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Abstract: In this paper, we consider the stability and instability of standing waves for the
inhomogeneous fractional Schrödinger equation

i∂tψ = (−∆)sψ − |x|−b|ψ|2pψ.

By applying the profile decomposition of bounded sequences in H s and variational methods, in the
L2-subcritical case, i.e., 0 < p < 4s−2b

N , we prove that the standing waves are orbitally stable. In the
L2-critical case, i.e., p = 4s−2b

N , we show that the standing waves are strongly unstable by blow-up.
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1. Introduction

In recent years, there has been a great deal of interest in using fractional Laplacians to model the
physical phenomena. By extending the Feynman path integral from the Brownian-like to the Lévy-
like quantum mechanical paths, Laskin in [1,2] deduce the following fractional nonlinear Schrödinger
equation (NLS)

i∂tψ = (−∆)sψ + f (ψ), (1.1)

where 0 < s < 1 and f (ψ) is the nonlinearity. The fractional differential operator (−∆)s is defined by
(−∆)sψ = F −1[|ξ|2sF (ψ)], where F and F −1 are the Fourier transform and inverse Fourier transform,
respectively.

Recently, equations of this type received much attention, see [3–18] for power-type nonlinearity
|ψ|pψ, [19–24] for the Hartree-type nonlinearity (|x|−γ ∗ |ψ|2)ψ, and [19, 20, 25–29] for the Choquard
-type nonlinearity (Iα ∗ |ψ|p)|ψ|p−2ψ, where the symbol ∗ denotes the convolution.
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In this paper, we consider the stability and instability of standing waves for the following
inhomogeneous fractional Schrödinger equation{

i∂tψ = (−∆)sψ − |x|−b|ψ|pψ, (t, x) ∈ [0,T ) × RN ,

ψ(0, x) = ψ0(x),
(1.2)

where ψ(t, x) : [0,T ) × RN → C is the complex valued function, x = (x1, x2, · · · , xn), ψ0 ∈ H s,
0 < s < 1, 0 < T ≤ ∞, 0 < b < min{2s,N}.

Equation (1.2) arises various physical contexts in the description of nonlinear waves such as
propagation of a laser beam and plasma waves. When b = 0, it appears in nonlinear optics, plasma
physics, and fluid mechanics, see [30]. When b < 0, it can be considered as modeling
inhomogeneities in the medium. The inhomogeneous nonlinearity arises due to the effect of changes
in the field intensity on the wave propagation characteristics of the medium and the nonlinear weight
can be looked as the proportional to the electron density, see [31, 32].

Note that if ψ(t, x) is a solution of (1.2), then

ψλ(t, x) = λ
2s−b

p ψ(λ2st, λx) f or all λ > 0,

is also a solution of (1.2). Computing the homogeneous Sobolev norm, we have

‖ψλ(t)‖Ḣs = λs+ 2s−b
p −

N
2 ‖ψ(t)‖Ḣs .

Thus, the critical Sobolev index is given by sc = N
2 −

2s−b
p . When sc < 0, equation (1.2) is L2-

subcritical. The smallest power for which blow-up may occur is p = 4s−2b
N , which is referred to

L2-critical case corresponding to sc = 0. When 0 < sc < s, (1.2) is L2-supercritical and H s-subcritical.
When sc = s, (1.2) is H s-critical. In this paper, we are interested in the L2-subcritical and critical cases.
Therefore, we restrict our attention to the case sc ≤ 0. Rewriting this last condition in terms of p, we
obtain

p ∈ (0,
4s − 2b

N
].

To avoid p to be negative, we assume the technical restriction 0 < b < min{2s,N}.
When s = 1, the well-posedness for (1.2) was first studied by Genoud-Stuart in [ [33], Appendix]

by using the argument of Cazenave [34], see also [35]. Farah in [36] established a
Gagliardo-Nirenberg type estimate and use it to obtain sufficient conditions for global existence and
blow-up in H1. Afterwards, Farah and Guzman in [37, 38] proved that the above global solution is
scattering under the radial condition of the initial data. Dinh in [39] established several blow-up
criteria for (1.2) with s = 1.

