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Abstract: In this article, a novel semi-discrete model for stochastic competitive neural
networks (SCNNs) is proposed. At first, taking advantage of some famous inequalities and fixed point
theory, a few conditions are obtained for the existence of 2p-th mean almost periodic sequence (MAPS)
of the semi-discrete stochastic model. In the next palace, 2p-th moment global exponential
stability (MGES) of the above model is discussed as well. The research findings exhibit the stochastic
and delayed effects on the mean dynamics of the semi-discrete stochastic networks. In the end,
some numerical illustrations are presented to visually expound the feasibility of the works in this
paper. The methods in this article could be applied to investigate other models in the areas of science
and engineering.

Keywords: competitive neural networks; semi discreteness; stochastic process; fixed point theory
Mathematics Subject Classification: 39A24, 39A30, 39A50, 92B20

1. Introduction

Competitive neural networks (CNNs) simulate the cortical cognitive maps with unsupervised
synaptic modifications. In the structure of CNNs, it has two kinds of states: one depicts the fast neural
activity and the other one depicts the slow unsupervised synaptic modifications. Recently, CNNs had
been extensively used in artificial intelligence, robotics, adaptive control and combinatorial
optimization, etc. In the dynamical behaviours of CNNs, (almost) periodicity and exponential
stability are extremely important. Consequently, many literatures [1–8] concerned synchronization,
the existence and global exponential stability of equilibrium point, (almost) periodic solutions of
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CNNs. Such as, Wang and Huang [6] studied the CNNs below: ẋi(t) = −ai(t)xi(t) +
n∑

j=1
bi j(t) f j(x j(t)) +

n∑
j=1

ci j(t) f j(x j(t − τi j(t))) + Bi(t)
p∑

j=1
mi j(t)y j + Ii(t),

ṁi j(t) = −ãi(t)mi j(t) + b̃i(t)y j f̃i(xi(t)),
(1.1)

where xi is the ith neuron, mi j is the synaptic efficiency, f j and f̃i are the activation functions, i, j =

1, 2, . . . , n. In [6], the authors studied the equilibrium point and exponential asymptotic stability for
system (1.1).

In practical applications, stochastic disturbances frequently occur in NNs and the stochastic factors
always happen in the uncertainties of the parameter process. Therefore, this paper concerns the
SCNNs below:

dxi(t) =

[
− ai(t)xi(t) +

n∑
j=1

bi j(t) f j(x j(t)) +
n∑

j=1
ci j(t) f j(x j(t − τi j(t))) + Bi(t)

p∑
j=1

mi j(t)y j + Ii(t)
]
dt

+
n∑

j=1
di j(t)σ j(x j(t − ηi j(t)))dw j(t),

dmi j(t) =

[
− ãi(t)mi j(t) + b̃i(t)y j f̃i(xi(t))

]
dt + d̃i(t)mi j(t)dw̃i(t),

(1.2)

where w j and w̃i are the standard Brownian motions, τi j(t) and ηi j(t) are bounded continuous functions
with 0 ≤ τi j(t) ≤ τ̄i j, 0 ≤ ηi j(t) ≤ η̄i j, ∀t ∈ R, τ̄i j and η̄i j are positive constants, i, j = 1, 2, . . . , n.

The discreteness of NNs is a very effective tool to investigate the dynamics of the networks in a
digital way. Therefore, lots of research findings were gained for the dynamics of discrete-time
determinant or stochastic NNs by Euler scheme [9–13]. In recent years, the semi-discretization [14]
of determinant differential equations received wide attentions and the authors [14–18] displayed that
semi-discrete models provide more precise approximation of continuous-time models than those by
Euler method. For example, the following semi-discrete NNs had been discussed in [16]:

xi(k + 1) = e−ai(k)xi(k) +
1 − e−ai(k)

ai(k)

[ n∑
j=1

bi j(k) f j(x j(k)) + Ii(k)
]
, k ∈ Z, i = 1, 2, . . . , n. (1.3)

Assuming that all coefficients are almost periodic, the stable almost periodic sequence solution of
system (1.3) was studied. Next, Huang et al. [18] studied the semi-discrete analogue of a general
neural networks as follows:

xi(k + 1) = e−ai(k)xi(k) +
1 − e−ai(k)

ai(k)

[ m∑
l=1

n∑
j=1

bi jl(k) f j(x j(k − τi jl)) + Ii(k)
]
, k ∈ Z, i = 1, 2, . . . , n.

In [18], some sufficient conditions were obtained for the existence of 2n locally stable almost
periodic solutions of the above NNs.

