K the subclasses of A consisting of univalent, starlike and convex functions
respectively ( [1,2]) and denote P = {p : p(0) = 1,Rep(z) > 0,z € U}.

An analytic function s : U = {z : |z] < 1} — C is subordinate to an analytic function  : U — C, if
there is a function v satisfying v(0) = 0 and |[v(z)] < 1 (z € U), such that s(z) = #(v(z))(z € U). Note
that s(z) < #(z). Especially, if 7 is univalent in U, then the following conclusion is true (see [1]):

$(z) < H(z) &= s(0) = 1(0) and s(U) c #«(U).
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In 1933, a classical Fekete-Szego problem for h(z) = z+ ), a,7" € S was introduced by Fekete and

Szegd [3] as follows, =
3 =4y, p <0,
las —uajl < {4 1+ 2exp(%), O<uc<l,
4u -3, u>1.

The result is sharp.

Using the subordination, the classes S*(¢) and K (¢) of starlike and convex functions were defined
by Ma and Minda [4] in 1994. The function h(z) € S*(¢) iff & < ¢(2) and 32 < ¢(2), where 1 € A
and ¢ € P. Moreover, Fekete-Szego problems of the classes were obtained by Ma and Minda [4].
The problem of Fekete-Szego6 has always been a hot topic in geometry function theory. Many authors
studied and obtained many results (see [5-7]).

Let ¢(z) = }:gi and —1 < B < A < 1. The classes S*(¢) and K(¢) reduce to S*(i:—gi) and 7((}:2;),
which are the classes of Janowski starlike and convex functions respectively (see [8]).

Without loss of generality, both § *(}%ﬁ) =S*and K (}%ﬁ) = K represent the well-known classes of
starlike and convex function respectively.

In 2015, Mediratta et al. [9] introduced the family of exponential starlike functions S *(e%), that is
Zh'(2)

S*(ez):{hEﬂ:m<ez, ZEU}

or, equivalently
' (2)
h(z)
According to the properties of the exponential function e* and the subordination relationship, the
class S *(¢°) maps the unit disc U onto a region, which is symmetric with respect to the real axis and 1.

In 1959, the class S of starlike functions with respect to symmetric points was introduced by
Sakaguchi [10]. The function i € S} if and only if

. ' (2)
h(z) — h(—2)

S*(ez):{heﬂ:‘log <1, ZEU}.

> 0.

In 1987, the classes S; and S, of starlike functions with respect to conjugate points and symmetric
conjugate points were introduced by El-Ashwa and Thomas [11] as follows,

L(Z_)>O and heSjLw:)ReL(_Z)
h(2) + h(z) h(z) = h(-2)

For analytic functions h(z) and g(z)(z € U). Let S  define the class of harmonic mappings with the
following form (see [12,13])

heS. < Re > 0.

f@ =hz)+gk), zeU, (1.2)

where

h@=z+ ) ad and g@) =) b Ibil=ael0,D). (13)
k=2 k=1
In particular, 4 is called the analytic part and g is called the co-analytic part of f.
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It is well known that the function f = & + g is locally univalent and sense preserving in U if and
only if |7'(z)| > |g'(2)| (z € U)([14]).

According to the above conclusion, the coefficient estimations, distortion theorems, integral
expressions, Jacobi estimates and growth condition in geometric properties of covering theorem of the
co-analytic part can be obtained by using the analytic part of harmonic functions. In the recent years,
various subclasses of S ; were researched by many authors as follows.

In 2007, the subclass of S 5 with h € K was studied by Klimek and Michalski [15].

In 2014, the subclass of S 5 with 4 € S was studied by Hotta and Michalski [16].

In 2015, the subclasses of Sy with & € S*(H(ll—:zw)z) and h € K(%) were studied by Zhu and
Huang [17].