When s < 1 and b < 0, Saanouni in [27] studied the well-posedness issues and stability of standing
waves for (1.2). But to the best of our knowledge, there are no any results about the stability and
instability of standing waves for (1.2) with b > 0. The main purpose of this paper is to study the
stability and instability of standing waves for (1.2).

The standing waves of (1.2) are solutions of the form eiωtu, where ω ∈ R is a frequency and u ∈ H s

is a nontrivial solution to the elliptic equation

(−∆)su + ωu − |x|−b|u|pu = 0. (1.3)
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Note also that (1.3) can be written as S ′ω(u) = 0, where S ω(u) is the action functional defined by

S ω(u) :=E(u) +
ω

2
‖u‖2L2 , (1.4)

where the energy functional E(u) is defined by

E(u) =
1
2
‖u‖2Ḣs −

1
p + 2

∫
RN
|x|−b|u(x)|p+2dx. (1.5)

We denote the set of non-trivial solutions of (1.3) by

Aω := {u ∈ H s\{0} : S ′ω(u) = 0}.

Definition 1.1. (Ground states). A function u ∈ Aω is called a ground state for (1.3) if it is a
minimizer of S ω over the setAω. The set of ground states is denoted by Gω. In particular,

Gω = {u ∈ Aω, S ω(u) ≤ S ω(v), ∀v ∈ Aω}.

The first part of this paper concerns the stability of standing waves in the L2-subcritical case 0 <

p < 4s−2b
N . To this end, applying the ideas by Cazenave and Lions in [40], for c > 0, we consider the

following minimizing problem

m(c) = in f {E(v) : v ∈ H s, ‖v‖2L2 = c}. (1.6)

We will see later (Lemma 3.2) that the above minimizing problem is well-defined. Moreover, all
minimizing sequences of (1.6) are pre-compact, and then the above infimum is attained. Let us denote

Mc := {u : E(u) = m(c), ‖u‖2L2 = c}.

By the Euler-Lagrange Theorem, we see that if u ∈ Mc, then there exists ω > 0 such that u is a
solution of (1.3). Note also that if u is a solution of (1.3), then ψ(t, x) = eiωtu(x) is a solution to (1.2).
Moreover, if u ∈ Mc, i.e., u is a minimizer of (1.6), then ‖eiωtu‖2L2 = ‖u‖2L2 = c and E(eiωtu) = E(u) =

m(c) for all t ≥ 0. Thus, eiωtu is also a minimizer of (1.6), i.e., eiωtu ∈ Mc. One usually calls eiωtu the
orbit of u.

Our first result is the following orbital stability of standing waves for (1.2) in the L2-subcritical case.

Theorem 1.2. Let N ≥ 2, N
2N−1 ≤ s < 1, 0 < p < 4s−2b

N , and 0 < b < min{2s,N}. Then, the setMc

is not empty, and it is orbitally stable in the following sense: for any ε > 0, there exists δ > 0 such that
for any initial data ψ0 satisfying

inf
u∈Mc
‖ψ0 − u‖Hs < δ

the corresponding solution ψ(t) to (1.2) with initial data ψ0 satisfies

inf
u∈Mc
‖ψ(t) − u‖Hs < ε

for all t > 0.
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Compared with the results in [19, 20, 34], the main difficulty of the proof is the lack of space
translation invariance due to the inhomogeneous nonlinearity |x|−b|u|2pu. The usual method is to
compare with the limit equation. However, due to |x|−b → 0 as |x| → ∞, we cannot adopt the usual
method to study this problem. In order to overcome this difficulty, we apply the profile decomposition
in H s to study the compactness of all minimizing sequences. In particular, in order to exclude the
vanishing, we must prove the boundedness of the translation sequence. Moreover, one can apply the
same argument to prove the stability of standing waves for (1.2) with s = 1.

Finally, motivated by the ideas in [23, 29, 34, 41–43], we study the strong instability result in the
L2-critical case p = 4s−2b

N .