In literatures [14–18], the disquisitive models are deterministic. To the best of authors’ knowledge,
few results study the semi-discrete stochastic NNs. The major contributions of this paper are as follows:

• Semi-discrete analogue of SCNNs (1.2) is achieved.
• A Volterra integral expression in difference form is got for semi-discrete model of SCNNs (1.2).
• Some new results are gained for 2p-th MAPS and MGES to semi-discrete stochastic model.
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• The issues discussed in this article can motivate the researches of other discrete stochastic models.

Motivated by the above reasons, the aim of this literature is to achieve the semi-discrete SCNNs
and the mean dynamic behaviours (MAPS and MGES) of the model should be discussed. The rest of
this article is organized as follows. In Section 2, the semi-discrete model of system (1.2) is obtained
and some preparatory works are given. In Section 3, the 2p-th MAPS of the semi-dicrete model is
studied by fixed point theory. In Section 4, 2p-th MGES of the model is also discussed. An example
and simulations are provided to expound the chief results of this paper in Section 5. Section 6 displays
the conclusions and future perspectives of this article.

Denote by Rn the n-dimensional real vector space and (Ω,F , P) is a complete probability space.
Let BC(Z, Lp(Ω,Rn)) be the space of all bounded continuous functions from Z to Lp(Ω,Rn), where
Lp(Ω,Rn) is the space of all p-th integrable Rn-valued random variables. So BC(Z, Lp(Ω,Rn)) is a
Banach space with ‖X‖p = supk∈Z |X|p, |X|p = max1≤i≤n(E|xi(k)|p)

1
p , ∀X = {xi} := {x1, x2, . . . , xn} ∈

BC(Z, Lp(Ω,Rn)), where p > 1 and E(·) stands for the expectation operator. [a, b]Z = [a, b] ∩ Z,
∀a, b ∈ R.

2. Model description and preparatory work

2.1. Model description

Letting S i(t) =
p∑

j=1
mi j(t)y j = yT mi(t), where y = (y1, y2, . . . , yp)T , mi = (mi1,mi2, . . . ,mip)T , then

system (1.2) is changed to

dxi(t) =

[
− ai(t)xi(t) +

n∑
j=1

bi j(t) f j(x j(t)) +
n∑

j=1
ci j(t) f j(x j(t − τi j(t))) + Bi(t)S i(t) + Ii(t)

]
dt

+
n∑

j=1
di j(t)σ j(x j(t − ηi j(t)))dw j(t),

dS i(t) =

[
− ãi(t)S i(t) + b̃i(t) f̃i(xi(t))

]
dt + d̃i(t)S i(t)dw̃i(t), i = 1, 2, . . . , n, k ∈ Z.

(2.1)

Similar to the argument as that in [14], the semi-discrete analogue of system (2.1) is obtained as
follows:

xi(k + 1) = e−ai(k)xi(k) + 1−e−ai(k)

ai(k)

[ n∑
j=1

bi j(k) f j(x j(k)) +
n∑

j=1
ci j(k) f j(x j(k − τi j(k)))

+Bi(k)S i(k) + Ii(k) +
n∑

j=1
di j(k)σ j(x j(k − ηi j(k)))∆w j(k)

]
,

S i(k + 1) = e−ãi(k)S i(k) + 1−e−ãi(k)

ãi(k)

[
b̃i(k) f̃i(xi(k)) + d̃i(k)S i(k)∆w̃i(k)

]
, i = 1, 2, . . . , n, k ∈ Z.

(2.2)

2.2. Preparatory work

Definition 2.1. ( [19]) For X ∈ BC(Z; Lp(Ω;Rn)) and each ε > 0, there exists an integer l(ε) > 0 such
that each interval of length l(ε) contains an integer ω for which

sup
k∈Z

E|X(k + ω) − X(k)|p < ε.
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Then stochastic process X is said to be p-th MAPS.

Lemma 2.1. ( [20]) If X = {xi} is a solution of system (2.2), then

xi(k) =
k−1∏
s=k0

e−ai(s)xi(k0)

+
k−1∑
v=k0

k−1∏
s=v+1

e−ai(s)[1−e−ai(v)]
ai(v)

[ n∑
j=1

bi j(v) f j(x j(v)) +
n∑

j=1
ci j(v) f j(x j(v − τi j(v)))

+Bi(v)S i(v) + Ii(v) +
n∑

j=1
di j(v)σ j(x j(v − ηi j(v)))∆w j(v)

]
,

S i(k) =
k−1∏
s=k0

e−ãi(s)S i(k0)

+
k−1∑
v=k0

k−1∏
s=v+1

e−ãi(s)[1−e−ãi(v)]
ãi(v)

[
b̃i(v) f̃i(xi(v)) + d̃i(v)S i(v)∆w̃i(v)

]
,

(2.3)

where k0 ∈ Z, k ∈ (k0,+∞)Z, i = 1, 2, . . . , n.

