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Abstract: This paper focuses on the division of intervals in rectangular form. The particular case
where the intervals are in the complex plane is considered. For two rectangular complex intervals Z1

and Z2 finding the smallest rectangle containing the exact set {z1 ∗ z2 : z1 ∈ Z1, z2 ∈ Z2} of the operation
∗ ∈ {+,−, ·,�} is the main objective of complex interval arithmetic. For the operations addition,
subtraction and multiplication, the optimal solution can be easily found. In the case of division the
solution requires rather complicated calculations. This is due to the fact that space of rectangular
intervals is not closed under division. The quotient of two rectangular intervals is an irregular shape in
general. This work introduces a new method for the determination of the smallest rectangle containing
the result in the case of division. The method obtains the optimal solution with less computational cost
compared to the algorithms currently available.

Keywords: interval arithmetic; interval division; complex interval; rectangular interval; global
optimization
Mathematics Subject Classification: 65G30, 65G40, 65Y04

1. Introduction

Analysis and solutions of various problems in the complex plane which either involve ”inexact”
data, or require some information on upper error bound of the obtained result or solution, dictate the
need for a structure which is referred to as complex interval arithmetic [1]. There are three different
forms to represent complex intervals: the rectangular form [2, 3], the circular form [4], and the polar
form (or sector) [5].

Interval operations should deliver the closest inclusion of the set of all possible values (e.g., [6]),
i.e.

{z1 ∗ z2 : z1 ∈ Z1, z2 ∈ Z2} ⊆ Z1 ∗ Z2,

for any two intervals Z1,Z2 and ∗ ∈ {+,−, ·,�}.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020409


6356

For rectangular complex arithmetic addition, subtraction and multiplication are optimal, whereas
division is not (see, e.g., [7,8]. By optimality it is meant that the computed interval is the least interval
that includes the set {z1 ∗ z2 : z1 ∈ Z1, z2 ∈ Z2}. Thus, special algorithms must be built to perform
division operation on rectangular intervals. Methods to improve the division operation of rectangular
intervals are addressed in e.g. [7, 8].

The method presented in [7] is based on the following approach

Z1

Z2
= Z1 ·

1
Z2
,

where 1
Z2

: = inf
{
X :

{
1
d : d ∈ Z2

}
⊆ X

}
. However, the computed rectangle by this approach is not

optimal in general (see, e.g., [8]).
The method presented in [8] is based on an algorithm which calculates the maximum and the

minimum of the real and imaginary parts of the division. But, in general, this algorithm requires a
significant amount of computations in order to get the optimal rectangle. This paper focuses on the
division of rectangular complex intervals. We introduce a highly efficient and low cost algorithm
compared to the one in [8]. A crucial ingredient to the efficiency of our algorithm is the fact that it can
be easily implemented even without using a computer program.

The rest of the paper is organized as follows. Section 2 presents the definition and arithmetic
of rectangular intervals. The proposed algorithm is introduced in Section 3. Section 4 contains the
implementation of the proposed algorithm and its comparison with the available algorithms in the
literature. Finally, Section 5 concludes the work.

2. Rectangular complex intervals

This section provides a brief review of complex interval arithmetic. Details of real interval
arithmetic can be found in ( [3, 9–13]).

Definition 1. Let [x] = [x−, x+] ∈ IR and [y] = [y−, y+] ∈ IR be two closed real intervals. A rectangular
complex interval Z is defined by a pair of two real intervals [x]and [y]:

Z = [x] + i[y],Z = {z = x + iy : x ∈ [x], y ∈ [y]},

where i =
√
−1.

The set of all rectangular complex intervals is denoted by

R(C) = {Z = [x] + i[y] : [x], [y] ∈ IR}.

2.1. Arithmetic of rectangular intervals

Definition 2. Let Z1,Z2 ∈ R(C) and ∗ one of the basic operations ∗ ∈ {+,−, ·,�}. We define the
corresponding operations for Z1 and Z2 by,

Z1 ∗ Z2 := �{Z1 ~ Z2},

where Z1 ~ Z2 := {z1 ∗ z2 : z1 ∈ Z1, z2 ∈ Z2} and �{Z1 ~ Z2} is the smallest rectangle in R(C) enclosing
Z1 ~ Z2.
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The set Z1 ~ Z2 with ∗ ∈ {·,�} is not necessarily a complex interval. That is, Z1 ~ Z2 may not be a
rectangle with sides parallel to the axes. Consider the following example.

Let Z1 = [1, 2] + i[1, 2] and Z2 = [1, 2] + i[1, 2]. Then Z1 ⊕ Z2 and Z1 	 Z2 produce rectangles in the
complex plane with sides parallel to the axes, while the resulting sets from Z1 � Z2 and Z1 � Z2 have
complicated shapes (not rectangles)(See Figure 1).