Theorem 1.3. Let N ≥ 2, N
2N−1 ≤ s < 1, p = 4s−2b

N , and 0 < b < min{2s,N}. Then the standing
wave ψ(t, x) = eiωtuω(x) is unstable in the following sense: there exists {ψ0,n} ⊂ H s such that ψ0,n → uω
in H s as n → ∞ and the corresponding solution ψn of (1.2) with initial data ψ0,n blows up in finite or
infinite time for any n ≥ 1.

This paper is organized as follows: in Section 2, we firstly collect some lemmas such as the local
well-posedness of (1.2), the profile decomposition of bounded sequences in H s. In Section 3, we give
the proof of the stability result stated in Theorem (1.2). Finally, we study the strong instability of
standing waves in Section 4.

2. Preliminaries

In this section, we recall some preliminary results that will be used later. Firstly, let us recall
the local theory for the Cauchy problem (1.2). The local well-posedness for (1.2) with b = 0 in
the energy space H s was first studied by Hong and Sire in [22]. The proof is based on Strichartz
estimates and the contraction mapping argument. Note that for non-radial data, Strichartz estimates
have a loss of derivatives. Fortunately, this loss of derivatives can be compensated by using Sobolev
embedding. However, it leads to a weak local well-posedness in the energy space compared to the
classical nonlinear Schrödinger equation. We refer the reader to [13, 22] for more details. One can
remove the loss of derivatives in Strichartz estimates by considering radially symmetric data. However,
it needs a restriction on the validity of s, namely N

2N−1 ≤ s < 1. In this paper, we can obtain the
following local well-posedness for (1.2) with radial H s initial data. The proof is standard, see [13,22].
So we omit it.

Theorem 2.1. Let N ≥ 2, N
2N−1 ≤ s < 1, 0 < p < 4s−2b

N−2s and 0 < b < min{2s,N}. Then for any
ψ0 ∈ H s radial, there exists T = T (‖ψ0‖Hs) such that (1.2) admits a unique solution ψ ∈ C([0,T ],H s).
Let [0,T ∗) be the maximal time interval on which the solution ψ is well-defined, if T ∗ < ∞, then
‖ψ(t)‖Ḣs → ∞ as t ↑ T ∗. Moreover, for all 0 ≤ t < T ∗, the solution ψ(t) satisfies the following
conservations of mass and energy

M(ψ(t)) := ‖ψ(t)‖L2 = ‖ψ0‖L2 , (2.1)

and

E(ψ(t)) :=
1
2

∫
RN
|(−∆)s/2ψ(t, x)|2dx −

1
p + 2

∫
RN
|x|−b|ψ(t, x)|p+2dx = E(ψ0). (2.2)
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Next, we recall the profile decomposition of bounded sequences in H s, which has been
established in [24].

Lemma 2.2. Let N ≥ 2, 0 < s < 1. If {un}
∞
n=1 is a bounded sequence in H s, then there exist a

subsequence of {un}
∞
n=1 (still denoted by {un}

∞
n=1), a family {x j

n}
∞
j=1 of sequences in RN and a sequence

{U j}∞j=1 in H s such that
(i) for every k , j, |xk

n − x j
n| → +∞, as n→ ∞;

(ii) for every l ≥ 1 and every x ∈ RN , we have

un(x) =

l∑
j=1

U j(x − x j
n) + rl

n, (2.3)

with lim supn→∞ ‖r
l
n‖Lq → 0 as l→ ∞ for every q ∈ (2, 2N

N−2s ). Moreover,

‖un‖
2
L2 =

l∑
j=1

‖U j‖2L2 + ‖rl
n‖

2
L2 + ◦(1), (2.4)

‖(−∆)s/2un‖
2
L2 =

l∑
j=1

‖(−∆)s/2U j‖2L2 + ‖(−∆)s/2rl
n‖

2
L2 + ◦(1), (2.5)

∫
RN
|x|−b|

l∑
j=1

U j(x − x j
n)|p+2dx =

l∑
j=1

∫
RN
|x|−b|U j(x − x j

n)|p+2dx + ◦(1) (2.6)

where ◦(1) = ◦n(1)→ 0 as n→ ∞.