Lemma 2.2. ( [21]) If g ∈ L2([a, b],R), then

E
[

sup
t∈[a,b]

∣∣∣∣∣ ∫ t

a
g(s)dω(s)

∣∣∣∣∣p] ≤ CpE
[ ∫ b

a
|g(t)|2dt

] p
2

, Cp =


(32/p)p/2, 0 < p < 2,
4, p = 2,[

pp+1

2(p−1)(p−1)

] p
2

, p > 2.

Lemma 2.3. ( [20]) If {x(k) : k ∈ Z} is real-valued stochastic process and w(k) is the standard
Brownian motion, then

E
∣∣∣x(k)∆w(k)

∣∣∣p ≤ CpE
∣∣∣x(k)

∣∣∣p, k ∈ Z,

where Cp is defined as that in Lemma 2.2, p > 0.

Let f u = sup
k∈Z
| f (k)| and f l = inf

k∈Z
| f (k)| for bounded function f defined on Z. In this paper, assume

that the assumptions below hold:

(H1) al
i > 0 and ãl

i > 0, i = 1, 2, . . . , n.
(H2) There are some positive constants L f

j , Lσj and L f̃
i such that

| f j(u) − f j(v)| ≤ L f
j |u − v|, |σ j(u) − σ j(v)| ≤ Lσj |u − v|, | f̃i(u) − f̃i(v)| ≤ L f̃

i |u − v|,

for all u, v ∈ R, i, j = 1, 2, . . . , n.

3. 2p-th mean almost periodic sequence

Define
au := max

1≤i≤n
au

i , al := min
1≤i≤n

al
i, ãu := max

1≤i≤n
ãu

i , ãl := max
1≤i≤n

ãl
i,

D∗ := max
1≤i≤n

[
Bu

i +

n∑
j=1

(bu
i j + cu

i j)L
f
j

]
, D̃∗ := max

1≤i≤n
b̃u

i L f̃
i , K∗ := max

1≤i≤n

n∑
j=1

du
i jL

σ
j , K̃∗ := max

1≤i≤n
d̃u

i ,
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r2p := max
{

(1 − e−au
)

al(1 − e−al)

(
D∗ + K∗C

1
2p

2p

)
,

(1 − e−ãu
)

ãl(1 − e−ãl)

(
D̃∗ + K̃∗C

1
2p

2p

)}
, β2p :=

α2p

1 − r2p
,

where

α2p := max{e2p, ẽ2p}, e2p :=
(1 − e−au

)
al(1 − e−al)

max
1≤i≤n

[ n∑
j=1

(
bu

i j + cu
i j
)
| f j(0)| + Iu

i +

n∑
j=1

du
i jσ j(0)C

1
2p

2p

]
,

ẽ2p :=
(1 − e−ãu

)
ãl(1 − e−ãl)

max
1≤i≤n

b̃u
i | f̃i(0)|.

Lemma 3.1. ( [22]) If X is a Banach space, Λ ⊆ X is closed and convex. Suppose further that B,
C: Λ→ X such that

(1) x, y ∈ Λ⇒ Bx + Cy ∈ Λ;
(2) B is continuous and BΛ is contained in a compact set;
(3) C is contractive.

Then it has z ∈ Λ with z = Bz + Cz.

Theorem 3.1. Assume that (H1)–(H2) and the following conditions hold.

(AP) All of the coefficients in system (2.2) are almost periodic sequences.
(H3) r2p < 1.

Then it has a 2p-th MAPS X of system (2.2) with ‖X‖2p ≤ β2p, p ≥ 1.