Figure 1. Arithmetic operations on complex intervals.

For two given intervals, Z1 = [x1] + i[y1] and Z2 = [x2] + i[y2], the basic arithmetic operations are
defined as follows (see, e.g., [2, 3]):

Addition and subtraction

The sum (difference) of Z1 and Z2 is given by

Z1 ± Z2 := [x1] ± [x2] ± i([y1] ± [y2]).

It is easy to prove that the following is valid:

Z1 ∗ Z2 := �{Z1 ~ Z2}

= Z1 ~ Z2 for ∗ ∈ {+,−}.

AIMS Mathematics Volume 5, Issue 6, 6355–6372.
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Multiplication
The multiplication of Z1 and Z2 is given by the formula,

Z1 · Z2 := [x1][x2] − [y1][y2] + i([x1][y2] + [x2][y1])
= [x−, x+] + i[y−, y+],

where,

x− = min
{
x−1 x−2 , x

−
1 x+

2 , x
+
1 x−2 , x

+
1 x+

2
}

+ min
{
−y+

1 y−2 ,−y+
1 y+

2 ,−y−1 y−2 ,−y−1 y+
2
}
,

x+ = max
{
x−1 x−2 , x

−
1 x+

2 , x
+
1 x−2 , x

+
1 x+

2
}

+ max
{
−y+

1 y−2 ,−y+
1 y+

2 ,−y−1 y−2 ,−y−1 y+
2
}
,

y− = min
{
x−1 y−2 , x

−
1 y+

2 , x
+
1 y−2 , x

+
1 y+

2
}
+ min

{
x−2 y−1 , x

−
2 y+

1 , x
+
2 y−1 , x

+
2 y+

1
}
,

y+ = max
{
x−1 y−2 , x

−
1 y+

2 , x
+
1 y−2 , x

+
1 y+

2
}
+ max

{
x−2 y−1 , x

−
2 y+

1 , x
+
2 y−1 , x

+
2 y+

1
}
.

The multiplication Z1 · Z2 as defined above gives a rectangle in the complex plane such that,

Z1 · Z2 := �{Z1 � Z2} ⊇ Z1 � Z2.

Consider the previous example Z1 = [1, 2] + i[1, 2] and Z2 = [1, 2] + i[1, 2]. Then we get,

Z1 · Z2 = [−3, 3] + i[2, 8]

which is the smallest rectangle containing the set Z1 � Z2 (see Figure 2).

Figure 2. The rectangular hull of multiplication.

Division
The division is defined by,

Z1

Z2
:=

[x1][x2] + [y1][y2]
[x2]2 + [y2]2 + i

[y1][x2] − [x1][y2]
[x2]2 + [y2]2 , 0 < [x2]2 + [y2]2.

The division defined above produces a rectangle in the complex plane that is generally far too
pessimistic. In general, we have,

Z1

Z2
⊃ �{Z1 � Z2}.
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Consider again the previous example. Then,

Z1

Z2
= [0.25, 4] + i[−1.5, 1.5].

However, the optimal rectangle is (see [8] and Figure 3),

�{Z1 � Z2} = [0.5, 2] + i[−0.618028, 0.618028].

Figure 3. Optimal and non-optimal division.

Therefore, the result of the division Z1 � Z2 has to be approximated (in the sense of covering) by a
smallest rectangle.

3. Optimal covering rectangle of division

Let Z1 = [x1] + i[y1] and Z2 = [x2] + i[y2] be two rectangular intervals. It is known that Z1�Z2 is not
a rectangle in general but has a complex shape. This section presents a simple and efficient algorithm
to calculate the optimal covering rectangle �{Z1 � Z2}. The rectangular hull �{Z1 � Z2} contains two
parts, namely the imaginary and real parts. For this reason, it is a good idea to split the optimization
problem into optimizations of two functions which represent the imaginary and real parts, solve the
problems separately and then combine the results.

The procedure to compute �{Z1 � Z2} will be defined in the following fashion. Let f , g : B→ R be
two real functions such that,

f =
x1x2 + y1y2

x2
2 + y2

2

, g =
y1x2 − x1y2

x2
2 + y2

2

, x2
2 + y2

2 > 0

where B = [x1] × [x2] × [y1] × [y2].Thus, �{Z1 � Z2} is given by,

�{Z1 � Z2} = [min f ,max f ] + i[min g,max g].
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Before continuing, the following should be pointed out: f and g are continuous on B, and B is
closed and bounded (compact). Therefore, by the Extreme Value Theorem, it is known that f and g
are bounded and attain their maximum and minimum values on B. The extreme values (maximum and
minimum) can occur either

• on the interior points of B (critical points) or
• on the boundary points of B.