Proof. For the proof of (2.3)–(2.5), see [24]. We need only prove (2.6). Using the elementary
inequality

||

l∑
j=1

a j|
p −

l∑
j=1

|a j|
p| ≤ C

l∑
j,k

|a j|
p−1|ak|,

and the pair orthogonality of sequence {x j
n}
∞
j=1, we can estimate as follows:∣∣∣∣∣∣∣

∫
RN
|x|−b|

l∑
j=1

U j(x − x j
n)|p+2dx −

l∑
j=1

∫
RN
|x|−b|U j(x − x j

n)|p+2dx

∣∣∣∣∣∣∣
=

∫
RN
|x|−b

∣∣∣∣∣∣∣|
l∑

j=1

U j(x − x j
n)|p+2 −

l∑
j=1

|U j(x − x j
n)|p+2

∣∣∣∣∣∣∣ dx

≤C
∫
RN
|x|−b

l∑
j,k

|U j(x − x j
n)|p+1|Uk(x − xk

n)|dx

=C
∫
RN
|x + x j

n|
−b

l∑
j,k

|U j(x)|p+1|Uk(x + x j
n − xk

n)|dx→ 0,

as n→ ∞. This completes the proof. �
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Finally, we recall the following sharp Gagliardo-Nirenberg inequality, which has been
established in [44].

Lemma 2.3. [44] Let 0 < s < 1, 0 < p < 4s−2b
N−2s and 0 < b < min{2s,N}. Then, for all u ∈ H s,∫

RN
|x|−b|u(x)|p+2dx ≤ Copt‖u‖

N p+2b
2s

Ḣs ‖u‖
p+2− N p+2b

2s

L2 , (2.7)

where the best constant Copt is given by

Copt =

(
N p + 2b

2s(p + 2) − (N p + 2b)

) 4s−(N p+2b)
4s 2s(p + 2)

(N p + 2b)‖Q‖p
L2

,

where Q is the ground state of (1.3) with ω = 1. Moreover, the following Pohozaev’s identities hold
true:

‖Q‖2Ḣs =
N p + 2b
2s(p + 2)

∫
RN
|x|−b|Q|p+2dx =

N p + 2b
2s(p + 2) − (N p + 2b)

‖Q‖2L2 . (2.8)

3. Orbital stability of standing waves

In order to study the orbital stability of standing waves of (1.2), we firstly establish the following
global existence of (1.2) by using (2.1), (2.2), (2.7). The proof is standard, see e.g., [34, 45]. So we
omit it.

Lemma 3.1. Let N ≥ 2, N
2N−1 ≤ s < 1, 0 < p < 4s−2b

N , and 0 < b < min{2s,N}. Then, the solution ψ
of (1.2) exists globally.

Next, by applying the profile decomposition of bounded sequences in H s, we can solve the
variational problem (1.6) and obtain the following result.

Lemma 3.2. Let N ≥ 2, 0 < s < 1, 0 < p < 2s−b
N , and 0 < b < min{2s,N}. Then, there exists

u0 ∈ H s such that m(c) = E(u0).

Proof. Firstly, we prove that the minimizing problem (1.6) is well-defined and there exists C0 > 0 such
that

m(c) ≤ −C0 < 0. (3.1)

We deduce from the inequality (2.7) that there exists a constant C(‖Q‖L2) such that

E(u) =
1
2

∫
RN
|(−∆)s/2u|2dx −

1
p + 2

∫
RN
|x|−b|u(x)|p+2dx

≥
1
2
‖(−∆)s/2u‖2L2 −C(‖Q‖L2)‖(−∆)s/2u‖

N p+2b
2s

L2 ‖u‖p+2− N p+2b
2s

L2 .