Proof. Let Λ ⊆ BC(Z; L2p(Ω;Rm+n)) denote the set of all 2p-th MAPS X satisfying ‖X‖2p ≤ β2p.
On the basis of (2.3), define ΦX(k) = BX(k) + CX(k), where

ΦX(k) = {(ΦX)i(k); (ΦX)n+i(k)} = ((ΦX)1(k), . . . , (ΦX)n(k), (ΦX)n+1(k), . . . , (ΦX)2n(k))T ,

(ΦX)i(k) = (BX)i(k) + (CX)i(k), (ΦX)n+i(k) = (BX)n+i(k) + (CX)n+i(k), (3.1)


(BX)i(k) =

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1−e−ai(v)]
ai(v)

[ n∑
j=1

bi j(v) f j(x j(v)) +
n∑

j=1
ci j(v) f j(x j(v − τi j(v)))

+Bi(v)S i(v) + Ii(v)
]
,

(BX)n+i(k) =
k−1∑

v=−∞

k−1∏
s=v+1

e−ãi(s)[1−e−ãi(v)]
ãi(v) b̃i(v) f̃i(xi(v)),

(3.2)


(CX)i(k) =

k−1∑
v=∞

k−1∏
s=v+1

e−ai(s)[1−e−ai(v)]
ai(v)

n∑
j=1

di j(v)σ j(x j(v − ηi j(v)))∆w j(v),

(CX)n+i(k) =
k−1∑

v=−∞

k−1∏
s=v+1

e−ãi(s)[1−e−ãi(v)]
ãi(v) d̃i(v)S i(v)∆w̃i(v), i = 1, 2, . . . , n, k ∈ Z.

(3.3)
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Let X0 = {x0
i ; S 0

i } be given by

x0
i (k) =

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1−e−ai(v)]
ai(v)

[ n∑
j=1

bi j(v) f j(0)

+
n∑

j=1
ci j(v) f j(0) +

n∑
j=1

di j(v)σ j(0)∆w j(v) + Ii(v)
]
,

S 0
i (k) =

k−1∑
v=−∞

k−1∏
s=v+1

e−ãi(s)[1−e−ãi(v)]
ãi(v) b̃i(v) f̃i(0), i = 1, 2, . . . , n, k ∈ Z.

By the above equations, it has

‖{x0
i }‖2p ≤ max

1≤i≤n
sup
k∈Z

{[
E
∣∣∣∣∣ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

n∑
j=1

(
bi j(v) f j(0) + ci j(v) f j(0)

)∣∣∣∣∣2p] 1
2p

+

[
E
∣∣∣∣∣ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

n∑
j=1

di j(v)σ j(0)∆w j(v)
∣∣∣∣∣2p] 1

2p

+

[
E
∣∣∣∣∣ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

Ii(v)
∣∣∣∣∣2p] 1

2p
}
.

Then

‖{x0
i }‖2p ≤ max

1≤i≤n
sup
k∈Z

{ (1 − e−au
)

al(1 − e−al)

[ n∑
j=1

(
bu

i j| f j(0)| + cu
i j| f j(0)|

)
+ Iu

i

]
+

n∑
j=1

du
i jσ j(0)

[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

]1− 1
2p

×

[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

E|∆w j(v)|2p
] 1

2p
}

≤
(1 − e−au

)
al(1 − e−al)

max
1≤i≤n

[ n∑
j=1

(
bu

i j + cu
i j
)
| f j(0)| + Iu

i +

n∑
j=1

du
i jσ j(0)C

1
2p

2p

]
:= e2p.

Homoplastically,

‖{S 0
i }‖2p ≤

(1 − e−ãu
)

ãl(1 − e−ãl)
max
1≤i≤n

b̃u
i | f̃i(0)| := ẽ2p.

Thus

‖X0‖2p ≤ max{e2p, ẽ2p} := α2p.

From (3.1–3.3), one has
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‖{(ΦX)i(k) − x0
i (k)}ni=1‖2p

≤ max
1≤i≤n

sup
k∈Z

n∑
j=1

bu
i jL

f
j

{
E
[ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

|x j(v)|
]2p} 1

2p

+ max
1≤i≤n

sup
k∈Z

Bu
i

{
E
[ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

|S i(v)|
]2p} 1

2p

+ max
1≤i, j≤n

sup
k∈Z

D∗∗i
{
E
[ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

|x j(v − τi j(v))|
]2p} 1

2p

+ max
1≤i, j≤n

sup
k∈Z

K∗
{
E
[ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

|x j(v − ηi j(v))∆w j(v)|
]2p} 1

2p

,

which implies

‖{(ΦX)i(k) − x0
i (k)}ni=1‖2p ≤ max

1≤i≤n
sup
k∈Z

n∑
j=1

bu
i jL

f
j

{[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

]p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

E
∣∣∣x j(v)

∣∣∣2p
} 1

2p

+ max
1≤i≤n

sup
k∈Z

Bu
i

{[ k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

]p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

E
∣∣∣S i(v)

