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1. Introduction

Let I C R be an interval. Then a real-valued function f : I — R is said to be convex (concave) if
the inequality

JTAx + (1 =Dyl < 2)Af(x) + (1 = D)

holds whenever x,y € I and A € [0,1]. It is well-know that the convexity (concavity) has wild
applications in pure and applied mathematics [1-5], and many inequalities [6—19] can be found in the


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020391

6088

literature via the convexity theory. Recently, the generalizations and variants for the convexity have
attracted the attention of the researchers, for example, the GG- and GA-convexity [20], h-convexity
[21], qausi-convexity [22], p-convexity [23], exponential convexity [24], harmonic convexity [25],
s-convexity [26, 27] and others.

The classical Hermite-Hadamard inequality [28-33] is one of the most famous inequalities in
convex function theory, which can be stated as follows:

A real-valued function ¢ : [by, b,] — R is convex if and only if

by + by 1 b2 Y(by) + y(by)
l,b( > )sz—bl , l//(X)dXSf.

(1.1)
1
If ¢ is concave, then the inequalities in (1.1) remain valid in the reversed direction. The
Hermite-Hadamard inequality (1.1) provides both upper and lower estimates of the integral mean of
any convex function defined on a closed and bounded interval involving the endpoints and midpoints
of the function’s domain. Because of the excellent significance of the Hermite-Hadamard inequality,
the literature is replete with ample amount of research articles dedicated to the generalizations,
refinements, and extensions for the Hermite-Hadamard inequality for various families of convexity.
Besides generalization via convexity, great effort has gone into extending (1.1) by means of
fractional integral operators. Most popular of them is the Riemann-Liouville fractional integral
operators given in the following definition.

Definition 1. Let > 0, by, b, € R with by < b, and W € L[b,, b,]. Then the left and right Riemann-
Liouville fractional integrals J, .y and J, _ of order « are defined by

1 X
I ) = s fb -0 g(odt (x> by)

and
b

o 1 .
Jp,-(x) = T J. (t—x)"ytdt  (x < by)
respectively where I'(a) = fom e't*"\dt is the gamma function.
Sarikaya et al. [34] established the following fractional version of the Hermite-Hadamard
inequality:

Theorem 2. Let 0 < by < by and { : [b1, b;] — R be a positive convex function such that € L[by, b,].
Then the fractional integrals inequality

(b1+b2)< Ta+1)
2 )T 2by-by)

(b)) + y(by)
2

[ 0B + T3, b)) <

holds for a > 0.

In view of Theorem 2, it is pertinent to note that the positivity of the function ¢ and the numbers b,
and b, is not necessary. From Definition 1, it is clear that b; and b, are any real numbers such that
bl < bg.
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Our main contribution in this article is to use a similar technique used in [35] to obtain Theorem 2.
This time, our main result contains both sided fractional integral operators in the Riemann-Liouville
sense. In this method, we use a green function and in the process, we obtain some identities involving
the left and right Riemann-Liouville fractional integral operators. These identities are subsequently
employed to establish some new results for the class of convex, concave and monotone functions.

2. Main results

Our main result will be anchored on the succeeding lemma.
Lemma 3. (See [36, 37]) Let G be the green function defined on [by, by] X [by, by] by

by —pu, by <u<Aa;
Gy =1 :
bl—/l, ﬂﬁﬂﬁbz

Then any € C*([by, b»]) can be expressed as
b
Y(x) = ¢(br) + (x = b))y (b)) + f G(x, " (wdp. 2.1)
by
We are now in a position to frame and prove our results.

Theorem 4. Let € C*([by, b,]) be a convex function. Then, for any a > 0, the following fractional
integral inequalities hold:

(bl +b2)< a+1) Y(b) + y(b2)

2

2 )T 2by— by [JZM(bz) + sz_w(bl)] <

b] +h2

Proof. Setting x = in (2.1), we get

HZ2) = w0+ (P2 = by (b + f,, G252 o G
Equivalently,
— b2
UPG2) = w0+ (Z52 W b+ [ G o 22

Using (2.1), we do the following computations:

1
T = o | (b= 0" w0
1 bz , by .
= ﬁ (ba- x)“-l{mbl) + (= b)Y (b) + f G(x, )y 0u>du}dx
by
b) bo
== {w< ) | (b= dx (b)) | (b =) =i
(@) by
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3 by
" f (b2 = 0" Glx, o (w)dpud]
by b