Since p < 4s−2b
N , it follows that N p+2b

2s < 2. Thus, we deduce from the Young inequality that for all
0 < ε < 1

2 , there exists a constant C(ε, ‖Q‖L2 , c) such that

C(‖Q‖L2)‖(−∆)s/2u‖
N p+2b

2s

L2 ‖u‖p+2− N p+2b
2s

L2 ≤ ε‖(−∆)s/2u‖2L2 + C(ε, ‖Q‖L2 , c).
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This implies that

E(u) ≥
(
1
2
− ε

)
‖(−∆)s/2u‖2L2 −C(ε, ‖Q‖L2 , c). (3.2)

Therefore, E(u) has a lower bound and the variational problem (1.6) is well-defined.
Now, let u ∈ H s be a fixed function and ‖u‖2L2 = c. Set uλ = λ

N
2 u(λx). It follows easily that

‖uλ‖2L2 = ‖u‖2L2 = c,

and

E(uλ) =
λ2s

2

∫
RN
|(−∆)s/2u|2dx −

λ
N p+b

2

p + 2

∫
RN
|x|−b|u(x)|p+2dx.

Since N p + b < N p + 2b < 4s, we can choose λ > 0 sufficiently small such that there exists C0 > 0
such that E(uλ) ≤ −C0 < 0. Hence, (3.1) is true.

Secondly, let {un}
∞
n=1 be the minimizing sequence of the variational problem (1.6) such that

E(un)→ m(c) and ‖un‖
2
L2 = c. (3.3)

This implies that for n large enough, E(un) < m(c) + 1. Thus, it follows from (3.2) that for all
0 < ε < 1

2 (
1
2
− ε

)
‖(−∆)s/2un‖

2
L2 ≤ m(c) + 1 + C(ε, ‖Q‖L2 , c).

This yield that {un}
∞
n=1 is bounded in H s.

Next, we claim that there exists C1 > 0 such that

lim inf
n→∞

∫
RN
|x|−b|un(x)|p+2dx ≥ C1. (3.4)

Assume by contradiction that (3.4) is false, we get

0 > m(c) = lim
n→∞

E(un) =
1
2

∫
RN
|(−∆)s/2un|

2dx ≥ 0.

Thus, we have (3.4).
Thirdly, applying the profile decomposition of bounded sequences in H s, we prove that the infimum

of the variational problem (1.6) can be attained. Apply Lemma 2.2 to the minimizing sequence {un}
∞
n=1.

Up to a subsequence, un can be decomposed as

un(x) =

l∑
j=1

U j(x − x j
n) + rl

n, (3.5)

with lim supn→∞ ‖r
l
n‖Lq → 0 as l→ ∞ for every q ∈ (2, 2N

N−2s ).
Now, injecting (3.5) into the energy functional E(un), it follows from (2.4)–(2.6) that

E(un) =

l∑
j=1

E(U j(· − x j
n)) + E(rl

n) + ◦n(1), (3.6)
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where ◦n(1) → 0 as n → ∞. For every U j(· − x j
n)(1 ≤ j ≤ l), take the scaling transform U j

λ j
(x) =

λ jU j(x − x j
n) with λ j =

√
c

‖U j‖L2
. It follows easily that

‖U j
λ j
‖2L2 = c, (3.7)

and

E(U j
λ j

) =
λ2

j

2

∫
RN
|(−∆)s/2U j|2dx −

λ
p+2
j

p + 2

∫
RN
|x|−b|U j(x − x j

n)|p+2dx

= λ2
j E(U j(· − x j

n)) −
λ2

j(λ
p
j − 1)

p + 2

∫
RN
|x|−b|U j(x − x j

n)|p+2dx.

This implies that

E(U j(· − x j
n)) =

E(U j
λ j

)

λ2
j

+
λ

p
j − 1

p + 2

∫
RN
|x|−b|U j(x − x j

n)|p+2dx. (3.8)

Similarly, for the term E(rl
n), we can obtain

E(rl
n) =

‖rl
n‖

2
L2

c
E

( √
c

‖rl
n‖L2

rl
n

)
+

(
√

c
‖rl

n‖L2
)p − 1

p + 2

∫
RN
|x|−b|rl

n(x)|p+2dx + ◦(1)