For critical points of f the following equations hold,

∂ f
∂x1

=
(x2

2 + y2
2)x2

(x2
2 + y2

2)2
=

x2

x2
2 + y2

2

= 0, (3.1)

∂ f
∂x2

=
(x2

2 + y2
2)x1 − (x1x2 + y1y2)(2x2)

(x2
2 + y2

2)2
= 0, (3.2)

∂ f
∂y1

=
(x2

2 + y2
2)y2

(x2
2 + y2

2)2
=

y2

x2
2 + y2

2

= 0, (3.3)

∂ f
∂y2

=
(x2

2 + y2
2)y1 − (x1x2 + y1y2)(2y2)

(x2
2 + y2

2)2
= 0. (3.4)

The Eqs (3.1)–(3.4) yield to x2 = 0 and y2 = 0. However, points of the form (x1, x2, y1, y2) =

(x1, 0, y1, 0) are not in the domain of f . Thus f has no critical points. In the same way it can be
verified that the function g has no critical points either.

Boundary points of B: Since f (and also g ) is linear in x1 and y1, the candidates for the location of
the global extreme values occur among the following types of points:

•P1 = {(x1, x2, y1, y2) :x1 ∈
{
x+

1 , x
−
1
}
, x2 ∈]x2[,

y1 ∈
{
y+

1 , y
−
1
}
, y2 ∈

{
y+

2 , y
−
2
}}
.

•P2 = {(x1, x2, y1, y2) :x1 ∈
{
x+

1 , x
−
1
}
, x2 ∈

{
x+

2 , x
−
2
}
,

y1 ∈
{
y+

1 , y
−
1
}
, y2 ∈]y2[

}
.

•P3 = {(x1, x2, y1, y2) :x1 ∈
{
x+

1 , x
−
1
}
, x2 ∈

{
x+

2 , x
−
2
}
,

y1 ∈
{
y+

1 , y
−
1
}
, y2 ∈

{
y+

2 , y
−
2
}}
.

For i = 1, 2, 3, let pi max ∈ Pi and pi min ∈ Pi denote the candidates for the locations of the global
maximum and minimum, respectively. The aim is to determine these candidates in an efficient way.

3.1. Fast computation of min f

The value of min f will be determined by solving the problem,

min
B

f (x1, x2, y1, y2)

with
f =

x1x2 + y1y2

x2
2 + y2

2

,
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and
B = [x1] × [x2] × [y1] × [y2].

Following propositions will be used when determining p1 min or p2 min (for the proof see Theorem 1
below):

• If 0 ∈ [y2], the global minimum of f can not occur at p1 min ∈ P1.
• If 0 ∈ [x2], the global minimum of f can not occur at p2 min ∈ P2.

Determining p1 min ∈ P1

Solving Eq (3.2) for x2 we get

x2 =
−y1y2 ± y2

√
x2

1 + y2
1

x1
.

Note that if
−y1y2±y2

√
x2

1+y2
1

x1
<]x2[, then P1 = ∅. Suppose that P1 , ∅, 0 < [y2] and

p1 min = (x1, x2 min, y1, y2), where,

x2 min =
−y1y2 ± y2

√
x2

1 + y2
1

x1
.

Since,

f (p1 min) =
x1x2 min + y1y2

x2
2 min + y2

2

=
±y2

√
x2

1 + y2
1

x2
2 min + y2

2

,

one has,

x2 min =
−y−1 y−2 − y−2

√
x2

1 + (y−1 )2

x1
if y−2 > 0, (3.5)

x2 min =
−y+

1 y+
2 + y+

2

√
x2

1 + (y+
1 )2

x1
if y+

2 < 0. (3.6)

The reason of using y1 = y−1 when y−2 > 0 and y1 = y+
1 when y+

2 < 0 is clear; while the reason of using
y2 = y−2 in Eq (3.5) and y2 = y+

2 in Eq (3.6) can be explained as follows.
Consider Eq (3.5), i.e., y−2 > 0. If y2 = y+

2 is used instead of y2 = y−2 , one gets,

f (x1, x2 min, y−1 , y
+
2 ) =

−y+
2

√
x2

1 + (y−1 )2

x2
2 min + (y+

2 )2

=
−x2

1

√
x2

1 + (y−1 )2

2y+
2

{
x2

1 + (y−1 )2 + y−1
√

x2
1 + (y−1 )2

}
>

−x2
1

√
x2

1 + (y−1 )2

2y−2
{
x2

1 + (y−1 )2 + y−1
√

x2
1 + (y−1 )2

}
AIMS Mathematics Volume 5, Issue 6, 6355–6372.
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= f (x1, x2 min, y−1 , y
−
2 ).