1

(bz— x)" |2 <bz—X>“
= Rl , Y ey 2
b2 _ a bz b2
(= dx}+ f (bz_x)a—lGu,mw"w)dudx]
b] - b| bl
(b —b)" . (by = )™ b2
= o v eo- T )

by b
+ f (by - X)a_]G(X,/l)I#”(u)dudx].
b JIb

Therefore,
« _ 1 (b2 - bl)a ' (b2 - bl)a+1
Sy ¥(b2) = (@) [ w(by) +y (bZ)—a(cx D
by bo
+ fb i (bz—x)“_lG(x,p)w”(u)dudx].
Similarly,
by
Jp, (b)) = ) (x = b)) 'Y(x)dx
1 bz b ,
(x b)*” 1{t/f(b]) +(x = b)Y (by) + f G(x, (,u)d/l}dx
F(oz) by
b by
! {‘//(bl) (x b)* 'dx + ¢ (by) (x = b)* '(x = by)dx
F( ) by
by by
+f (X—bl)a_lG(X,/J)lﬂ (/J)d,udx}
by by
(x - 1)“ b2 o
= 0 S v [ b
b) by
+f (x = b)) 'G(x, " (u)d,udx]
by by
(by=b))* . (x=Db)*|
= Fe )[waa]) A=
b) by
+ f f (x—bl)“-1G<x,u>z//(u)dudx].
by by
So,
o _ L {=-b)"” (b, — by)**!
Jy, Y(by) = @) [ w(by) + o (bz)—l
by by
+ fb ) (x — b)) G(x, ' (Wdudx]| .

(2.3)

(2.4)
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I'la+1)
2(by=b1)*

Now, adding (2.3) and (2.4) and then multiplying the resultant sum by to get:

St [ 5, b2) + T, )]

_ Tt i [ty by
= 2erbr r(a)[ (o) + ¥ () =5

by = 0 Gl pu (dppdx + L ()

a+l1 b b 7
40/ (by )“2(,’?:3 + [ ;<x—b1>w-lc<x,mw (,u)dudX]

_ a 2(b, b) (ba=b)™*! yo+l
+ [ 72 = 2 Gl o () x
b b .,
: blz(x — b)) G(x, (/J)dudx]

= W) + ¥ 653+ ] [ [ s - 9GO o ()dud

by by

o Iy, (x — bl)a_lG(xaﬂ)l/’”(ﬂ)dﬂdx].

Subtracting (2.5) from (2.2), we obtain

(b] + bz) B I'a+1)
2 2(by - by)*

= b)) + (BN o)+ f,, G(P 2 G ity

|75,.002) + 73, w0

b( by @ T " (Wdud
s 2<b2—b1)a[fbl (b= 0 Gl

b) b)
+ f (x = b)* ' Gx, " (u)dudX]
by

by

b) b b b)
- [ [ 5m- s i [ e vr G
b| b]

2 2(by = by)*
b

(x = b)"'G(x, mdx}]w” ().

by

By the definition of the Green function,

| bi—p, ifb<pu<x
G(X,/.l) B { b1 - X, if x Su< bz,
we obtain
> a—1 1 a+l1 b b a+1
| (b= Gle = o plb2 =t = b2 = b
and
by 1
(x = b G(x, pydx = {(@+ Dby = p)(ba = b)) + (= b)),
by ala+1)

(2.5)

(2.6)

2.7)
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Substituting Eqs (2.6) and (2.7) into (2.6), then we obtain

bl + b2 F(G/ + 1) o o
HZF2) = 5| Tt + Ty wb)
b2 by + b, (by - #)aﬂ by — by by —p
= G(—=2,4) - . ,
Ll [ ( 2 ﬂ) 2(a + 1)(by — by)? - 2+ 1) 2 (2:8)
(ﬂ _ bl)a+l ] ,
- du.
2@+ Db — by IV ¥
Let |
F) = G(bl +b2,/1) _ (by — ) _+ by — b, _ by —p
2 2@+ 1)(by — by) 2a+1) 2 (2.9)
~ ('u _ bl)a+l .
2(a + 1)(by = b))
Here,
bi+by \ | b —u, bls,US%;
G( 3 ’#) —{ blgbz’ b.;—bz < u<b. (2.10)
Now, if by < u < @, then from (2.9) and (2.10), we have
u (by — p)**! by — b, (1 — by

_ b] — _
f = 2 2a+ 1)(by = b)) " 2a@+1) 2a+ 1)(by—by)*

pon_ 1 (b= (u=by)
T = = e Zbyye " 2 br

This shows that f is decreasing and f(b;) = 0 then f(u) < O for all u € [by, %].