∣∣∣2p
} 1

2p

+ max
1≤i, j≤n

sup
k∈Z

D∗∗i
{[ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

]p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

E
∣∣∣x j(v − τi j(v))

∣∣∣2p
} 1

2p

+ max
1≤i, j≤n

sup
k∈Z

K∗
{[ k−1∑

v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

]p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−ai(s)[1 − e−ai(v)]
ai(v)

E
∣∣∣x j(v − ηi j(v))∆w j(v)

∣∣∣2p
} 1

2p

,

where D∗∗i = D∗ − Bu
i −

∑n
j=1 bu

i jL
f
j , i = 1, 2, . . . , n. It gains from Lemma 2.3 that

‖{(ΦX)i(k) − x0
i (k)}ni=1‖2p ≤

(1 − e−au
)

al(1 − e−al)

{
D∗ + K∗C

1
2p

2p

}
‖X‖2p ≤ r2p‖X‖2p ≤

r2pα2p

1 − r2p
.

Homoplastically,

‖{(ΦX)n+i(k) − S 0
i (k)}ni=1‖2p ≤

(1 − e−ãu
)

ãl(1 − e−ãl)

{
D̃∗ + K̃∗C

1
2p

2p

}
‖X‖2p ≤ r2p‖X‖2p ≤

r2pα2p

1 − r2p
.
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Consequently,

‖ΦX − X0‖2p ≤
r2pα2p

1 − r2p
.

So

‖ΦX‖2p ≤ ‖X0‖2p + ‖ΦX − X0‖2p ≤ α2p +
r2pα2p

1 − r2p
=

α2p

1 − r2p
:= β2p. (3.4)

By (3.4) and similar to the argument as that in [20], (1)–(2) of Lemma 3.1 hold.
At last, ∀X = {xi; S i}, X∗ = {x∗i ; S ∗i } ∈ Λ, one has

‖{(CX)i(k) − (CX∗)i(k)}ni=1‖2p ≤
[1 − e−au

]
al max

1≤i≤n
sup
k∈Z

{
E
[ k−1∑

v=−∞

k−1∏
s=v+1

e−al

×

n∑
j=1

di j(v)
(
σ j(x j(v − ηi j(v))) − σ j(y j(v − ηi j(v))))∆w j(v)

]2p} 1
2p

≤
[1 − e−au

]
al max

1≤i, j≤n
sup
k∈Z

K∗
{[ k−1∑

v=−∞

k−1∏
s=v+1

e−al
]2p−1

×

k−1∑
v=−∞

k−1∏
s=v+1

e−al
E
∣∣∣[x j(v − ηi j(v)) − y j(v − ηi j(v))]∆w j(v)

∣∣∣2p
} 1

2p

≤
K∗C

1
2p

2p(1 − e−au
)

al(1 − e−al)
‖X − Y‖2p ≤ r2p‖X − Y‖2p,

homoplastically,

‖{(CX)n+i(k) − (CX∗)n+i(k)}ni=1‖2p ≤
K̃∗C

1
2p

2p(1 − e−ãu
)

ãl(1 − e−ãl)
‖X − Y‖2p ≤ r2p‖X − Y‖2p.

Then

‖CX − CY‖2p ≤ r2p‖X − Y‖2p.

By (H3), C is contractive. So (3) of Lemma 3.1 holds. By Lemma 3.1, system (2.2) has a 2p-th
MAPS. The proof is finished. �

Remark 3.1. In view of Theorem 3.1, (H3) is hard to be verified. For the sake of enabling (H3) to be
met, the following items should be followed in applications:

(1) The coefficients ai and ãi in NNs (2.2), i = 1, 2, . . . , n, should be selected to be large enough.

(2) The coefficients bi j, ci j, Bi, di j, b̃i and d̃i of NNs (2.2) should be selected to meet (H3) with large
enough numbers, i = 1, 2, . . . , n.

(3) If the activation functions f j, σ j and f̃i in NNs (2.2) are selected by some small enough constants
L f

j , Lσj and L f̃
i , then (H2) is easier to be valid, i, j = 1, 2, . . . , n.
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4. 2p-th moment global exponential stability

Theorem 4.1. If (H1)–(H3) hold, then system (2.2) has the property of 2p-th MGES.

