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Abstract: In this paper, we prove the global well-posedness of solutions for the Cauchy problem of
three-dimensional incompressible Navier-Stokes-Landau-Lifshitz equations under the condition that
||u0||H% + ||Vdo||H Lis (e > 0) is sufficiently small. This result can be seen as an improvement of the
previous paper [20].
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1. Introduction

Consider the Cauchy problem of 3D Navier-Stokes-Landau-Lifshitz equation
U+ w-Vyu—vAu+V-(Vd o Vd) =0,
d,+ (u-V)d = Ad +|VdP*d + d x Ad,
Vou=0, |d=1,
u(x,0) = uo(x), d(x,0) = do(x).

(1.1)

where u(x, t) describes the velocity, p represent the pressure and d(x, 7) stands for the magnetic moment
respectively. The constant v > 0 means the shear viscosity coefficient of the fluid, and the symbol
Vd © Vd denotes a 3 x 3 matrix whose (i, j)th entry is given by d;d - 9;d for 1 < i, j < 3. We note
that if d = 0, system (1.1) reduces to be the classical Navier-stokes equations [9, 11, 13, 17,22, 23],
which have drawn much attention. Moreover, if # = 0 in system (1.1), we obtain the Landau-Lifshitz
system [1-3]. In this paper, for the sake of simplicity, we set the coefficient v = 1. and the operator
A% is defined through the Fourier transform (see [15]), namely

AZf() = (A’ f(x) = f X f(€)e* ¢ d,
R3

and fis the Fourier transform of f.
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For the study on the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations,
we refer the reader to Wang and Guo [18, 19] and Guo and Liu [8]. By using the Faedo-Galerkin
approximation and weak compactness theory, the authors studied the existence and uniqueness of the
weak solution to system (1.1) in two-dimension and three-dimension. There are also some papers
related to the strong solutions to Navier-Stokes-Landau-Lifshitz equations. In [4], by using energy
methods and delicate estimates from harmonic analysis, Fan, Gao and Guo obtained some regularity
criteria for the strong solutions in Besov and multiplier spaces; Supposed that dy, € Bg{f(R3) and
up = (up,u;) € Bé,/lz(R-?) with |dg| = 1 and V - uy = 0, by using the Fourier frequency localization
and Bony’s paraproduct decomposition, Zhai, Li and Yan [21] proved that there exists a unique global
solution (u, d) with

u € C([0, 0); éé{f) M %«0, 0); éé{f) (L0, ); {si{f), 12
d € C(10,00); BYD) () L(10, 00); BY) () L'(10, 00); BYD),

provided that the initial data satisfies

1/2 i
h h 3 2
C {V(HMOHBylz +dollzyr) + ((nuongylz +ldollzyz) (0l +v) )} <V

Recently, with the help of an energy method, Wei, Li and Yao [20] established the global
well-posedness of strong solutions for system (1.1) provided that ||uo||z1 + [|dol|z2 is sufficiently small.
Moreover, by applying the Fourier splitting method, the authors also showed that the time decay rates
of the higher-order spatial derivatives of the solutions.

RemARk 1.1. When the term d X Ad is omitted, the system (1.1) reduces to the liquid crystals
equations, which have been studied by many researchers, see for instance, [5-7, 12, 14, 16] and the
reference therein.

In this paper, we first show the following local well-posedness result, which can be proved by using
Banach fixed point theorem and the standard linearization argument. Since the proof is so standard,
we omit it here.

Lemma 1.2 (Local well-posedness). Let (ug, Vdy) € H*(R?). Then, there exists a small time T>0
and a unique strong solution (u(x,t),Vd(x,t)) to system (1.1) satisfying
(u, Vd) €C([0, T1; H*) () L2(0, T H),

1.3
(u,, Vd,) €L=(0, T L?) ﬂ 120, T H). (-

Now, we give the following theorem on the small initial data global well-posedness for system (1.1).

Tueorem 1.3 (Small initial data global well-posedness). Suppose (ug, dy) € H*(R?) x H**'(R?) with
s > 2 and divuy = 0. There exists a sufficiently small constant K > 0 and any & > 0 such that if

IIuOIIH 1+ ||Vd0||H 1, < K, then there exists a unique global strong solution (u,d) and satisfy

(u,Vd) € C(0, T; H*(R®)) N L*0, T; H**'(RY)).
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REMARK 1.4. Itis worth pointing out that the constant £ in Theorem 1.3 can not reduced to O because
of the Sobolev’s embedding

2e 3 1 26 3 1 3
il < IITEIAT AT < IAITEIAT T < IAd]L: +IIAFdl,s.