In this paper, by using subordination relationship, we studied the subclasses of S ; with

S*(¢) and M2IED ¢ K (e7),

h(z)—h(-2)
=€

Definition 1. Suppose f = h+g € Sy of the form (1.3). Let HS ;.\ (e) denote the class of harmonic
univalent exponential starlike functions with symmetric conjecture point consisting of f with h € S’ (e).
That is, the function f = h +g € HS(e) if and only if
271 (2)
h(z) = h(=2)

< é~.

Also, let HK (e) denote the class of harmonic univalent convex exponential functions with
symmetric conjecture point consisting of f with h € K.(e), that is, f = h+ g € HK}, (e) if and only if

2H @)
— < ¢".
(h(z) = h(=2))
We know that h(z) € K,.(e) & zh'(z) € S (e).

2. Preliminary preparation

In order to obtain our results, we need Lemmas as follows.

Lemma 1. ( [18]). Let w(z) = co+ c12+ ...+ c,2" + ... be analytic satisfying |w(z)| < 1 in U. Then

lea <1 =lcol?n=1,2,..., 2.1)
and
lcy — yei| < max{1,|yl}. (2.2)
Lemma 2. Let
270 (2)
———— = p(2),
h(z) — h(=2)
we have
i T p(t) + p(=1) -2
h(z) = f p(7) exp f =L dudy.
0 0 t
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Lemma 3. [fh(z) = 2 + 3. an2" € S*.(e), then

n=2
2n - 1H!! 2n - 1!
laz,| < —(2n)!! and |az,1| < —(Zn)!!
The estimate is sharp for h given by
1+z
h(z) = -1
V1-22
Ifh(z) =z + i a,7" € K} (e), then
n=2
2n - 1! 2n -1
nl £ ————+ d ntll S S .
lazl < 2 G @ el < 5 e

The estimate is sharp for h given by
h(z) = arcsinz — log(1 + V1 —z%) + log 2.
Proof. Let h(z) = z+ ), a,z" € S (e). According to Definition 1, we have
n=2

270 (2)
h(z) — h(-2)

< é~.

There exists a function p(z) = 1 + Y piz* satisfying
k=1

that is,
ZZ

k Z— RS
1+Zpkz <e —1+z+2!+

k=1

Using the results of Rogosinski [19], we have |pi| < 1 for k > 1.
By means of comparing the coefficients of the both sides of (2.5), we get

2nay, = pop-1 + a3pr-3 + -+ + A2u_1 D1,

and

2naop41 = Pon + Q3Pop—2 + -+ + Aop_1 Pa.

Let ¢(n) = 1 + |as| + - - - + |ag,—1]- It is easy to verify that

1
laxl < 5-¢(n)

(2.3)

(2.4)

(2.5)

(2.6)
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and .
lasne1l < §¢(n)- (2.7)
From (2.7), we have
2 nH!
¢m+DsL%%%a (2.8)

According to (2.6), (2.7) and (2.8), we can obtain (2.3).

If h(z) = 2+ 2 a,2" € Ky(e), then zh'(z) € S’.(e). Using the results in (2.3), we can obtain (2.4)
n=2
easily. O

Lemma 4. Let u € C.
(1) If h(z) = 2+ X a,7" € S’ (e), then
n=2

1 1
laz — uad| < = max{1, =|u - 1|}. (2.9)
2 2
(2)Ifh@) = 2+ 3 a2 € Kie). then
n=2
5 1 1
las — pas| < 3 max{l, §|3u —4}. (2.10)
The estimates are sharp.

Proof. Let h(z) = z+ 2 a,7" € S.(e). According to the subordination relationship and Definition 1,
n=2

we get
271 (2) _ o0
hz)-h(-2)
that is,
log LEZ) = v(2), (2.11)
h(z) — h(-2)

where v(z) = ¢,z + ¢32> + - - - is an analytic function with v(0) = 0 and |v(2)| < 1 (z € U).
By means of comparing the coefficients of two sides of (2.11), we get

1 11, 13 5

a, = ECI’ as = 562 + ch and a4 = Zc3 + gczCl + &cf
Therefore, we have
1 1
az — pua; = 5{62 - E(H - Dctl.