Proof. Assume that X = {xi; S i} with initial condition ϕ = {ϕi;ψi} and X∗ = {x∗i ; S ∗i } with initial
condition ϕ∗ = {ϕ∗i ;ψ∗i } are any two solutions of system (2.2). So

|xi(k) − x∗i (k)| ≤
k−1∏
s=0

e−ai(s)|ϕi(0) − ϕ∗i (0)| +
(1 − e−au

)
al

k−1∑
v=0

k−1∏
s=v+1

e−ai(s)
{ n∑

j=1

[
bu

i jL
f
j |x j(v) − x∗j(v)|

+cu
i jL

f
j |x j(v − τi j(v)) − x∗j(v − τi j(v))|

+du
i jL

σ
j |x j(v − ηi j(v)) − x∗j(v − ηi j(v))||∆w j(v)|

]
+ Bu

i |S i(v) − S ∗i (v)|
}

≤ e−alk|ϕi(0) − ϕ∗i (0)| +
(1 − e−au

)
al

k−1∑
v=0

e−al(k−v−1)
n∑

j=1

{ n∑
j=1

[
bu

i jL
f
j |x j(v) − x∗j(v)|

+cu
i jL

f
j |x j(v − τi j(v)) − x∗j(v − τi j(v))|

+du
i jL

σ
j |x j(v − ηi j(v)) − x∗j(v − ηi j(v))||∆w j(v)|

]
+ Bu

i |S i(v) − S ∗i (v)|
}
, (4.1)

|S i(k) − S ∗i (k)|

≤

k−1∏
s=0

e−ãi(s)|ψi(0) − ψ∗i (0)|

+
(1 − e−ãu

)
ãl

k−1∑
v=0

k−1∏
s=v+1

e−ãi(s)
{
b̃u

i L f̃
i |xi(v) − x∗i (v)|d̃u

i |S i(v) − S ∗i (v)||∆w̃i(v)|
}

≤ e−ãlk|ψi(0) − ψ∗i (0)|

+
(1 − e−ãu

)
ãl

k−1∑
v=0

e−ãl(k−v−1)
{
b̃u

i L f̃
i |xi(v) − x∗i (v)| + d̃u

i |S i(v) − S ∗i (v)||∆w̃i(v)|
}
, (4.2)

where i = 1, 2, . . . , n, k ∈ [−µ0,+∞)Z, µ0 = max(i, j){τ
u
i j, η

u
i j}.

To facilitate, set

a0 =
1 − e−au

al , ã0 =
1 − e−ãu

ãl ,

γ2p = max
1≤i≤n

sup
s∈[−µ0,0]Z

{(E|ϕi(s) − ϕ∗i (s)|2p)
1

2p , (E|ψi(s) − ψ∗i (s)|2p)
1

2p },

Z = {zi}, W = {wi}, zi(k) = xi(k) − x∗i (k), wi(k) = S i(k) − S ∗i (k), i = 1, 2, . . . , n, k ∈ Z.
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By (4.1), it has

|Z(k)|2p ≤ e−alkγ2p + max
1≤i≤n

n∑
j=1

a0bu
i jL

f
j

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)E
∣∣∣x j(s) − x∗j(s)

∣∣∣2p
} 1

2p

+ max
1≤i≤n

n∑
j=1

a0cu
i jL

f
j

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1

×

k−1∑
s=0

e−al(k−s−1)E
∣∣∣x j(s − τi j(s)) − x∗j(s − τi j(s))

∣∣∣2p
} 1

2p

+ max
1≤i≤n

n∑
j=1

a0du
i jL

σ
j

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1

×

k−1∑
s=0

e−al(k−s−1)E
∣∣∣[x j(s − ηi j(s)) − x∗j(s − ηi j(s))]∆w j(s)

∣∣∣2p
} 1

2p

+ max
1≤i≤n

Bu
i

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)E
∣∣∣S i(s) − S ∗i (s)

∣∣∣2p
} 1

2p

≤ e−alkγ2p + max
1≤i≤n

n∑
j=1

a0bu
i jL

f
j

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)|Z(s)|2p
2p

} 1
2p

+ max
1≤i≤n

n∑
j=1

a0cu
i jL

f
j

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)|Z(s − τi j(s))|2p
2p

} 1
2p

+ max
1≤i≤n

n∑
j=1

a0C
1

2p

2pdu
i jL

σ
j

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)|Z(s − ηi j(s))|2p
2p

} 1
2p

+ max
1≤i≤n

Bu
i

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)|W(s)|2p
2p

} 1
2p

. (4.3)

