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1. Introduction

During the past decades, some scientists have shown a great deal of interest in the field of fractional
calculus [1–9] which addresses the derivatives and integrals with any order. As a matter of fact, this
interest has sprung out by the dint of the substantial results obtained when these scientists used the tools
in this calculus in order to study some models from the real world. A variety of results that helped in
developing the theory of discrete fractional calculus are given in [10]. Atici and Eloe carefully evoked
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the interest in the theory of fractional difference operators [11]. Abdeljawad [12], and Abdeljawad
and Atici [13] defined fractional difference with different types of kernel having discrete power law
with discrete exponential and generalized Mittag-Leffler functions [14] and discrete exponential and
Mittag-Leffler functions on generalized hZ time scale [15], and kernel containing the product of both
power-law and exponential function in [16].

In [17], Hilger proposed the concept of time scales as a study skilled to contain both difference and
differential analytic in a systematic manner. The time-scale calculus can be used to unify discrete and
continuous approaches to signal processing in one unique setting.

The idea of the fractional-order derivative has been expounded by Bastos [18] via
Riemann-Liouville fractional operators on scale versions by considering linear dynamic equations.
Interestingly in applications, this type of calculus can describe the anomalous diffusion model in a
discrete setting also has the possibility to deal with more complex time domains [19]. One extreme
case, covered by the theory of fractional time scales calculus and surprisingly relevant also for the
process of signals, appears when one fixes the time scale to be the Cantor set. The numerical
discretization of fractional derivative is a challenging work since the treatment will result in great
numerical errors quickly. Fractional calculus on time scale provides a new tool which can avoid such
problems and some recent works in fractional chaotic maps with application exhibit the new feature.
Several researchers had have been paid much attention [3, 10, 12–14].

Since the publications in 2015, several researchers made significant contributions to the history of
time scales. Recently, Holm-Hansen and Gao [20] presented the detection of structural defects in a ball
bearing using an embedded piezoceramic load sensor and the discrete wavelet transform. Wu et al. [21]
considered efficient description dynamics in short time domains having chaos in both continuous and
discrete-time cases.

In [3], the authors proposed a discrete fractional logistic map in the left Caputo discrete delta’s
sense which plays a key role in solving difference equations. Zhu and Wu [22] employed Caputo
nabla fractional derivatives in order to find the existence of solutions for Cauchy problems. As
certifiable utilities, we refer to the study of calcium ion channels that are impeded with an infusion of
calcium-chelator ethylene glycol tetraacetic acid [23]. Actually, the physical utilization of initial
value-fractional problems in diverse time scales proliferates [24]. A method of generalizing logistic
equations is introduced in [25], by adding general parameters which affect the logistic map greatly.
Several studies concerning the discretization of the fractional logistic map and its chaotic behavior are
studied in [3, 25].

Here, we broaden fractional integral variants accessible in the literature by presenting increasingly
broad ideas on time scales in the frame of delta-Riemann-Liouville fractional integral. At that point,
we study the dynamic variants of corresponding generalized fractional-order on time scales. We obtain
the inequalities Pólya-Szegö, Čebyšev and several others extended Čebyšev versions using the delta
integrals in arbitrary time scales. For ∆ = 1, the integral will become delta integral and for ∆ = 0; it
advances toward turning out to be nabla integral. The suggested dynamic integral technique is explicit
and efficient to acquire new consequences. This technique has more features: it is immediate and brief.
In this way, the proposed technique can be prolonged to settle numerous frameworks of nonlinear
fractional partial differential equations in mathematical and physical sciences. Also, the analytical
solutions can be obtained for the generalized ordinary differential equations to obtain new theorems
related to stability and continuous dependence on parameters for dynamic equations on time scales.
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The inequalities have been considered by many authors and for such related results, we refer the reader
to the recent works in [26–40].

Inspired by the discretization of the Riemann-Liouville, the key aim of this paper is to establish
some new inequalities Pólya-Szegö, Čebyšev and extended Čebyšev via delta-RL fractional integral
operator on a time scale that captures some continuous and discrete analogues in the relative
literature. We presented, in general, two analogous of Čebyšev type inequalities, that can be used to
solve some new generalizations with the assumption of time scales analysis have yielded intriguing
results. In addition, our findings can offer great opportunities to study the dynamics of such discrete
systems powerfully, as well as their chaotic behaviors. Moreover, this work can be helpful in
presenting the generalization of the discrete fractional logistic map exploring the effects of the extra
general parameters added to the integral inequalities in combination with the extra degree of freedom
offered by the fractional order parameter β.

2. Preliminaries

A nonempty closed subsets R of T is known as the time scale. The well-known examples of time
scales theory are the set of real numbers R and the integers Z. Throughout the paper, we refer T as
time scale and a time-scaled interval is ΥT = [m, n]T . We need the concept of jump operators. The
forward jump operator is denoted by the symbol σ and the backward jump operator is denoted by ϑ,
are said through the formulas:

σ(t) = inf{% ∈ T : % > t} ∈ T , ρ(t) = sup{% ∈ T : % < t} ∈ T .

We accumulate as:
inf ∅ := supT , sup ∅ := inf T .

If σ(t) > t, then the term t is allude to be right-scattered and t is allude to be left-scattered %(t) < t. The
elements that are most likely all the while appropriate-scattered and scattered are known as isolated.
The term t is said to be right dense, if σ(t) = t, and t is said to be left dense, if %(t) = t. The mappings
µ, ν : T → [0,+∞) defined by

µ(t) := σ(t) − t,

ν(t) := t − ρ(t)

are called the forward and backward graininess functions, respectively.