ReMARK 1.5. Since one only need ||u0||H% + ||Vd0||H
an improvement of Wei, Li and Yao [20].

is sufficiently small, this paper can be seen as

Lie

2. Proof of Theorem 1.3

Multiplying (1.1); and (1.1); by u and Ad + |Vd|*d, we obtain the fundamental energy estimate

d
97 (Ilulliz + ”Vd”iz) +IVull7, + 1IAd + [VdPd|[;, = 0, V=0, 2.1
Taking A? to (1.1);, taking Al to (1.1),, multiplying by Aruand Aid respectively, summing them

up, we find that
1d
2dt
= f A3 (u-Vu) - Aludx + f AV - (Vd © Vd)] - A*udx

R3

R3

L9 3 2 3 9 S 2
(IA2ully, + [IA2dl7) + [[A2ull, + 1Al

- L 3 Ai(u-Vd) - Alddx + fR 3 AF(\VdPd) - Aiddx (2.2)
+ f A3 (d x Ad) - A>ddx
= +HZ + 0L+ 1+ Is.
By using the Kato-Ponce inequality [10], it yields that
1] < CIAZ Ul 1A ullsllulz < ClIA ull2IIA ull., (2.3)

L] < CIA ullslIA2dll IVl < CIASdIl(IAZ U, + IAZdIE,), (2.4)

and \ .
\I3] <C|IA2d||s]|AZ (u - Va)ll ¢

<CIIA || 2 (1A ull 2V elll s + lull 5 |AZ Vd],2) (2.5)
<C(IAZdll2 + IN2ull2)(IAG Ul + IA3I,).
Note that |d| = 1, we have ||d||;~ < C and d - d = 1. Hence, A(d - d) = 0, which implies that
V- (dVd) = |Va,’|2 +dAd = 0.

Therefore, we have
d-Ad = —|Vd.
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Using the above equality, we easily obtain

| <CIA3dII A (VP2
<CIAZd)l (A3 dll s IVl il + 1A dllgslld - Adll;s)
=ClIAZdll (1A dll s IVl sl + 1A dlls il 1AL )
<CIIA3d||2lIA3dIE,.

Moreover, since

1

2e 3 _ds_ 3 1 3
ldllz= < lldll = IIA2d]| 57 < Al GE AR A 5 < |Adle + [IATd]| 2,

12

we easily obtain

15| <CIIAZdl|,2IIA2 (d x Ad)l2
<CIIAZdIl (1A dllsllAdIls + il 1A d]l )
<CIIAZd)| 2 [IA2dllsllAdIls + (A2 + A2 dll)IIAZ ]l 2]
<C(IAdl,z + A3 dll2 + A3 dll)lI AT,
It then follows from (2.2)—(2.7) that

1d 1 3 3 5
EE(IIAWII%Z +IAZd|[,) + [IAZull?, + [|AZd])5,
1 3 KT 3 5
<C(IAZull2 + IAdll2 + IAZdll2 + IAZd] ) (A2 ully, + IAZdI],).

Taking A% to (1.1),, multiplying by A2**d, we deduce that

1d 3te e
EE”A2+ d?, + IAZ*d][7,

=— f A2y - Vd) - ATddx + f A*(\VdPd) - AT+ ddx
Rfﬁ

.
+ f 2 A3(d x Ad) - A>*eddx
=1 +H§7 + Ig.
Using the Kato-Ponce inequality again, we derive that
sl <CIAP*“dl|2I|A>**(u - Va)| 2
<ClIAT**dll> (IA*“ull o IVl s + s IA2*dllys )
<CIAT*dllz (1A ull A2 *dll2 + A ull2IA3*d] 2
<C(IA>*dll> + A ull2) (IA3*dl, + A2 ull).
|15 <CIAT*d 2 |A> (Va2
<CIA3*dllp (IA>*dllysl Vel Il + 1A *dllolldl|=lIAd) 5
<C(A3dllz + 1A #dll) (AP 2dIE, + IA3dI),
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and X 1
] <CIIA2*d||;2|IA27(d % Ad)||;2

<CIIA*d||2(|AZ |l sl|Ad s + Il AT+ 2)
<CIIA*d|| (AT d] A3 dl 2 + (A2 + AT d] ) ATd])2]
<CIA*dll> + Al 2)AIAEdIR, + A3 dIR,),

where we have used the facts that d - Ad = —|Vd[* in (2.11) and ||d||.~ < ||Ad]|;> + ||A%+€d||Lz in (2.12),
respectively. Combining (2.9)—(2.12) together gives

1d s s
——[IAZ*d|2, + |AZed))?
57! I+l 17> 2.13)

ENS 3 1 Sie 5 3
<CIA>™dllz + IAdllz2 + A2 dll> + ||A2u||L2)(||A2+ dilf, + 1Az, + IIAzulliQ)-

(2.12)

Summing up (2.1), (2.8) and (2.13), we arrive at

1d 1 3 3ie
EE(Ilulliz + V|7, + IAZull7, + IA 7, + A7)

+ IVullZ, + 1Ad + [VaPdIR, + IA3ull, + IA3dIP, + IAF*d]P, (2.14)
1 3 3.g 3 s Sie
<C(IAdllp> + 1A ullz + A2 + IATdl ) IA ullZ, + AT IR + [AFd],).