From (4.2), it induces

|W(k)|2p ≤ e−ãlkγ2p + max
1≤i≤n

ã0b̃u
i L f̃

i

{[ k−1∑
s=0

e−ãl(k−s−1)
]2p−1 k−1∑

s=0

e−ãl(k−s−1)|Z(s)|2p
2p

} 1
2p

+ max
1≤i≤n

ã0C
1

2p

2p d̃u
i

{[ k−1∑
s=0

e−ãl(k−s−1)
]2p−1 k−1∑

s=0

e−ãl(k−s−1)|W(s)|2p
2p

} 1
2p

. (4.4)

By (H3), it has λ > 0 small enough ensuring that

max
1≤i≤n

eλa0

1 − e−(al−2pλ)

[
Bu

i +

n∑
j=1

(bu
i jL

f
j + eµ0λcu

i jL
f
j + eµ0λC

1
2p

2pdu
i jL

σ
j )
]

def
= ρ ≤ 1,

max
1≤i≤n

eλã0

1 − e−(ãl−2pλ)

[
b̃u

i L f̃
i + eµ0λC

1
2p

2p d̃u
i

]
def
= ρ̃ ≤ 1.
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Define V(k) = max{|Z(k)|2p, |W(k)|2p}, k ∈ Z.
Next, assume that it has M0 > 1 ensuring that

V(k) ≤ M0γ2pe−λk, ∀k ∈ [−µ0,+∞)Z. (4.5)

If (4.5) fails, then it has k0 ∈ (0,+∞)Z such that one of the following two cases is valid:

(C1) |Z(k0)|2p > M0γ2pe−λk0 and V(k) ≤ M0γ2pe−λk, ∀k ∈ [−µ0, k0)Z.
(C2) |W(k0)|2p > M0γ2pe−λk0 and V(k) ≤ M0γ2pe−λk, ∀k ∈ [−µ0, k0)Z.

If (C1) holds, then

|Z(k0)|2p ≤ e−alk0γ2p + max
1≤i≤n

n∑
j=1

a0bu
i jL

f
j M0γ2p

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)e−2pλs
} 1

2p

+ max
1≤i≤n

a0Bu
i M0γ2p

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)e−2pλs
} 1

2p

+ max
1≤i≤n

n∑
j=1

a0M0γ2p

[
cu

i jL
f
j + C

1
2p

2pdu
i jL

σ
j

]
×

{[ k−1∑
s=0

e−al(k−s−1)
]2p−1 k−1∑

s=0

e−al(k−s−1)e−2pλ(s−µ0)
} 1

2p

≤ e−alk0γ2p + max
1≤i≤n

n∑
j=1

a0bu
i jL

f
j M0γ2pe−λk0eλ

[1 − e−alk0

1 − e−al

]1− 1
2p
[ k0−1∑

s=0

e−(al−pλ)(k0−s−1)
] 1

2p

+ max
1≤i≤n

a0Bu
i M0γ2pe−λk0eλ

[1 − e−alk0

1 − e−al

]1− 1
2p
[ k0−1∑

s=0

e−(al−pλ)(k0−s−1)
] 1

2p

+ max
1≤i≤n

n∑
j=1

a0M0γ2p

[
cu

i jL
f
j + C

1
2p

2pdu
i jL

σ
j

]

×e−λk0e(µ0+1)λ
[1 − e−alk0

1 − e−al

]1− 1
2p
[ k0−1∑

s=0

e−(al−pλ)(k0−s−1)
] 1

2p

≤ e−alk0γ2p + max
1≤i≤n

a0M0γ2pe−λk0

[
Bu

i +

n∑
j=1

(bu
i jL

f
j + eµ0λcu

i jL
f
j + eµ0λC

1
2p

2pdu
i jL

σ
j )
]

×eλ
[1 − e−alk0

1 − e−al

]1− 1
2p
[1 − e−(al−2pλ)k0

1 − e−(al−2pλ)

] 1
2p

≤ M0γ2pe−λk0

{ 1
M0

e−(al−λ)k0

+ max
1≤i≤n

a0

[
Bu

i +

n∑
j=1

(bu
i jL

f
j + eµ0λcu

i jL
f
j + eµ0λC

1
2p

2pdu
i jL

σ
j )
]eλ[1 − e−(al−λ)k0]

1 − e−(al−2pλ)

≤ M0γ2pe−λk0

{
e−(al−λ)k0 + ρ[1 − e−(al−λ)k0]

}
≤ M0γ2pe−λk0 . (4.6)
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Thus (C1) fails. Homoplastically, (C2) is not satisfied. So (4.5) hold. Then system (2.2) has the
property of 2p-th MGES. The proof is finished.

By Theorem 3.1, it obtains

Theorem 4.2. Assume that all conditions in Theorem 3.1 hold, then system (2.2) admits a 2p-th MAPS,
which has the property of 2p-th MGES.