Using the fact that (2.2) in Lemma 1, we obtain

1 1
la3 — pa3] < = max{l, Z|u - 1]}
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The bound is sharp for 4 given as follows,

h(z) = f exp (£ + f eJrZ—__zdt)df or h@) = f exp (&2 + f S
0 0 t 0 0

Taking h(z) = z + ) a,7" € K(e) & zh'(z) = z + ), na,z" € S.(e) into consideration, it is easy

Line.

n=2 n=2
to obtain (2.10). The bound is sharp for 4 given as follows,

l‘2

-1
h(z) = f f exp (£ + f a’t)dfdn or h(z) = f f exp (&% + f drdédn.
O
Lemma 5. Suppose h(z) € Aand |z| = r € [0, 1).
(1) Let h(z) € S*(e). Then
e -1 , "el—1
exp(—r + f dn) < | ()] < exp(r + f dn) (2.12)
0 n 0
and r o1 1
rexpf T <) < rexpf M (2.13)
0 n 0 n
(2) Let h(z) € K(e). Then
T —]7 _ 1 r TI _ 1
exp f ¢ T i<W @I <exp f S (2.14)
0 n 0 n
and
T -1 el —1
rexpf dn < |h(z)| < rexpf dn. (2.15)
0 2n 0o 271

Proof. Let h(z) € S*(e) and |z| = r € [0, 1). According to the subordination relationship and Definition
1, there exists an analytic function v(z) = ¢,z + ¢2z% + - - - satisfying v(0) = 0 and |[v(z)| < |z, such that

W _ o
h(z) '

Thus, it is concluded that

hl
DI @,

<é, 2.16
o |<e (2.16)
that is, ” )
h'(z
" < Re 2.17
e h(z) (2.17)
Since ") 5
n g
= r—log|h(z)|. 2.18
eh(z) re og |h(z)] (2.18)
By (2.17) and (2.18), we get
r —T] _ 1 r 7] — 1
rexp f € " iy < h(@) < rexp f c . (2.19)
0 n 0 n

AIMS Mathematics Volume 5, Issue 6, 6800-6816.



6806

From (2.16) and (2.19), we have

" €_n - 1 , r en —_ 1
rexp(—r + f dn) < |zh'(2)| < rexp(r + f dn).
0 n 0
Similar to the previous proof. We let h(z) € K(e) and |z] = r € [0, 1), then
h//
<+ D@
n(z)
After simple calculation, we have
_ zh"(2)
e " —1<Re <e —1. 2.20
e (2.20)

By (2.18) and (2.20), we get

r 77] _ 1 r T] _ 1
expf ¢ dn < W (2) < expf ¢ dn.
0 n 0 n

Using the conclusion in [19], for 4(z) € K(e), we have L@ _q < 2, According to the subordination

h(z)
relationship, we have

22 (2)
r _ 1 < r,
| e | <e
After simple calculation, we have
e -1 ' (2) e —1
R - 2.21
2 "o S T2 2.21)
By (2.18) and (2.21), we get
r -n _ 1 r n _ 1
rexpf ¢ dn < |h(z)| < rexpf ¢ dn.
o 27 o 27
Therefore, we complete the proof of Lemma 5. O
Lemma 6. ( [20]). If h(z) € S.(e), then "9F2 ¢ S*(e).
Lemma 7. If h(z) € K..(e), then "2 ¢ 3¢(e).
Lemma 8. Suppose h(z) € A and |z| = r € [0.1).
(1) Let h € S5 (e). Then
¢1(r) < W' ()| < ga(r),
where
e -1 "el—1
¢1(r) = exp(=r + dn), ¢a(r) = exp(r + dmn). (2.22)
0 0

(2) Let h € K.(e). Then
Y (r) < | (@) < Ya(r),

where

() =+ f " exp(—t + f Lt g = 2 f " explt + f L (2.23)
rJo 0 n rJo 0 n
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Proof. Suppose h(z) € S;.(e). It is quite similar to the proof of Lemma 5, we have

[ﬁw—m%> h(z) — h(-7)