≥
‖rl

n‖
2
L2

c
E

( √
c

‖rl
n‖L2

rl
n

)
+ ◦n(1). (3.9)

Since ‖U j
λ j
‖2L2 = ‖

√
c

‖rl
n‖L2

rl
n‖

2
L2 = c, we deduce from the definition of m(c) that

E(U j
λ j

) ≥ m(c), and E
( √

c
‖rl

n‖L2
rl

n

)
≥ m(c). (3.10)

Thus, we infer from (3.6), (3.8) and (3.9) that

E(un) ≥
l∑

j=1

E(U j
λ j

)

λ2
j

+
λ

p
j − 1

p + 2

∫
RN
|x|−b|U j(x − x j

n)|p+2dx

 +
‖rl

n‖L2

c
E

( √
c

‖rl
n‖L2

rl
n

)
+ ◦n(1)

≥

l∑
j=1

‖U j‖2L2

c
m(c) + inf

j≥1

λ
p
j − 1

p

 l∑
j=1

∫
RN
|x|−b|U j(x − x j

n)|p+2dx

 +
‖rl

n‖L2

c
m(c) + ◦n(1). (3.11)

Note that the series
∑∞

j=1 ‖U
j‖2L2 is convergent, there exists j0 ≥ 1 such that

‖U j0‖2L2 = sup{‖U j‖2L2 , j ≥ 1} and inf
j≥1
λ j = λ j0 =

√
c

‖U j0‖L2
. (3.12)

Let n→ ∞ and l→ ∞ in (3.11), it follows from (3.4) that

m(c) ≥ m(c) + C1

(( √
c

‖U j0‖L2

)p

− 1
)
,
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which implies
‖U j0‖2L2 ≥ c.

Hence, ‖U j0‖2L2 = c and there exists only one term U j0 , 0 in the decomposition (3.5). We
consequently rewrite (3.5) as

un(x) = U j0(x − x j0
n ) + rn(x).

Note that
‖un‖

2
L2 = ‖U j0‖2L2 + ‖rn‖

2
L2 + on(1),

and ‖un‖
2
L2 = ‖U j0‖2L2 = c, we get

lim
n→∞
‖rn‖L2 = 0.

This shows that rn → 0 in L2. This, together with the Gagliardo-Nirenberg inequality, implies that
limn→∞ ‖rn‖

q+2
Lq+2 = 0, for all q ∈ (0, 4

N−2 ). We consequently obtain∫
RN
|x|−b|rn(x)|p+2dx→ 0.

Applying the lower semi-continuity of norm, it follows that lim infn→∞ E(rn) ≥ 0, and thus

lim inf
n→∞

E(U j0(· − x j0
n )) ≤ lim inf

n→∞
E(U j0(· − x j0

n )) + lim inf
n→∞

E(rn)

≤ lim inf
n→∞

(
E(U j0(· − x j0

n )) + E(rn)
)

= lim inf
n→∞

E(un) = m(c).

On the other hand, since ‖U j0(· − x j0
n )‖2L2 = ‖U j0‖2L2 = c for all n ≥ 1, we have E(U j0(· − x j0

n )) ≥ m(c)
for all n ≥ 1. Therefore,

lim inf
n→∞

E(U j0(· − x j0
n )) = m(c).

We next prove that the sequence (x j0
n )n≥1 is bounded. Indeed, if it is not true, then up to a

subsequence, we assume that |x j0
n | → ∞ as n → ∞. Without loss of generality, we assume that U j0 is

continuous and compactly supported. We have∫
RN
|x|−b|U j0(x − x j0

n )|p+2dx =

∫
supp(U j0 )

|x + x j0
n |
−b|U j0(x)|p+2dx.

Since |x j0
n | → ∞ as n → ∞, we see that |x + x j0

n | ≥ |x
j0
n | − |x| → ∞ as n → ∞ for all x ∈ supp(U j0).

This shows that ∫
RN
|x|−b|U j0(x − x j0

n )|p+2dx→ 0,

as n→ ∞. This yields

lim inf
n→∞

E(U j0(· − x j0
n )) =

1
2
‖U j0‖Ḣs = m(c).