If, on the other hand, bl;zbz < u < by, then

£ by—by, (b - ! N b-b  by-—p  (u- by)*!
2 2@+ 1)(by —b)* 2a+1) 2 2(a + 1)(by — b))~
_ M- b, (by — ! N b—b  (u- by)**!

2 2@+ Dby =b)* 2a+1) 2a+1)b,—b)
Therefore,

y _ L - (w=b)"
W = S =y 2 =b)
_a(b, — ! _alu— by !

<0,
2(by — b)) 2(by — by)®

S ()

which shows that f’ is decreasing and f’(b,) = 0 and thus f’(u) > 0. Therefore, f is increasing and
f(by) = 0. Hence, f(u) <0 forall u € [%, b,]. Combining the two cases discussed above, we have
that

f(u) <0 forall wuel[by,b;].
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Using (2.8), we deduce the first inequality:

(b1+b2)< I'a+1)
2 )= by —by)

|50 + g5 )|

For the right hand side of the inequality, we recall:

b
W) = wb) + (k= bW (bs) + fb G (u)d,
b
Wby = wiby) + (bs— bW (bo) + fb Gban 10 (W),
b
Wb + (b)) = 20(b1) + (bs — b (b) + fb (bW ()il
(b)) +y(by) (b — by)

w(by) +

2 2

’ 1 b2 "
Vb + f Glbs, 0 ().
by
Subtracting Eq (2.5) from (2.11), we get:

Yb) + (b))  T(a+1)
2 2(by = by)™

b, —by) . 1 , ,
Oy oy + 5 fb Gba i (Wi — w(by) — ¥/ (by)

[ 5,002 + 5 _ue)|

(by = by)
2

= Y(b)+ 5

@ " ” a—1 ’”
_wz—w[ fb fb (by = )™ GCx, iy (u)dudx

by b
+ f (x— bl)a_lG(X,#);l/”(ﬂ)dudx]
b Jb

1
by

1 bz[ a
= = Gby,u) — ————— by — x)* ' G(x, n)dx
szl bk = 35—y ), B2 9o

b

. b1>“-lG<x,u>dx]w” ()

by

1 ) (bz _ Iu)a+1 bz _ bl

= = G(ba, ) — -b
2fbl [ Ol = i Dlr =y T @r DA
(1 — by)**!

(o + Dby - by)e

o G

If we set

(by — p)**! by — b, (1 —by)H!
+ —b+pu- ,
(@+1)(by—b1)* (a+1) (@ + 1)(by — by)

F(u) = Gba, 1) —
then for by < u < by,

(by — p)**! b, — by (1 —by)**!

B = o e Dt =ty Tlar ) T @ DG =B

(2.11)

(2.12)

(2.13)
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@+ Db @+ 1) (@+ Dby
(bz _ bl)a+1 _ (bz _'u)a+1 _ (,Ll _ bl)a+1
(@ + 1)(b2 — by)” '

(by — p)**! N by — b, (1 —by)™*!

bi+b
If by < u < =52, then

(by =) = (u—by)* S

>0
(by = b))

F'(w)

which proves that F is increasing and F(b,) = 0, and hence F(u) > 0.

Suppose also % < 1 < by. Then,

(by — ) — (u—by)* <

<0.
(by — by)”

F'(w)

This implies that F is a decreasing function and F(b,) = 0, and thus F(u) > 0. Also, ¥ (u) > 0 since

¥ is convex. Hence, F(u) > O for all u € [by, b,] and using (2.12) amounts to:

Larl) . - wby) + y(b)
2(by — b)) S (D2) + Ty, _Y(by)| < 5 )

That completes the proof.

O

Next, we present new Hermite-Hadamard type inequalities for the class of monotone and convex

function.
Theorem 5. Let € C*([by, b,]) and a > 0, Then the following statements are true:

(1) If " | is an increasing function, then

" (b)la(by = by)?