<l|Zh' ()| £ e'|———|. 2.24
5 | < lzh' (2)| < €| 5 | (2.24)
According to Lemma 6 and (2.13) of Lemma 5, we have
Te -1 h(z) — h(-Z " el — 1
reXPf ‘ dn < IMI < repr ¢ dn. (2.25)
0 n 2 o 7

By (2.24) and (2.25), we can obtain (2.22).
If h(z) € Ki.(e), then

(h(z) — h(-2)) /| (h(z) — h(-2))

= <M (2))] £ . 2.2

e’ 7 | <1zh' (2)'| < > | (2.26)

According to Lemmas 7 and (2.14) of Lemma 5, we have

Yot (h(z) = (=B Fer— 1
expf ¢ dn < |M| < expf ¢ dn. (2.27)
0 n 2 0 n
By (2.26) and (2.27), we get
"el — L, "el—1
exp(—r + f ; dn) <|(zh'(2))'| < exp(r + f dn). (2.28)
0 0

By (2.28), integrating along a radial line & = te, we obtained immediately,

I ! 7]_1
2 ()] < f expl(t + f T
0 0 n

The verification for the remainder of (2.23) is given as follows. Let H(z) := zh'(z), which is
univalent. Suppose that & € I' = H({z : |z = r}) is the nearest point to the origin. By means of
rotation, we suppose that &, > Oand z; = H'(&). Lety = {¢ : 0 < € < &Yand L = H'(y). If
¢ = H™'(¢), then dé = H'(¢)ds. Hence

1 2] r ) r t ,-n _ 1
& = f d¢ = f H'(¢)dg > f |H' (te”)|dt > f exp(—t + f ¢ dn)dt.
0 0 0 0 0 n

Thus the proof of Lemma 8 is completed. m|

3. Main results

Next, the integral expressions for functions of the classes defined in Definition 1 are obtained.

Theorem 1. Let w and v be analytic in U with |w(0)] = a,v(0) = 0,|lw(z)| < 1 and |v(z)| < 1. If
f=h+geHS(e). Then

Q) = fo &) + fo WOENE. (3.1)
where oL
o(&) = @ exp f N 3.2)
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Proof. Let f = h+g € HS " (e). Using Definition 1 and the subordination relationship, there exist
analytic functions w and v satisfying w(0) = by, v(0) = 0, |w(z)| < 1 and |v(z)| < 1 (z € U), such that

271 (2)

—— =0, (3.3)
h(z) = h(-2)
and
g (@) = w(@h'(2). (3.4)
If we substitute z by —z in (3.4), we obtain
_2_zh (—_Z) — D (3.5)
h(=2) — h(z)
It follows from (3.4) and (3.5) that
2z(h(z) — h(-2)) — 0@ 4 D (3.6)

h(z) = h(-2)
A routine computation for the equality (3.6) gives rise to the following equation,

E(Z) - h(-2) fz e’ 4 e;(_;) _9
————=zexp | ————
0

dr. 3.7
2 2t (3.7

Plugging (3.7) back into (3.3), we have

eV 4 D 2

"z
H(z) = " exp f ————dr. (3.8)
0 21

If the equality (3.8) is integrated from the both sides of it, then

2 W) 4 7D _
h(z) = f e"® exp f S — % 7]
0 0 2t

Inserting (3.8) into (3.4), it is easy to show that

z £ ") 4 V(=D _ 9
g(Z) = f w(é:)eV(f) exp f Ldtdf
0 0 2t

Thus, the proof of Theorem 1 is completed. O

Taking Theorem 1 and h € K,.(e) & zh'(z) € §S’.(e) into consideration, we get the following
result.

Theorem 2. Let w and v be analytic in U satisfying |w(0)| = a,v(0) = 0, |w(z)| < 1 and |v(z)| < 1. If

f € HK; (e), then
71 7 Z 7
o= [ o[ e+ [ 2P [ p@azan
o 1Jo o 7 0

where ¢(€) is defined by (3.2).
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In the following, the coefficient estimates of the class HS ;" (e¢) will be obtained.