Remark 4.1. In literature [17], Ji discussed a delayed semi-discrete neural networks and the existence
and global attractivity of a unique almost periodic sequence solution were investigated. In literatures
[14–16, 18], the authors discussed the almost periodic dynamics of various NNs. But neither of them
considered the stochastic disturbances. Therefore, the work of this paper complements the works
in [14–18].

5. Numerical illustrations

Example 5.1. Regarding the semi-discrete stochastic CNNs below:
x(k + 1) = 0.4x(k) − 0.6

[
0.01 sin(

√
5k) sin(x(k)) + 0.05 sin(

√
7k)S (k)

+0.01∆w1(k) + 0.01 cos2(
√

17k)
]
,

S (k + 1) = 0.4S (k) − 0.6
[
0.03 cos(

√
2k) sin(x(k − 1)) + 0.02S (k)∆w2(k)

]
, k ∈ Z.

(5.1)

Referring to system (2.2), it has ãu = ãl = au = al = 1, L f = L f̃ = 1, Lσ = 0, bu = 0.01, b̃u = 0.03,
Bu = 0.05, du = 0.01, d̃u = 0.02. Taking p = 2, then

C1/4
4 = 4, D∗ ≈ 0.06, D̃∗ ≈ 0.03, K∗ = 0, K̃∗ ≈ 0.01, r4 ≈ 0.68 < 1.

By Theorem 4.2, system (5.1) admits a 4-th MAPS, which has the property of 4-th MGES, see
Figures 1–3.

Figure 1 plots the almost periodic trajectories of state variables x and S in system (5.1).
Obviously, the amplitude of state variable x is larger than that of state variable S . Figures 2,3 plot the
trajectories of state variables x and S in system (5.1) with different initial values, respectively. They
demonstrate that the trajectories of state variables in system (5.1) with different initial values will
tend to the same trajectory since it has the property of 4-th MGES.
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Figure 1. Trajectories of 4-th MAPS of model (5.1).
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Figure 2. 4-th MGES of state variable x of model (5.1).
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Figure 3. 4-th MGES of state variable S of model (5.1).
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Considering the corresponding determinant model of system (5.1) below:


x(k + 1) = 0.4x(k) − 0.6

[
0.01 sin(

√
5k) sin(x(k))

+0.05 sin(
√

7k)S (k) + 0.01 + 0.01 cos2(
√

17k)
]
,

S (k + 1) = 0.4S (k) − 0.6
[
0.03 cos(

√
2k) sin(x(k − 1)) + 0.02S (k)

]
, k ∈ Z.

(5.2)

Figures 4 and 5 depict the comparison result between model (5.1) and model (5.2). Figures 4 and 5
imply that the influences of stochastic disturbances on x and S are pretty obvious. Observing Figures 4
and 5, it easily discovers that the effect of stochastic disturbance on x is larger than that on S .

10 20 30 40 50 60 70 80 90 100

time k

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

x(
k)

stochastic model (5.1)
determinant model (5.2)

Figure 4. Comparisons of state variable x between stochastic model (5.1) and determinant
model (5.2).

20 30 40 50 60 70 80 90 100

time k

-4

-3

-2

-1

0

1

2

3

4

S
(k

)

#10-4

stochastic model (5.1)
determinant model (5.2)

Figure 5. Comparisons of state variable S between stochastic model (5.1) and determinant
model (5.2).
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6. Conclusions and future perspectives

To date, few people consider the problems of MAPS and MGES of semi-discrete SFCNNs. Hence,
this article concerns the issues of 2p-th MAPS and 2p-th MGES of semi-discrete SFCNNs. The
techniques of this literatures give an effective approach to investigate 2p-th MAPS and 2p-th MGES
of semi-discrete stochastic fuzzy models. By (H3), r2p < 1 is important to the studies of 2p-th MAPS
and 2p-th MGES. There is no influence of time delay on 2p-th MAPS and time delay has negative
influence in 2p-th MGES.

In the future, the following aspects could be studied further:

(1) p ∈ (0, 1] in NNs (2.2) could be further investigated.

(2) Other dynamics in NNs (2.2) should be further considered, e.g., hopf bifurcation, chaos, automatic
control, etc.

(3) Using the idea and method of this paper, other types of dynamic systems could be studied, such as
impulsive dynamic systems [23, 24], biomathematical systems [25–27], etc.

(4) Applications of NNs (2.2) in intelligent control, machine learning, image processing, etc, should
be further investigated.
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