'lﬁ(bl) +y(by)  T(a+1)
2

2(by — b)) [J§1+¢(bz) + Jffz_:ﬁ(bl)]‘ <

2@ + D(a+2)

(11) If |¥"| is a decreasing function, then

<

" (b)la(by = br)?

'w(bl) +yby)  Tla+1)
2 2(by — by)®

|75 ) + T, _wiby)] 2@ + D(a +2)

(ii1) If W"| is a convex function, then

y(b) +yby)  Tla+1) [, i
’ 2 T 2y — by ) [Jb1+‘”(b2) + Jbz_lﬁ(bﬂ]

max{[y"” (by)l, " (b)}a(by — by)?
2@+ D(a+2) '

Proof. To prove (i), we use the following identity obtained from (2.12):

Yb) + (b))  T(a+1)
2 2(by = by)”

| wba) + T3, (b))
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1 (by — ! by — by

- - bo. 1) — —b
2]1:1 [G( T Y N
(= by

T+ Db - bm]‘” dp. (2.14)

Taking absolute values on both sides of (2.14) and using the fact that |w”| is an increasing function, we
have

Wb +y(by)  Ta+1) [, .,
I e + Jbz_w(bl)]|
.1 (by — p)**! by — by (1= by)*!

< WGy j,: { T @t Dlr-b e+l @+ Db bl)w}d“
_ . 1 (b2 _ Iu)a+2 by b2 _ bl by (/J _ bl)a+2 by
= W) 5{(a T )@+ 2)br—b)ly, a1 Pl T @+ D@+ 2)br - br)e bl}
| 1 (by — by)*+? (by — by)? (by — by)**?
= @) 5{ T @+ D@t )br—by | a+l @+ D@+2) by bl)“}
AL 2(by - by)™*? (b = by)?
= W) 5{_(a+1)(a+2)(b2—b1)a+ o+l }

W (bo)|atbs - b
T 2@+ D@+2)

Therefore,

" (b)la(by — b))’
2@+ (@+2)

‘Lﬁ(lh) +Yby)  T(a+])
2(by = by)*

Sy (b2) + J§2_w(b1)] <

This establishes the inequality in (i).
Part (ii) can be proved in a similar way. For (iii), we make use of (2.13) and the fact that every
convex function ¢ defined on the interval [by, b,] is bounded above by max {|z//(b } to get:

[0 e _ T
2bs — by

max(” GOLW G (o

o | [ [ b = b

max{|y” (by)l, " (by)}e(by — by)?
2@+ (e +2) ’

|50 + 73, w0

Remark 6. By setting a = 1 in Theorem 5, we get the following inequalities:

Y(by) + (b)) " (b2)I(by — by)?
l 2 bz - bl f windi < 12 ’
Y(by) + (b)) " (b)I(by — by)?
| 2 by — by f windn) < 12 ’
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<

max {jy” (bl [y (b)I} (b2 = b1)*

w(by) + ¥(by) 1 b2
l 5 — b b, fbl w(t)dt

12

Theorem 7. Let € C*([by, b,]) and a > 0. Then the following statements are true:

(i) If || is an increasing function, then

by + b, INa+1)

“”( 2 )_ 2by -~ by)
< (by —b)*a? —a +2)
- 16(a+ D(a+2)

[ wb2) + T, b))

. b1+b2
()

+

w"<b2>\].
(ii) If Y| is a decreasing function, then

bi+b)\ T@+1) [, )
|w( 2 ) T 2by — by ) |5 (b2 + Ty, _w(b)]

< (bz—bl)z(az—a+2) ,,(bl +b2)
16(a + )(a + 2) v 2

[iw”am{ '

|

(iii) If W"| is a convex function, then

by + b, Le+1) [, .
‘l//( 2 ) C 2by — b)) [Jb|+w(b2) + Jbz—w(bl)]
(by —b)*(a” —a +2) by + by