Theorem 3. Let h and g be given by (1.3). If f = h+ g € HS ;" (e), then

2

1_2“ + %, n=1,
1bonl <9 (1-02) 1 (k=3)11 @n-1)!! (3.9)
(Lt k§2(4k - 3)(2k—2)!! te G, nz 2,
and .
2(1-a”) a _
-3 + 7> n= 1,
(3.10)

b1l <5 (1202 1 k=311 | 2n-D! @n-1!!
ol R s ];2(4]‘ - 3)(2k—2)!! T aon| T, N2 2.

The estimates are sharp and the extremal function is

V1 - 72 o (1-02y1-1)

Z A2
1+z 1+ (a+ (1 -« a/)t)d

fo @) = ‘.

Specially, if f € HS: (e), then
n=1,

(1 + X (k- 3)252;3355), nx2,

b

=

|b2n| <

|~

[\

n

and
2 —
39 n= 1’

1D2ps1| < 1 : Qk=3)!1 | @n-1N
st (1 F 1;2(4]( - 3)(2k—2)!! t@oan) N2 2.

The estimates are sharp and the extremal function is

1+z 2783 +322-1 1
@)= -1+ - :
V1 -22 3(1 = 72)2 3
Proof. Let h and g be given by (1.3). Using the fact that g’ = wh’ satisfying w(z) = ¢y +c1z+ 2>+ - -
analytic in U, we obtain

2n
2nby, = ) payes, (@ =1n21) (3.11)
p=1
and
2n+1
@+ Dbyt = Y. payeaiy (a1 =1,n21). (3.12)
p=1

It is easy to show that

2n
2n|b2n| < Z plap||02n—p|

p=1
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and
2n+1

@n+ Dlbowal < D plaglican .

p=1

Since g’ = wh’, it follows that ¢y = b;. By (2.1), it is obvious that |c;| < 1 —a? for k € N. Therefore,

1—a?
- +lasa, n=1,
byn| < _ 2n-1 3.13
Pl <3 0o 5 ) + adand, nz 2. ©-13)
k=
and .
I_Ta(l + 2)as|) + las|a, n=1,
|Dops1] < (1-a?) 2n (3.14)

s+ k22 klai) + alaziil, n = 2.

According to Lemma 3, (3.13) and (3.14), after the simple calculation, (3.9) and (3.10) can be
obtained easily. We also obtain the extreme function. O

By using the same methods in Theorem 3, the following results are obtained.

Theorem 4. Let h and g of the form (1.3). If f = h+ g € HK(.(e), then

1_4“2 +9 n=1,
1bonl <3 (1-02) 2 Qk-3)!! Qn-1)!!
i ];2(4]( = DG | T Yo "2 2
and ,
2(1-a?) 2 n=l,

bonil <9 (o) Q=3 @n-DN @n-1)!!
errayl s Z(4k D@n + an | T Yamneen: 122
For functions of the classes defined in the paper, Fekete-Szego inequality of which are listed below.

Theorem 5. Let f = h + g with h and g given by (1.3) and u € C.
(1)If f € HS ;" (e), then

2 (1-a?) ul(1-a?) | [2-3ubi| lubi—1]
|by — ubs| < T{1+ T + 1}+%max{l L }

2 2
s(1-—a?)+ %, n=1,

b2y — byl <3 (1= )| (5 + 50 + é‘z(“k = 3)82:2::) - (2n(_21r;(_23,3!—!4)!!)
+a/((2(';)1!)!” + E?ZIQ::), n>2,

and

n
2 1 1 (2k=3)!! (2n—-1)!!
|b2n+1 - b2n| < (1 - ) (2n+l + ﬂ)(l + k§2(4k - 3)(2k z)n) (2n+1)(2n—2)!!)