Consider now Eq (3.6) with y2 = y−2 . Then,

f (x1, x2 min, y+
1 , y

−
2 ) =

y−2
√

x2
1 + (y+

1 )2

x2
2 min + (y−2 )2

=
x2

1

√
x2

1 + (y+
1 )2

2y−2
{
x2

1 + (y+
1 )2 − y+

1

√
x2

1 + (y+
1 )2

}
>

x2
1

√
x2

1 + (y+
1 )2

2y+
2

{
x2

1 + (y+
1 )2 − y+

1

√
x2

1 + (y+
1 )2

}
= f (x1, x2 min, y+

1 , y
+
2 ).

Hence, to determine x2 min by Eq (3.5) (Eq (3.6)), it has to be used y2 = y−2 (y2 = y+
2 ).

For the point p1 min = (x1, x2 min, y1, y2) ∈ P1, there are two cases to consider.
Case 1. y−2 > 0.
Using Eq (3.5) one gets,

x2 min =
−y−1 y−2 − y−2

√
(x1)2 + (y−1 )2

x1
,

where x1 is chosen as follows:

• If x−2 ≥ 0, we have to use x1 = x−1 . If x2 min ∈]x2[, then p1 min = (x−1 , x2 min, y−1 , y
−
2 ).

• If x+
2 ≤ 0, we have to use x1 = x+

1 . If x2 min ∈]x2[, then p1 min = (x+
1 , x2 min, y−1 , y

−
2 ).

• If 0 ∈]x2[ there are three cases to distinguish.

1. x−1 ≥ 0. In this case we have to use x1 = x+
1 . If x2 min ∈]x2[, then p1 min = (x+

1 , x2 min, y−1 , y
−
2 ).

2. x+
1 ≤ 0. In this case we have to use x1 = x−1 . If x2 min ∈]x2[, then p1 min = (x−1 , x2 min, y−1 , y

−
2 ).

3. 0 ∈]x1[. In this case we have two possibilities, x1 = x−1 and x1 = x+
1 . Suppose that,

x2 min 1 =
−y−1 y−2 − y−2

√
(x−1 )2 + (y−1 )2

x−1

and

x2 min 2 =
−y−1 y−2 − y−2

√
(x+

1 )2 + (y−1 )2

x+
1

.

If both x2 min 1 ∈]x2[ and x2 min 2 ∈]x2[, then
p1 min ∈

{
(x−1 , x2 min, y−1 , y

−
2 ), (x+

1 , x2 min, y−1 , y
−
2 )

}
such that

f (p1 min) = min
(

f (x−1 , x2 min 1, y−1 , y
−
2 ), f (x−1 , x2 min 2, y−1 , y

−
2 )

)
.

If x2 min 1 ∈]x2[ and x2 min 2 <]x2[ (x2 min 1 <]x2[ and x2 min 2 ∈]x2[), then
p1 min = (x−1 , x2 min 1, y−1 , y

−
2 ) (p1 min = (x+

1 , x2 min 2, y−1 , y
−
2 )).
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Case 2. y+
2 < 0.

From Eq (3.6),

x2 min =
−y+

1 y+
2 + y+

2

√
(x1)2 + (y+

1 )2

x1
,

where x1 is chosen as in Case 1.
Determining p2 min ∈ P2

From Eq (3.4), one gets

y2 =
−x1x2 ± x2

√
x2

1 + y2
1

y1
.

Suppose that P2 , ∅, 0 < [x2], and p2 min = (x1, x2, y1, y2 min), where,

y2 min =
−x1x2 ± x2

√
x2

1 + y2
1

y1
.

Since,

f (p2 min) =
±x2

√
x2

1 + y2
1

x2
2 + y2

2 min

,

it can be obtained that,

y2 min =
−x−1 x−2 − x−2

√
(x−1 )2 + y2

1

y1
if x−2 > 0 (3.7)

y2 min =
−x+

1 x+
2 + x+

2

√
(x+

1 )2 + y2
1

y1
ifx+

2 < 0, (3.8)

where y1 is chosen as x1 in computing x2 min.
Determining p3 min ∈ P3

The set P3 consists of all extreme (corner) points of B, and there are 16 of such points, in general.
Since f is linear in x1 and y1, we can find the point p3 min by considering only four points of P3. These
points are: {

(x1, x−2 , y1, y−2 ), (x1, x−2 , y1, y+
2 ), (x1, x+

2 , y1, y−2 ), (x1, x+
2 , y1, y+

2 )
}
,

where the choice of x1(y1) depends on sign of x2(y2). That is, x1 = x−1 if x2 ≥ 0 and x1 = x+
1 otherwise.

All findings are summarized in the following theorem.