Taking K small enough such that
| ; 1
IAd|l2 + IAZull2 + IAZd]| + IAT*d]2 < K < el (2.15)

1 3 3 . .
then, ||u||i2 + ||Va’||i2 + ||A§u||i2 + ||A§d||i2 + ||A2+‘9d||i2 is decreasing. So, for any 0 < T' < oo, we have

d 1 3 LR
d—t(llulliz + VI, + AT Ul + A2, + A7)

(2.16)
+IVull?, + [|Ad + VAP, + IAZull}, + ”A%d”iz + IIA%“dIIiz <0,
which means 1 \
ueL>0,T;H>) N L*0,T; H?), 217
Vd € L°(0,T; H2**) N [X(0, T; H?*). '

By Lemma 1.2 and (2.17), we easily obtain the higher-order norm estimates for the solution, this
complete the proof.

3. Conclusions

The three-dimensional incompressible Navier-Stokes-Landau-Lifshitz equations is an important
hydrodynamics equations. The well-posedness and large time behavior of its solutions were studied
by many authors. The latest result on the global well-posedness was studied by Wei, Li and Yao [20].
The author supposed that ||ug||z + ||dy — wollg2 1s sufficiently small, obtained the small initial data
global well-posedness. In this paper, we improve the global well-posedness result in [20], only
assume that ||u0||H L+ ||Vdo||H%+g (¢ > 0) is sufficiently small, prove the global well-posedness for 3D
Navier-Stokes-Landau-Lifshitz equations.

AIMS Mathematics Volume 5, Issue 6, 6457-6463.



6462

Acknowledgments

This paper was supported by the Fundamental Research Funds for the Central Universities (grant

No. N2005006, N2005031).

Contflict of interest

The authors declare that they have no competing interests.

References

1.

10.

11.

12.

13.

14.

F. Alouges, A. Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and
nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084.

B. Guo, M. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic
maps, Calc. Var. Patial. Dif., 1 (1993), 311-334.

W. E, X. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 38
(2000), 1647-1665.

J. Fan, H. Gao, B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system, J. Math.
Anal. Appl. 363 (2010), 29-37.

J. Fan, Y. Zhou, Uniform local well-posedness for an FEricksen-Leslie’s density-dependent
parabolic-hyperbolic liquid crystals model, Appl. Math. Lett., 74 (2017), 79-84.

E. Feireisl, E. Rocca, G. Schimperna, et al. On a hyperbolic system arising in liquid crystals
modeling, J. Hyperbol. Differ. Eq., 15 (2018), 15-35.

D. Golovaty, P. Sternberg, R. Venkatraman, A Ginzburg-Landau-type problem for highly
anisotropic nematic liquid crystals, SIAM J. Math. Anal., 51 (2019), 276-320.

B. Guo, F. Liu, Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-
Maxwell equations, Front. Math. China, 14 (2019), 1133-1161.

T. Kato, Strong LP-solutions of the Navier-Stokes equations in R™ with applications to weak
solutions, Math. Z., 187 (1984), 471-480.

T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure
Appl. Math., 41 (1988), 891-907.

H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22—
35.

F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197
(2010), 297-336.

F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-
Stokes equations in R, Ann. Inst. Henri Poincare, 13 (1996), 319-336.

M. Schonbek, Y. Shibata, Global well-posedness and decay for a Q tensor model of incompressible
nematic liquid crystals in R", J. Differ. Equations, 266 (2019), 3034-3065.

AIMS Mathematics Volume 5, Issue 6, 6457-6463.



6463

15

16.

17.

18.

19.

20.

21.

22.

23.

é\% AIMS Press

. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University
Press, Princeton, USA, 1970.

I. W. Stewart, T. R. Faulkner, The stability of nematic liquid crystals under crossed electric and
magnetic fields, Appl. Math. Lett., 13 (2000), 23-28.

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing
Co., Amsterdam-New York-Oxford, 1977.

G. Wang, B. Guo, Existence and uniqueness of the weak solution to the incompressible Navier-
Stokes-Landau-Lifshitz model in 2-dimension, Acta Math. Sci. Ser. B (Engl. Ed.), 37 (2017), 1361—
1372.

G. Wang, B. Guo, Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations
with density-dependent viscosity, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6141-6166.

R. Wei, Y. Li, Z. Yao, Decay rates of higher-order norms of solutions to the Navier-Stokes-Landau-
Lifshitz system, Appl. Math. Mech. (English Ed.), 39 (2018), 1499-1528.

X. Zhai, Y. Li, W. Yan, Global solutions to the Navier-Stokes-Landau-Lifshitz system, Math.
Nachr., 289 (2016), 377-388.

C. Zhao, Y. Li, Z. Song, Trajectory statistical solutions for the 3D Navier-Stokes equations: The
trajectory attractor approach, Nonlinear Anal. Real World Appl., 53 (2020), 103077.

X. Zhao, Y. Zhou, Well-posedness and decay of solutions to 3D generalized Navier-Stokes
equations, Discrete Cont. Dyn. Syst. B, In press, doi: 10.3934/dcdsb.2020142.

©2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

EE; terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 6, 6457-6463.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Proof of Theorem 1.3
	Conclusions