+2 (2(}121}’1)1')1y > n Z 1'

(2) If f € HK"(e), then

_ B2l < U= 3ul(1-a?) I2—3/1b1|} a { |4—3/4b1|}
by — ubs| < —= {1+ Tt + g max {1, ——1,

AIMS Mathematics Volume 5, Issue 6, 6800-6816.
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%(l—az)+%’ n=1,
N PR IS n=3)!1
oy = bouy| <4 (1 =) | (5; + 3 1)(1 +2 Z (k= 2)H (2n—1)(2n—2)!!)
2n—1)!! (n=3)!1
+a’<(2n)(2n)!! + (2n—1)(2n—2)!!) ’ nz2,

and

2 1 (2k— 3)” (2n-1)!
|b2ns1 — b2l < (1 — ) (2n+1 )(1 +2 Z (2= 2)n (2n+1)(2n)”)

1 \Q2n-D!!
E) el 2 2 1'

1
+a(5, 7

Proof. From the relation (3.11) and (3.12), we have

2by, = ¢y + 2612C0, 3b3 =y + 2asc; + 3(1360,

and
2n+1
2ann ZpapCZn -p> (21’1 + 1)bZn+1 Z PapContii-p (611 - 1 nz 1)
p=1 p=1

By (2.1), we have

1-o? 3lul(1 — @?
) 2l

Ibs — b3 < -

+ |as||2 - 3,ub1|} +a |a3 —,ub1a3| ,
%(1 —a®) + a(l + |a)), n=1,

|b2 _ b2 —1| < i 2n—1 i 2n—2
" " (1-a) |5 X plal+ 55 X playl| + allazl + laz- ), n>2,
p=1 p=1

and
2n—1

|b2n+1 - b2n| < (1 - )( Zplapl + Z plapl] + a’(la2n+1| + |a2n|) n>l.

According to Lemma 3 and Lemma 4, we can compete the proof of Theorem 5. The estimates
above are sharp. m|

Paralleling the results of Zhu et al. [17], the corresponding results for functions of the classes defined
in the paper can be obtained. For example, the estimates of distortion, growth of g and Jacobian of f
and so on.

Theorem 6. Let 7| = r € [0, 1).
(1)If f =h+ge HS (e), then

max{a 0}
ﬁ‘ﬁl(”) <lg@)I < ( s

where ¢,(r) and ¢,(r) are given by (2.22).

Especially, let « = 0, we have
"el—1
lg’(2)| < rexp (r + f dn).
o 7

AIMS Mathematics Volume 5, Issue 6, 6800-6816.
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(2)If f = h +3 € HK(e), then

max{a — r, 0} , (a+7r)
wlﬁl(r) <|g@Il < T+ an)

Yo (r), (3.16)

where Y1 (r) and Y, (r) are given by (2.23).
Especially, let « = 0, we have

r ! en _ 1
g’ ()| < f exp(t + f dn)dt.
0 0 n

Proof. According to the relation g’ = wh’, it is easy to see w(z) satisfying |w(0)| = |g’(0)|] = |bi]| = @
such that ( [21]):

‘ w(z) — w(0) <l
-0 =&
It is easy to show
_ w(O)T - )| r(1 = |w0))
S e T

A tedious calculation gives

-0 +
maxte 1O o< 250 cew, (3.17)
1- 1+ar
Applying (3.17) and (2.22), we get (3.15). Similarly, applying (3.17) and (2.23), we get (3.16).
Thus we complete the proof of Theorem 6. O

Using the method analogous to that in proof of Lemma 8, we can obtain the following results.

Theorem 7. Let |z] = r € [0, 1).
(1)If f =h+ge€ HS; (e), then

a+é

(1+aé)

" max{a — &,0}
0 (1-af)

where ¢1(€) and ¢,(€) are given by (2.22).
Especially, let @« = 0, we have

82| < f rfeXp(§+ f en_ldn)df-
0 0 n

(2)If f = h+ 3 € HK"(e), then

" max{a - £, 0} " (@ + &)
fo le(f)df <lg(@) < fo L+ ab) Y (E)dE,

where y1(€) and Y, (&) are given by (2.23).
Especially, let « = 0, we have

|g<z>|sfrfexp<r+f o
0 Jo 0 n
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Next, the Jacobian estimates and growth estimates of f are obtained.