Theorem 1. 1. If 0 ∈ [y2] then
1.1. if y2 = 0 or y+

2 = 0, then x2 min <]x2[,
1.2. if y2 = 0 (or y+

2 = 0) and y2 min ∈]y2[, then
min f = f (p2 min),

1.3. if 0 ∈]y2[, then
1.3.1. if y−1 ≥ 0 (or y+

1 ≤ 0) and y2 min ∈]y2[, then
min f = f (p2 min),

1.3.2. if 0 ∈]y1[ and both y2 min 1, y2 min 2 ∈]y2[, then
min f = f (p2 min),

AIMS Mathematics Volume 5, Issue 6, 6355–6372.
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1.3.3. if 0 ∈]y1[ and one of y2 min 1, y2 min 2 lies in [y2], then min f = min ( f (p2 min), f (p3 min)).
2. If 0 ∈ [x2] then

2.1. if x2 = 0 or x+
2 = 0, then y2 min <]y2[,

2.2. if x2 = 0 (or x+
2 = 0) and x2 min ∈]x2[, then min f = f (p1 min),

2.3. if 0 ∈]x2[, then
2.3.1. if x−1 ≥ 0 (or x+

1 ≤ 0) and x2 min ∈]x2[, then
min f = f (p1 min),

2.3.2. if 0 ∈]x1[ and both x2 min 1, x2 min 2 ∈]x2[, then
min f = f (p1 min),

2.3.3. if 0 ∈]x1[ and one of x2 min 1, x2 min 2 lies in [x2], then min f = min ( f (p1 min), f (p3 min)).
3. if 0 < [y2] and 0 < [x2], then

3.1. if x2 min ∈]x2[, then y2 min <]y2[ and min f = f (p1 min),
3.2. if y2 min ∈]y2[, then x2 min <]x2[ and min f = f (p2 min).

4. If x2 min <]x2[ and y2 min <]y2[, then min f = f (p3 min).

Proof. Parts 1.1, 1.3.1 and 3.1 will be proven; the other parts follow by similar arguments.
1.1. Suppose that y2 = 0 or y+

2 = 0. Then x2 min = 0, which is impossible.
1.3.1. Let 0 ∈]y2[ and y2 min ∈]y2[. Then one must have x−2 > 0 or x+

2 < 0. It is sufficient to show that
f (p2 min) < f (p), p ∈ {p1 min, p3 min}.

If x−2 > 0 then, using Eq (3.7), one obtains,

y2 min =
−x−1 x−2 − x−2

√
(x−1 )2 + y2

1

y1
.

Suppose that y2 min < 0, then it must be true that y1 > 0, because −x−1 x−2 − x−2
√

(x−1 )2 + y2
1 < 0. This

means that y1 = y+
1 , and hence

p2 min = (x−1 , x
−
2 , y

+
1 , y2 min). Using Eq (3.6) with y2 = y−2 , it can be obtained that,

x2 min =
−y+

1 y−2 + y−2
√

(x−1 )2 + (y+
1 )2

x−1
.

Since −y+
1 y−2 + y−2

√
(x−1 )2 + (y+

1 )2 < 0, then x2 min < [x2] if x−1 > 0. Suppose that x−1 < 0 and x2 min ∈]x2[,
i.e., p1 min = (x−1 , x2 min, y+

1 , y
−
2 ). Plugging p1 min and p2 min into the function f one gets

f (p1 min) =
y−2

√
(x−1 )2 + (y+

1 )2

x2
2 min + (y−2 )2

,

f (p2 min) =
−x−2

√
(x−1 )2 + (y+

1 )2

(x−2 )2 + y2
2 min

.

(x−2 )2 < x2
2 min and y2

2 min < (y−2 )2 implies that f (p2 min) < f (p1 min). Now suppose that y2 min > 0, i.e.,
y1 = y−1 < 0. Then Eq (3.5) with y2 = y+

2 , gives

x2 min =
−y−1 y+

2 − y+
2

√
(x−1 )2 + (y−1 )2

x−1
.
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Since −y−1 −
√

(x−1 )2 + (y−1 )2 < 0, then
−y−1 y+

2−y+
2

√
(x−1 )2+(y−1 )2

x−1
< 0 if x−1 > 0, which means that x2 min <]x2[.

Suppose that x−1 < 0 and x2 min ∈]x2[. Then,

f (p1 min) = f (x−1 , x2 min, y−1 , y
+
2 ) =

−y+
2

√
(x−1 )2 + (y−1 )2

x2
2 min + (y+

2 )2
,

f (p2 min) = f (x−1 , x
−
2 , y

−
1 , y2 min) =

−x−2
√

(x−1 )2 + (y−1 )2

(x−2 )2 + y2
2 min

.

On the other hand, f (p2 min) < f (p1 min) because (x−2 )2 < x2
2 min and y2

2 min < (y+
2 )2.

If x+
2 < 0 then, using Eq (3.8), one obtains,

y2 min =
−x+

1 x+
2 + x+

2

√
(x+

1 )2 + y2
1

y1
.