= T T6l@+ D@+2) 4 (T)‘}

w222 )]

| max {[u 1)

b

+ {max

Proof. The inequality in (i) is obtained by using (2.8):

bitb\ T+l
2 2by — by )
(it b (b= ba=bi  byi—p
- [G( > H) 2Xa+ Dby—b) 2@+ 2
(ﬂ - bl)a+1 ’”
“2a+ )by - bl)a]‘” W)y
b2 by + b, (by - ,U)QJrl by — b, by —p
+f [G( 2 ’“)_ Xa+ Dby—b)* 2@+ 2
~ (ﬂ _ bl)a+1
2a+ 1)(by — b))

| wba) + T3, (b))

by +by

o Grdu.
Taking absolute values and using triangle inequality, we get

’ by + b, _ F(CL’+1)
v 2 2(by — b))

(75 0b2) + T, wby)|
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L ‘f"‘i"z{bl—u (br=p)f™  br=by
2 by 2 2@+ )b, — b)) 2a+1)

(,Ll _ bl)a+l ., 1) u— bz (bz _/J)a+l
"2+ Db - bl)“}dﬂ‘ + ) fblbz{ 2 2a+ Dby by)e
b, — by (1 — by)*H! }d,u‘

20a+1) 2a+1)(b,—by)

(B b {2b1,u - (by = )™ =S
- 2 4 |, 2@+ Di@+2)br— by,
+(b2 - by) . B (u— b+ blgbz}
2@+ DM, T 2@+ D@+ 2)(br— by by,
" u -2byt (by — )™+ b2
ol w2 Dia + 2)(by = by s
bz - 191 > (u = b)) b2 }
e+ DM T 2@+ @+ 2)(By — by ) niy
|, (b + b 2b1(¥) — (32 2bi(b) — (B1) . (by — bz yes2
= 2 4 4 2(a + D(a +2)(by — by)®
_ (by — 191)“Jr2 4 (by—by) (by + by _b
2a+ D@+2)by—b)*  2a+D\ 2 !
L esEeb (bi=b)?
2a+ D@+ 2) by —b)*  2a+ D@+ 2)by — by)?
o |07 =227 (5 = 26x(P5P) (by = 252))"*
b2l ' B 4 T 2a+ D@+ )b, - b))
N by — b, (b _ b +bz)_ (by — by)**?
2a+ 1) 2 2a + (@ +2)(by — by)®
_ | (brtba|| (b= b1)? N (by — b)) (b =by) N (by — b))
B 2 16 283+ D@+2) 20a+ Da+2)  4a+1)
(- b))
2053 (q + D)@ + 2)
. (bz - b1)2 (by — by)? (by — by)? (by — by)?
"!’ (bZ)' T2+ D@+2) | da+ D)  2a+ D@+2)
(by - 1)2

2053 (a + (@ +2)
s (D1+ Do) || (by —by)? B (by —by)? N (by —by)?

2 16 e+ D@+2)  da+l)
oo - ©

1) N (by — by)? (b - by)?
da+1)  2a+D@+2)
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—*+a-2
16(a/+ D(a+2)

—*+a-2

b +b
( = 2) (b — b)) |y (b)| by — b

{/(h;bz%¢V@Mﬁ%_bﬁha5;3&in

’ b] +b2 , (bz—bl)z(az—cx+2)
{W ( 7 )ItW (bZ)l} 6@+ D@+2)

The second part can be deduced by using the same procedure. For Part (iii), we also employ the fact
that the convex function ¥ is bounded above by max {|gl/(b } since it is defined on the interval
[b1, by]. That is, we obtain from (2.8):

by + by I'a+1) ”
e e e VRS RS
44 144 b + b 44 b + b 44
< max{w ol + o (P22 ) o (22 + ol
><(bz - b)) -a+ 2)
16(a + D(a +2)
, , b] + b2 bl + b2 ,
= [max{lo@ol o (252 )|+ max (o (2572 bl
(by — b)) (@ —a +2)
16(a + )(a +2)
which is the desired inequality. O
Remark 8. In Theorem 7, if we take a=1, then we obtain

by + b, 1 b2 by =b)* ||, (b1 +b> o]
lﬁ( > )_bz_blj;l Y(nde ST[lﬁ (T) + Y (b2)|_,

by + b, 1 b2 (b, —b)* |, NUEIAN
‘d'( > )_bz—blfbl Y(ndi| < —4 [I!ﬁ (b + |¢ ( > )

by + b, 1 b2 (by — by)? " by + b,
“”( 2 )_ by — by j,:l o] < = ma (Gl o ( 2 ) |
(D1 + Do ”