By the definition of E(U j0), we obtain

E(U j0) +
1

p + 2

∫
RN
|x|−b|U j0 |p+2dx = m(c),
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which implies that E(U j0) < m(c), which is an contradiction with E(U j0) ≥ m(c) due to ‖U j0‖2L2 = c.
Therefore, the sequence (x j0

n )n≥1 is bounded, and up to a subsequence, we assume that x j0
n → x0 as

n→ ∞.
We now write

un(x) = Ũ j0(x) + r̃n(x),

where Ũ j0(x) = U j0(x − x j0) and r̃n(x) := U j0(x − x j0
n ) − U j0(x − x j0) + rn(x). Using the fact ‖un‖

2
L2 =

‖U j0‖2L2 = c, it is easy to see that

r̃n ⇀ 0 in H s and r̃n → 0 in L2.

The first observation on r̃n allows us to write

E(un) = E(Ũ j0) + E(r̃n) + on(1).

Again, by using the lower semi-continuity of norm and the fact limn→∞

∫
RN |x|−b|r̃n|

p+2dx = 0, we
get that lim infn→∞ E(r̃n) ≥ 0. Hence, using the fact that ‖Ũ j0‖2L2 = c, we infer that

m(c) = lim inf
n→∞

E(un) ≥ lim inf
n→∞

(
E(Ũ j0) + E(r̃n)

)
≥ E(Ũ j0) + lim inf

n→∞
E(r̃n)

≥ E(Ũ j0) ≥ m(c).

Therefore, E(Ũ j0) = m(c) which completes the proof.
�

Proof of Theorem 1.2. Firstly, by Lemma 3.1, we see that the solution ψ of (1.2) exists globally.
Assume by contradiction that there exist ε0 and a sequence {ψ0,n}

∞
n=1 such that

inf
u∈Mc
‖ψ0,n − u‖Hs <

1
n
, (3.13)

and there exists {tn}
∞
n=1 such that the corresponding solution sequence {ψn(tn)}∞n=1 of (1.2) satisfies

inf
u∈Mc
‖ψn(tn) − u‖Hs ≥ ε0. (3.14)

Firstly, we claim that there exists v ∈ Mc such that

lim
n→∞
‖ψ0,n − v‖Hs = 0.

Indeed, by (3.13), there exists {vn}
∞
n=1 ⊂ Mc such that

‖ψ0,n − vn‖Hs <
2
n
. (3.15)

Due to {vn}
∞
n=1 ⊂ Mc, {vn}

∞
n=1 is a minimizing sequence of (1.6). By the argument of Lemma 3.2,

there exists v ∈ Mc such that
lim
n→∞
‖vn − v‖Hs = 0. (3.16)
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Then the claim follows from (3.15) and (3.16) immediately. Hence,

lim
n→∞
‖ψ0,n‖

2
L2 = ‖v‖2L2 = c, lim

n→∞
E(ψ0,n) = E(v) = m(c).

By the conservation of mass and energy, we have

lim
n→∞
‖ψn(tn)‖22 = c, lim

n→∞
E(ψn(tn)) = E(v) = m(c).

By the argument of Lemma 3.2, {ψn(tn)}∞n=1 is bounded in H s. Set

ψ̃n =

√
cψn(tn)

‖ψn(tn)‖L2
.

Then ‖ψ̃n‖
2
2 = c and

E(ψ̃n) =
1
2

c
‖ψn(tn)‖L2

‖ψn(tn)‖2Ḣs −
1

p + 2
c

p+2
2

‖ψn(tn)‖p+2
L2

∫
RN
|x|−b|ψn(tn)(x)|p+2dx

=
c

‖ψn(tn)‖2
L2

E(ψn(tn)) +
1

p + 2

 c
‖ψn(tn)‖2

L2

−
c

p+2
2

‖ψn(tn)‖p+2
L2

 ∫
RN
|x|−b|ψn(tn)|p+2dx.

which implies that
lim
n→∞

E(ψ̃n) = E(ψn(tn)) = m(c).