The same computations give that f (p2 min) < f (p1 min).
Using the fact, f (p2 min) ≤ f (p2) for all p2 ∈ P2, it can be observed that f (p2 min) ≤ f (p) for any p ∈ B.
3.1. Let 0 < [y2], 0 < [x2] and x2 min ∈]x2[. This yields four cases:{
x−2 > 0, y−2 > 0

}
,
{
x−2 > 0, y+

2 < 0
}
,
{
x+

2 < 0, y−2 > 0
}
,
{
x+

2 < 0, y+
2 < 0

}
.

The case
{
x−2 > 0, y−2 > 0

}
will be proven here, the proof for other cases can be given analogously.

Suppose that x−2 > 0 and y−2 > 0. Then, from Eq (3.5), it is known that,

x2 min =
−y−1 y−2 − y−2

√
(x−1 )2 + (y−1 )2

x−1
.

Since −y−1 y−2 − y−2
√

(x−1 )2 + (y−1 )2 < 0 and x2 min ∈]x2[, it can be concluded that x−1 < 0. From Eq (3.7),
one has,

y2 min =
−x−1 x−2 − x−2

√
(x−1 )2 + (x−1 )2

y−1
.

Since −x−1 x−2 − x−2
√

(x−1 )2 + (x−1 )2 < 0, then if y−1 > 0 implies that y2 min < 0, which means that y2 min <

[y2]. If y−1 < 0, then

0 <
−y−1 −

√
(x−1 )2 + (y−1 )2

x−1
< 1.

From this it follows that,

x2 min = y−2

−y−1 −
√

(x−1 )2 + (y−1 )2

x−1

 < y−2 ,

which means that x−2 < y−2 . Moreover, if y−1 < 0,

0 <
−x−1 −

√
(x−1 )2 + (y−1 )2

y−1
< 1.
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That is,

y2 min = x−2

−x−1 −
√

(x−1 )2 + (x−1 )2

y−1

 < x−2 < y−2 .

This proves y2 min < [y2].
The claim that f (p1 min) < f (p3 min) is obvious. �

The computation of max f , min g and max g can be analyzed in a similar fashion. The proofs are
omitted in order to keep the paper readable. All results are presented in the following algorithms.

Algorithm 1. min f if 0 ∈ [x2]
if 0 ∈]x1[ and 0 ∈]x2[

if x2 min 1 ∈]x2[ and x2 min 2 ∈]x2[
min f = f (p1 min)

else if x2 min 1 ∈]x2[ or x2 min 2 ∈]x2[
min f = min ( f (p1 min), f (p3 min))

else
min f = f (p3 min)

else if x2 min ∈]x2[
min f = f (p1 min)

else
min f = f (p3 min)

else if 0 ∈ [y2]
if 0 ∈]y1[ and 0 ∈]y2[

if y2 min 1 ∈]y2[ and y2 min 2 ∈]y2[
min f = f (p2 min)

else if y2 min 1 ∈]y2[ or y2 min 2 ∈]y2[
min f = min ( f (p2 min), f (p3 min))

else
min f = f (p3 min)

else if y2 min ∈]y2[
min f = f (p2 min)

else
min f = f (p3 min)

else if x2 min ∈]x2[
min f = f (p1 min)

else if y2 min ∈]y2[
min f = f (p2 min)

else
min f = f (p3 min).

Algorithm 2. max f if 0 ∈ [x2]
if 0 ∈]x1[ and 0 ∈]x2[

if x2 max 1 ∈]x2[ and x2 max 2 ∈]x2[
max f = f (p1 max)

else if x2 max 1 ∈]x2[ or x2 max 2 ∈]x2[
max f = max ( f (p1 max), f (p3 max))

else
max f = f (p3 max)

else if x2 max ∈]x2[
max f = f (p1 max)

else
max f = f (p3 max)

else if 0 ∈ [y2]
if 0 ∈]y1[ and 0 ∈]y2[

if y2 max 1 ∈]y2[ and y2 max 2 ∈]y2[
max f = f (p2 max)

else if y2 max 1 ∈]y2[ or y2 max 2 ∈]y2[
max f = max ( f (p2 max), f (p3 max))

else
max f = f (p3 max)

else if y2 max ∈]y2[
max f = f (p2 max)

else
max f = f (p3 max)

else if x2 max ∈]x2[
max f = f (p1 max)

else if y2 max ∈]y2[
max f = f (p2 max)

else
max f = f (p3 max).

Algorithm 3. min g
if 0 ∈ [x2]

if 0 ∈]y1[ and 0 ∈]x2[
if x2 min 1 ∈]x2[ and x2 min 2 ∈]x2[

min g = g(p1 min)
else if x2 min 1 ∈]x2[ or x2 min 2 ∈]x2[

min g = min (g(p1 min), g(p3 min))
else

min g = g(p3 min)
else if x2 min ∈]x2[

min g = g(p1 min)
else

min g = g(p3 min)
else if 0 ∈ [y2]

if 0 ∈]x1[ and 0 ∈]y2[
if y2 min 1 ∈]y2[ and y2 min 2 ∈]y2[

min g = g(p2 min)
else if y2 min 1 ∈]y2[ or y2 min 2 ∈]y2[

min g = min (g(p2 min), g(p3 min))
else

min g = g(p3 min)
else if y2 min ∈]y2[

min g = g(p2 min)
else

min g = g(p3 min)
else if x2 min ∈]x2[

min g = g(p1 min)
else if y2 min ∈]y2[

min g = g(p2 min)
else

min g = g(p3 min).