+max { ( . ) W]

Theorem 9. Assume that € C*([by,b>]) and Y| is a convex function. Then for any a > 0 the
following inequality holds

Tl@+1) [, ) by
'W[Jbl+w(b2) + Jbz_l//(bl)] ,/,( : )
(b= bl —a+2) , .
= Tle@+ Da+2 |V (b)) + | (b2)|],
Proof. The inequality in (i) is obtained by using (2.8):
Ce+1) ., N by + by
m[‘]hl+w(b2) + Jbrw(bl)] - l/,( : )
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[ (b= ba=bi p=b
b 2@+ Dbs—b)r 2@+l 2
(ﬂ_bl)a-H ’”
@+ Dby - bl)a]‘/' )y
sz [ =™  hi=b b-p
w2+ Db — b 2@+ 1) 2
(/'l_b])(ﬁ—l ’”
@+ )b, —bl)“]w (W)dp.

Suppose u = (1 — )by + tb, where du = (b, — by)dt,

_ f% [(b2 — (1= 0bi = tb)™  by=bi (L =0bi + by~ b,
o | 2@+ Db-b)  2a+1) 2
atl
((12(;)?&22_ ;;) [ = by + 1), — by
+f1 [(bz —(L=Dbi =)™ by=by b= (1=0)b ~ by
U 2@ Db -k 2@+ 1) 2
(1 = )by + by — b))
2(a + D(b; - by)"

]w"((l — )by + thy)(by — by)dt

bz

_ (;’(Za +b11)) fo i [(1 " 1+ (e + 1)z+f’+1]¢"((1 — )by + thy)d
1

+f [(1—z)a+‘ +a(1—t)—t+t“+l]t//”((1—t)b1 +tb2)dt]. 2.15)
1
2
Taking absolute and triangular inequality,
(b - b)?[ [ } o .
et ) fo [(1—r) P14+ (a+Dr+1 “](1—t)w (by)|dt

+ fz [(1 -0 — 1+ (a+ D+ ta”]tw”(bz)|dt
0

1
1

+f [(1 - ol -0 -1+ t"“](l o)

W (by)|dt

1
+f [(1 -0 + (1 —t)—t+t““]t

¢"(bz)|]dt]
(by — by)?
20a+1)

1

+f ((1 -0 +a(l -0 - -1+ - t“+2)dt}

L/I”(bl)|{ LZ ((1 _ t)a+2 — (1 =0+ (a+ (- l2) + Z‘oz+1 _ ta+2)dt

1

+ ‘//,’(b2)|{ f2 (f(l -0 —t+ (@ + D+ t‘”z)d[
0
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i f 1 (t(l ™ b at - 1) - P +t“+2)dt}]

2

(by — by)?

20a+1)

v Gol{n}+ w"(bz>|{12}]. (2.16)

Putting the values of /; and I, in above (2.16), we get:

(by = b)*(@? —a +2)
16(a + D(a + 2)

(b)) + |w”(bz>|].

Remark 10. In Theorem 9, if we take a = 1, then we obtain

by + b, 1 b (by = b))
"”( 2 )_ by — by Jy, wiedr 48 [

<

v oo+ o e)||

Theorem 11. Assume that € C*([by,b,]) and Y| is a convex function. Then for any a > 0 the
following inequality holds

'lﬁ(bl) +Y(by)  T(a+1)
2

e LSRR

a(b, = b))’ [
4a + D(a +2)

W (by)| + |w”<bz>|].

Proof. We start by recalling the following identity from (2.12):

w(by) + Y(by) e+, N
2 T by — by [Jb1+lﬁ(b2) + Jbz_w(bl)]

1 » (by - ,U)QJr1 by — by
= 2 | et - —b
2],,1 [ Ol = T Db T @r ) O TH

(1= bt

“@+ Db bua]‘” )y

1 (by — )™ by — b,

= Ej,:l [bl_u_(a+1)(b2—b])a+(a+1)_b1+'u
('u_bl)cwl ,

s D e

lf’”[_ (b2=@™' ba=bi__ (u-by™

2, (@+1)(by=b1)* (a+1) (a+1)(by—b))