Hence, ψ̃n is a minimizing sequence of (1.6), and By the argument of Lemma 3.2, there exists
ṽ ∈ Mc such that

ψ̃n → ṽ in H s.

By the definition of ψ̃n, it follows that

ψ̃n − ψn(tn)→ 0 in H s.

We consequently obtain that
ψn(tn)→ ṽ in H s.

which contradicts (3.14). This completes the proof.

4. Strong instability of standing waves

In this section, we will prove the instability of standing waves for (1.2). We firstly recall the
following blow-up criterion for (1.2) established in [44].

Lemma 4.1. Let N ≥ 2, s ∈ ( 1
2 , 1), p = 4s−2b

N , 0 < b < min{2s,N} and p < 2s. Suppose that
ψ(t) ∈ C([0,T ); H2s) is a radial solution of (1.2). Furthermore, we suppose that

E[ψ0] < 0,

then ψ(t) blows up in finite time in the sense that T < ∞ must hold, or ψ(t) blows up infinite time such
that

‖(−∆)
s
2ψ(t)‖L2 > Ct f or all t ≥ t∗

with some constants C > 0 and t∗ > 0 that depend only on ψ0, s,N.
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Applying this blow-up criterion, we can prove the the instability of standing waves for (1.2).
Proof of Theorem 1.3. Firstly, we deduce from Pohozaev’s identities (2.8) that E(u) = 0, where u

is the ground state solution of (1.3). Thus, if we can construct initial data ψ0,n such that E(ψ0,n) < 0
and ψ0,n → u in H s, as n→ ∞, then the corresponding solution ψn blows up in finite or infinite time by
applying Lemma 4.1.

Let {cn} ⊆ C be such that |cn| > 1 and limn→∞ |cn| = 1, and {λn} ⊆ R
+ be such that limn→∞ |λn| = 1.

We take the initial data
ψ0,n(x) = cnuλn

ω (x) = cnλ
N
2
n u(λnx).

Then, we have that for all n ≥ 1

lim
n→∞
‖ψ0,n‖L2 = lim

n→∞
|cn|‖u‖L2 = ‖u‖L2 ,

lim
n→∞
‖ψ0,n‖Ḣs = lim

n→∞
|cn|λ

s
n‖u‖Ḣs = ‖u‖Ḣs .

Thus, we deduce from Brezis-Lieb’s lemma that ψ0,n → uω in H s as n→ ∞.
On the other hand, we deduce from Pohozaev’s identities (2.8) that

E(ψ0,n) =
1
2

∫
RN
|(−∆)s/2ψ0,n(x)|2dx −

N
2N + 4s − 2b

∫
RN
|x|−b|ψ0,n(x)|

2N+4s−2b
N dx

=
1
2
|cn|

2λ2s
n ‖u‖

2
Ḣs −

N
2N + 4s − 2b

|cn|
2N+4s−2b

N λ2s
n

∫
RN
|x|−b|u(x)|

2N+4s−2b
N dx

=
1
2
|cn|

2λ2s
n ‖u‖

2
Ḣs −

1
2
|cn|

2N+4s−2b
N λ2s

n ‖u‖
2
Ḣs

=
1
2

(|cn|
2 − |cn|

2N+4s−2b
N )λ2s

n ‖u‖
2
Ḣs < 0,

for all n ≥ 1. Therefore, applying Lemma 4.1, we deduce that the solution ψn(t) of (1.2) with initial
data ψ0,n blows up in finite or infinite time. This completes the proof.

5. Conclusions

In this paper, we investigate the stability and instability of standing waves for the inhomogeneous
fractional Schrödinger equation. In the L2-subcritical case, i.e., 0 < p < 4s−2b

N , we prove that the
standing waves are orbitally stable by using the profile decomposition theory and variational methods.
In the L2-critical case, i.e., p = 4s−2b

N , we show that the standing waves are strongly unstable by blow-
up. In particular, by using our methods in this paper, one can easily study the stability and instability
of standing waves for the inhomogeneous Schrödinger equation, i.e., s = 1.
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