Algorithm 4. max g
if 0 ∈ [x2]

if 0 ∈]y1[ and 0 ∈]x2[
if x2 max 1 ∈]x2[ and x2 max 2 ∈]x2[

max g = g(p1 max)
else if x2 max 1 ∈]x2[ or x2 max 2 ∈]x2[

max g = max (g(p1 max), g(p3 max))
else

max g = g(p3 max)
else if x2 max ∈]x2[

max g = g(p1 max)
else

max g = g(p3 max)
else if 0 ∈ [y2]

if 0 ∈]x1[ and 0 ∈]y2[
if y2 max 1 ∈]y2[ and y2 max 2 ∈]y2[

max g = g(p2 max)
else if y2 max 1 ∈]y2[ or y2 max 2 ∈]y2[

max g = max (g(p2 max), g(p3 max))
else

max g = g(p3 max)
else if y2 max ∈]y2[

max g = g(p2 max)
else

max g = g(p3 max)
else if x2 max ∈]x2[

max g = g(p1 max)
else if y2 max ∈]y2[

max g = g(p2 max)
else

max g = g(p3 max).
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4. Numerical results

In this section, two numerical examples are provided to show the efficiency and robustness of the
proposed algorithm. A comparison of the proposed algorithm with the existing algorithms in [7] and [8]
is included.

In the examples, we will adopt two basic cases:
All optimum points are of type P1 or P2 (Example 1).
All optimum points are of type P3 (Example 2).

All other cases fall between these two cases. Therefore, these two examples represent the worst and
best case scenarios in the sense of computation time. They demonstrate the fact that the proposed
procedure requires up to 256 times less computation time and never more than the method in [8].

Example 1. Consider the two intervals,

Z1 = [x−1 , x
+
1 ] + i[y−1 , y

+
1 ] = [−3, 4] + i[1, 2],

Z2 = [x−2 , x
+
2 ] + i[y−2 , y

+
2 ] = [−4, 3] + i[−3,−1].

Computing min f

x2 min 1 =
−y+

1 y+
2 + y+

2

√
(x−1 )2 + (y+

1 )2

x−1
=

2 −
√

(−3)2 + 22

(−3)

= 0.535183758487996 ∈]x2[
f (x−1 , x2 min 1, y+

1 , y
+
2 ) = −2.802775637731994

x2 min 2 =
−y+

1 y+
2 + y+

2

√
(x+

1 )2 + (y+
1 )2

x+
1

=
2 −
√

42 + 22

4

= −0.618033988749895 ∈]x2[
f (x+

1 , x2 min 2, y+
1 , y

+
2 ) = −3.236067977499790 = min f .

Computing max f

x2 max 1 =
−y−1 y+

2 − y+
2

√
(x−1 )2 + (y−1 )2

x−1
=

1 +
√

(−3)2 + 12

−3

= −1.387425886722793 ∈]x2[
f (x−1 , x2 max 1, y−1 , y

+
2 ) = 1.081138830084190

x2 max 2 =
−y−1 y+

2 − y+
2

√
(x+

1 )2 + (y−1 )2

x+
1

=
1 +
√

42 + 12

4

= 1.280776406404415 ∈]x2[
f (x+

1 , x2 max 2, y−1 , y
+
2 ) = 1.561552812808830 = max f .

Computing min g
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x2 min 1 =
x−1 y+

2 + y+
2

√
(x−1 )2 + (y−1 )2

y−1
=

3 −
√

(−3)2 + 12

1

= −0.162277660168380 ∈]x2[
g(x−1 , x2 min 1, y−1 , y

+
2 ) = −3.081138830084190

x2 min 2 =
x−1 y+

2 + y+
2

√
(x−1 )2 + (y+

1 )2

y+
1

=
3 −

√
(−3)2 + 22

2

= −0.302775637731995 ∈]x2[
g(x−1 , x2 min 2, y+

1 , y
+
2 ) = −3.302775637731994 = min g.

Computing max g

x2 max 1 =
x+

1 y+
2 − y+

2

√
(x+

1 )2 + (y−1 )2

y−1
=
−4 +

√
42 + 12

1

= 0.123105625617661 ∈]x2[
g(x+

1 , x2 max 1, y+
1 , y

+
2 ) = 4.061552812808831

x2 max 2 =
x+

1 y+
2 − y+

2

√
(x+

1 )2 + (y+
1 )2

y+
1

=
−4 +

√
42 + 22

2

= 0.236067977499790 ∈]x2[
g(x+

1 , x2 max 2, y+
1 , y

+
2 ) = 4.236067977499790 = max g.