If u=(1-10by +th, with t € [0, 1], then we obtain

Y +yby) T+, a
o G o)+ T )|
_ 1 fl [ B (b, — (1 —1)b, — l‘bg)a+1 + by — by B (1 =0)by +tby — bl)a+l
0

2 (@ + 1)(by — by)® (@+1) (@ + 1)(by — by)”

o G
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X" (1 = )by + thy)(b, — by)dt
_ lfl [ ~ (bz _ bl)w+1(1 _ t)a+1 N b2 _ bl ~ ta+1(b2 _ b1)<1+1 ]
2 Jo (a+ 1)(by — b)) (@+1) (a+1)by—by)
Xy (1 = Dby + thy)(by — by)dt

b, — b )? 1 ) N
< % [ (1—0 41— ta+1][(1 - t)|lﬁ (b1)| + z|¢ bz)”dt
= 2( " 1) |lﬁ (b1)|f -(1- a+2 S l‘Mz}dt

+|,7[/”b2)|f _ t(l _ t)(1+] +1— l(l+2}dt:|.
0

Taking absolute values and applying the triangle inequality amounts to the intended result.

Remark 12. Let @ = 1. Then the inequality in Theorem 11 becomes:

‘waal);w(bz) 1 f‘ﬁ@ il <

(b2 51)2[

W (b)] + | (by)]]

by — by

Next, we present results associated with the concave functions.

Theorem 13. Let s € C*([by, b, ] tp”l be a concave function. Then, for any a > 0,

' (b1 + bz) _ T+ D [J;fl+¢(b2) + ng_l/,(bl)”

2 2(by — b1)*
(by = b)*(@® - +2)
- 16(a + )(a +2)

24293 (@ +2) 2a 7 2043 _p a=2
(b 1(2‘”3(a+2)(a+3) + ) + b2(2‘”3(a+2)(a+3) + F))

X (//”

o?—a+2
8(a+2)

+

o2—a+2

a=2 20+3_9 2a0-7 2043 (@+2)+2 )
¢”(b 1( T 2‘”3(a+2)(a+3)) + bz( a T 2073 (q+2)(a+3) )H
8(a+2)

Proof. From (2.15), we have:

F(CY + 1) o o _ bl + bZ
m[]},1+l//(b2) + Jbrt//(bl)] ;0( 5 )
(b2 - b1)2 % a+1 a+1 | 1

2@+ 1) fo [(1‘” — 1+ (a+ D+t ]w (1 = )by + thy)d

1
+f [(1—t)"“+a(1—t)—t+t"“]w”((1—z‘)b1+tb2)dt].
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Now, we use Jensen’s integral inequality to get:

(b2 = D[ [ _ e e
2(a+1)[f0 (1= = 1 G e e far

1

(@ =0 =1+ (@ + D+ 1) (1 = Dby + thy)dt
X (ﬁ”( )

1

(=07 = 1+ (@ + Dt + 104 )dt

1
+f ((1 — " el - —t+ t‘”l)dt

X

JHA =0 4 at =0 = 1+ ) (A = by + thy)dr
lp// 2 )

|
|

JHa=pet ot =0 = 1+ 1 )ar

b2 [ ” fo% 2)at : ﬁ](Az)dt
S|, [l (%) J ey ( I (Al)dt)

(2.17)

For this we calculate:

I

fz [(1 -0 1+ (@ + D+ t““]dt
0

(1 _ t)a+2 % 1 2.1 taf+2 %

2 t
a+2 lo 0+(a+1)§‘0+a+20
1 1 1 a+1 1
T T2e%a+2) a+2 27 8 2 %a+2)
3 a?-—a+?2
- 8@+2)’

D=

L = f((l—t)‘”l—1+(a+1)t+t“+])((1—t)b1+tb2)dl

= by [ (=0 - @ D= )+ )y

0
1
§
+by | (1= 0" =1+ (@ + D+ *2)dr
0
t)a+3 t2 t2 l3 ta+2 ta+3 1
S Gl S (= - = -
1( a+3 +2+(oz+ )( ) a+2 a+3’0
(1 _ t)a+2 f _(1 _ t)a+2 tZ l’3 ta+3 %
+by —t——-— — —dt—-—+ +1)— +
O o a+2 y Tt s a/+3‘0
2423 +2)  2a-7 2043 _ 9 -2
= b + =)+ b +=57)
2e+3(q + 2) (@ +3) | 24 203(q + 2)(a +3) 24
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1
A = f((1—t)"“+a/(1—t)—t+t“”)dt
1
2
(1 _t)a+21 l.2 1 l.21 ta+2 1
= ———| +aft-=)| - =
e I Gy Mt o
_ at-—a+2
T 8(a+2)