Theorem 8. Let |z] = r € [0, 1).
(1)If f =h+ge HS"(e), then

(=a)d-r) 42
¢%(’”) < Jf(z) < { (1-ar)? ¢2(”), r<a, ,

P5(r), r>a.

(1- a,2)(1 — r2)
(1 + ar)?

where ¢,(r) and ¢,(r) are given by (2.22).
(2)If f =h+g e HK.(e), then

(1-a”)(1 -7
(1 + ar)?

212
)2 (), r<a,

,/,f(r) < Ji(2) < { (I—ar?

Y3 (1), r>a,
where Y1 (r) and Y, (r) are given by (2.23).
Proof. It is well known that Jacobian of f = h + g is
Ji(@) = I @F —1g'@F = I @PA - lw@)P), (3.18)

where w satisfying g’ = wh’ with w(0) = 0 and |w(z)| < 1 for z € U.
Let f € HS ;" (e), plugging (3.17) and (2.22) back into (3.18), we get

— 2 _ 42 P/ I
Jf(Z) > (1 a )(1 r )exp (_2r+2f e nn 1d7]),
0

(1 + ar)?
and
el -1 — ,0 2
Ji(z) < exp (2r+2f e—dn)(l _ (max{(a r)2 D )
o 7 (1-ar)
T el — —a®)(1-12
exp(2r+2f0 %d,]).(l(l_)#’ r<a,
exp (2r +2 J(;r ‘”"n_ldn) , r>a.

Thus this completes the proof of (1). Plugging (3.17) and (2.23) back into (3.18), (2) of Theorem 8
can be proved by the same method as employed before. O

Theorem 9. Let |zl =71, 0<r< 1.
(1)If f =h+ge HS; (e), then

Td-od -8 "+ a)(1 + &)

where ¢1(€) and ¢,(€) are given by (2.22).
(2)If f =h+g e HK.(e), then

Ao -9 "+ a)(1 +8)

where Yr1(€) and Y, (&) are given by (2.23).
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Proof. For any point z = re € U, let U, = { € U : |z| < r} and denote

d = min|f(U,)].
ZeUr

It is easy to see that U(0,d) C f(U,) € f(U). Thus, there is z, € dU, satisfying d = |f(z,)|. Let
L(t) = tf(z,) for t € [0, 1], then £(¢) = f~'(L(?)) is a well-defined Jordan arc. For f = h+g € HS ;. (B),
by (2.22) and (3.17), we get

~1f@)l = f deo] = f[ dfl = fe I (p)dp + §)dp)
L
> ff I = [w@)Didpl

(1 -a)1 - 1pl) f Wen—1
> -~ dn)ldpl,
> f€ 1+ ap) exp(—lpo| + ) ” mldpl

A - -l O e — 1
. A+l exp(—|t(0)| + fo - dn)dt,

l-o1-8 fe‘”—l
f Trap OPCET | —dide

Using (2.22) and (3.17), the right side of (3.19) is obtained. The remainder of proofs is similar to
that in (3.20) and so we omit. O

According to (3.19) and (3.20), it follows that the covering theorems of f.

Theorem 10. Let f =h+ge Sy.
(1)If f € HS ;)" (e), then Ug, C f(U), where

(TA-o-9 f‘fe‘”—l
Rl = . (l+—a§)exp(—§+ ; 7 d?])duf

(2) If f € HK..(e), then Ug, C f(U), where

_ 1(1—&)(1—§)f Te -1
Rz—ﬁ W ; eXp(_t+f0 7 dn)dl‘dg

4. Conclusion

In this paper, with the help of the analytic part & satisfying certain conditions, we obtain the
coeflicients estimates of the co-analytic part g and the geometric properties of harmonic functions.
Applying the methods in the paper, the geometric properties of the co-analytic part and harmonic
function with the analytic part satisfying other conditions can be obtained, which can enrich the
research field of univalent harmonic mapping.
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