Thus, the optimal rectangle is

�{Z1 � Z2} = [−3.23606797749979, 1.56155281280883]
+ i[−3.302775637731994, 4.23606797749979] (See Figure 4).

If one uses the existing algorithm in [8], a very large numbers of candidates need to be evaluated
in order to get the above results. Particularly for the given example it requires computation of 32
stationary points and evaluation of up to 32 function values of f in order to find max f or min f , and
the same amount of computation is required for finding max g or min g. That sums up to total of about
240 times more computations compared to the proposed method. On the other hand Figure 4 also
shows a comparison between the method introduced in this work and the method in [7]. It can be
clearly seen that the computation done by using the procedure in [7] yields to a non-optimal solution.
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Figure 4. Example 1.

Example 2. Consider the two intervals,
Z1 = [x−1 , x

+
1 ] + i[y−1 , y

+
1 ] = [1, 2] + i[−2, 2],

Z2 = [x−2 , x
+
2 ] + i[y−2 , y

+
2 ] = [2, 3] + i[1, 2].

Using our algorithms, we get,
min f = min( f (t1), f (t2), f (t3), f (t4))
= min(0, 0.10,−0.25,−0.0769) = −0.25
where,
t1 = (x−1 , x

−
2 , y

−
1 , y

−
2 ), t2 = (x−1 , x

+
2 , y

−
1 , y

−
2 ), t3 = (x−1 , x

−
2 , y

−
1 , y

+
2 ), t4 = (x−1 , x

+
2 , y

−
1 , y

+
2 )

max f = max( f (r1), f (r2), f (r3), f (r4))
= max(1.2, 0.8, 1, 0.7692) = 1.2
where,
r1 = (x+

1 , x
−
2 , y

+
1 , y

−
2 ), r2 = (x+

1 , x
+
2 , y

+
1 , y

−
2 ), r3 = (x+

1 , x
−
2 , y

+
1 , y

+
2 ), r4 = (x+

1 , x
+
2 , y

+
1 , y

+
2 )

min g = min(g(u1), g(u2), g(u3), g(u4))
= min(−1.2,−0.8,−1,−0.7692) = −1.2
where,
u1 = (x+

1 , x
−
2 , y

−
1 , y

−
2 ), u2 = (x+

1 , x
+
2 , y

−
1 , y

−
2 ), u3 = (x+

1 , x
−
2 , y

−
1 , y

+
2 ), u4 = (x+

1 , x
+
2 , y

−
1 , y

+
2 )

max g = max(g(v1), g(v2), g(v3), g(v4))
= max(0.6, 0.5, 0.25, 0.3077) = 0.6
where,
v1 = (x−1 , x

−
2 , y

+
1 , y

−
2 ), v2 = (x−1 , x

+
2 , y

+
1 , y

−
2 ), v3 = (x−1 , x

−
2 , y

+
1 , y

+
2 ), v4 = (x−1 , x

+
2 , y

+
1 , y

+
2 )

In this case our algorithm and the existing one in [8] reach the optimal results in the same amount
of computation.
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Figure 5. Example 2.

5. Conclusions

In this paper, complex interval arithmetic using the rectangular form is re-visited. Addition,
subtraction and multiplication operations can be performed by using well-known interval arithmetic
rules flawlessly. But for the division operation, the optimal rectangular hull problem has not a trivial
solution. A fast and accurate way for calculating the optimal rectangular hull is derived and expressed
as a simple algorithm. The efficiency of the algorithm is observed by comparison with its ancestors. It
is worth noting that although the method is introduced in the complex plane, it can be applied to all
two dimensional interval arithmetic problems.

There are many modern applications of interval analysis such as [14–17] in which the method
introduced in this paper can be used whenever division is involved. Another possible field of
application of the method in this paper is the uncertainty inverse problem where the uncertain
parameters are modeled with intervals [18–22]. For instance the method can be successfully
implemented in the approach of [18] whenever there are two uncertain parameters in the model.

For future work, the arithmetic where the complex intervals are taken as sectors is a topic that could
be improved. Another interesting research area for future work is the multidimensional parallelepiped
model for structural uncertainty analysis [23,24]. In [23] the authors unify dependent and independent
uncertain variables and as a result the domain forms a multidimensional parallelepiped. In the 2-D
case the model results in a parallelogram. The investigation of the arithmetic of parallelogram-valued
(or even higher dimension parallelepipeds-valued) quantities appears to be a challenging problem. The
solution might possibly be a modification of the method introduced in this paper.
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