and

1
As f (=0 + ol =) =1+ )1 = Dby + thy)dt

2

1
= b f ((1 - l)a+2 +a(l - l)2 — 4+ ta+2)dt
1

2

1
+by f (1 =™ + a(t =) = £ + **?)dr
1

2

5 [ (1 _ t)a+3 1 ta+3 1
= 1l =

1 (1 _ t)3 1 t2 1 t3 1 ta+2

@ - = +=| +
3 3 B 20 34 a+2 3

1 — £)e+2 L (1 = pye+2 2 P A fa+3 1
SRy N L Rk
! !

a+3

;5 a+3

+b2

a+?2 1 —(a+2) 3 a+3

2a -7 23 (@ +2) +2
+ by + .
24 2073 (@ + 2)(a + 3)

a—2 203 2
= b +
24 203 (a + 2)(a + 3)

Putting the values of [, I, A; and A, in (2.17), we obtain:

24293 (a+2) 20-7 20439 a=2
(by = b)) [a?—a+2 ,,(b1(2"+3(a+2)(a+3) R ) + b2(2”+3(a+2)(a+3) + W))
a?—a+2
2@+ 1) | 8(a+2) S
a=2 20+3_p 207 2943 (@ 42)+2
+a2 -a+2| , bl(ﬁ + W) + b2( 2 T 2‘“3(a+2)(a+3))
8(a+2) -a+2

8(a+2)
(by —b)*(@* —a+2)
16(a + 1(a + 2)

24293 (a+2) 2a-7 20439 a=2
lﬁ”(b 1(2"+3(a+2)(a/+3) + 753 ) +b 2(2a+3(a+2)(a+3) + 7))‘

X

a?—a+2
8(a+2)

a=2 2032 207 2043 (@+2)+2

” b 1( % 2‘Y+3((1+2)(a+3)) + b2( 2w T 2‘“’3((t+2)((1+3))

Y 2—a+2 ’
8(a+2)
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O
Remark 14. If we take a = 1 in Theorem 13, then we get:
by + by 1 b2 ‘
- dt
"”( 2 ) by — b, fb v
(bz—bl)z w"(Sbl +3b2) 4 ,,(3]91 +5b2)
- 48 8 8 '
Theorem 15. Let s € C*([by, b,]) and 1,//”| be a concave function. Then, for any a > 0,
b)) +yb)  Tla+D 1, o
| b |50+ 73, w0
Cy(bz — b1)2 #[b1 + by
2a+ 1) (a+2) v 2 '
Proof. For this, we use (2.14) to obtain the following inequality:
b)) +yb)  Tla+D 1, o
‘ - 2(b2 _ bl)a |:Jb1+w(b2) + Jbz—w(bl):l
(b2 - bl)z : [ +1 +1] ’”
T Em—— -1 =0 -t 1-
Tl ) | AT 0/ (1 = )by + thy) |t
We use Jensen’s integral inequality to get:
(by — b)) : atl a+1
Ty f (- ="+ 1= )ar
|w (= =0+ 1= )1 = by + tbz)dt) }
(= =pet+ 1= o)
(by=b [ o | (bilss) * bolsits)
2a@+1) la+2 -5
20 +1) |la+2 v 2 ’
]

Remark 16. If we set @ = 1, then Theorem 15 amounts to:

Y(by) + Y(by) 1 b2 (
> - b b, j; Y(tdt| <

_b)2 //b+b
2 2] ‘l// 1 2).
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3. Conclusion

By means of a green function, we outlined a new method of proving the Hermite-Hadamard
inequality involving the Riemann-Liouville fractional integral operators. In the process of doing this,
some new identities were obtained. We applied these identities to prove more results in this direction.
Results established in this paper can be recast by using the green function G,(4,u) defined on
[b1, D21 X [b1, by] by

A—by, b, Su<4d
GZ(/L/J):
,Ll—bl, ﬂSﬂsz
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