Definition 2.1. Let ~ : T → R be a real-valued function. Then ~ is said to be RD-continuous on R if
its left limit at any left dense point of T is finite and it is continuous on every right dense point of T .
All RD-continuous functions are denoted by CRD.

Definition 2.2. Let P and Q be two integrable functions defined on [m, λ]T . If for any t1, t2 ∈ [m, λ]T(
P(t1) − P(t2)

)(
Q(t1) − Q(t2)

)
≥ 0,

then P and Q are called synchronous functions on [m, λ]T .
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Definition 2.3. The RD continuous functions ~β : T ×T → R is called as generalized polynomials on
time scales such that, for all %, t ∈ T and β ≥ 0;

~0(t, %) = 1,

~β+1(t, %) =

t∫
%

~β(τ, %)∆τ.

Definition 2.4. The Delta-Riemann-Liouville fractional integral operator of order β ≥ 1 on time scales,
for a function P ∈ CRD is defined as

IβmP(λ) =

λ∫
m

~β−1(λ, σ(τ))P(τ)∆τ,

I0
mP = P.

3. Pólya-Szegö type inequalities

This section is dedicated to the novel version of Pólya-Szegö type inequalities by employing delta-
RL fractional integral operators on a time scale.

Theorem 3.1. For β ≥ 1,m ≥ 0 and let there are two positive integrable functions P and Q defined
on [0,∞)T . Also, assume that there exist four integrable functions φ1, φ2, ψ1 and ψ2 defined on [0,∞)T
such that

0 ≤ φ1(t1) ≤ P(t1) ≤ φ1(t1), 0 ≤ ψ1(t1) ≤ Q(t1) ≤ ψ1(t1) (3.1)

for all λ > m. Then

1
4

(
Iβm

[(
φ1ψ1 + φ2ψ2

)
PQ

]
(λ)

)2
≥ Iβm

[
φ1φ2P

2
]
(λ)Iβm

[
ψ1ψ2Q

2
]
(λ). (3.2)

Proof. From (3.1), for t1 > 0, we have

φ2(t1)
ψ1(t1)

−
P(t1)
Q(t1)

≥ 0 (3.3)

and
P(t1)
Q(t1)

−
φ1(t1)
ψ2(t1)

≥ 0. (3.4)

Multiplying (3.3) and (3.4), we get[
φ1(t1)ψ1(t1) + φ2(t1)ψ2(t1)

]
P(t1)Q(t1) ≥ ψ1(t1)ψ2(t1)P2(t1) + φ1(t1)φ2(t1)Q2(t1). (3.5)

For t1 ∈ (m, λ), multiplying both sides of (3.5) by ~β−1(λ, σ(t1)), and integrating the preceding
inequality with respect to t1 over (m, λ), we get

Iβm

[
(φ1ψ1 + φ2ψ2)PQ

]
(λ) ≥ Iβm

[
ψ1ψ2P

2](λ) + Iβm
[
φ1φ2Q

2](λ). (3.6)
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Applying the arithmetic-geometric inequality, we have

Iβm

[
(φ1ψ1 + φ2ψ2)PQ

]
(λ) ≥ 2

√
I
β
m
[
ψ1ψ2P

2](λ) + I
β
m
[
φ1φ2Q

2](λ),

which leads to

1
4

(
Iβm

[(
φ1ψ1 + φ2ψ2

)
PQ

]
(λ)

)2
≥ Iβm

[
φ1φ2P

2
]
(λ)Iβm

[
ψ1ψ2Q

2
]
(λ),

the desired inequality (3.1) is obtained. �

Theorem 3.2. For β, γ ≥ 1,m ≥ 0 and let there are two positive integrable functions P and Q defined
on [0,∞)T such that (3.1) holds for all λ > m. Then

I
γ
m
(
ψ1ψ2

)
(λ)Iβm

(
P2)(λ) + I

γ
m
(
Q2)(λ)Iβm

(
φ1φ2

)
(λ)(

I
γ
m
(
ψ1Q

)
(λ)Iβm

(
φ1P

)
(λ) + I

γ
m
(
ψ2Q

)
(λ)Iβm

(
φ2P

)
(λ)

)2 ≤
1
4
. (3.7)

Proof. From (3.1), we observe that
φ2(t1)
ψ1(t2)

−
P(t1)
Q(t2)

≥ 0

and
P(t1)
Q(t2)

−
φ1(t1)
ψ2(t2)

≥ 0,

which imply that (
φ1(t1)
ψ2(t2)

+
φ2(t1)
ψ1(t2)

)
P(t1)
Q(t2)

≥
P2(t1)
Q2(t2)

+
φ1(t1)φ2(t1)
ψ1(t2)ψ2(t2)

. (3.8)

Multiplying both sides of inequality (3.8) by φ1(t2)φ2(t2)Q2(t2), we have

φ1(t1)P(t1)ψ1(t2)Q(t2) + φ2(t1)P(t1)ψ2(t2)Q(t2) ≥ ψ1(t2)ψ2(t2)P2(t1) + φ1(t1)φ2(t2)Q2(t2). (3.9)

For t1 ∈ (m, λ) and multiplying both sides of (3.9) by ~β−1(λ, σ(t1)), and integrating integrating the
preceding inequality with respect to t1 over (m, λ), we get

ψ1(t2)Q(t2)

λ∫
m

~β−1(λ, σ(t1))φ1(t1)P(t1)∆t1 + ψ2(t2)Q(t2)

λ∫
m

~β−1(λ, σ(t1))φ2(t1)P(t1)∆t1

≥ ψ1(t2)ψ2(t2)

λ∫
m

~β−1(λ, σ(t1))P2(t1)∆t1 + Q2(t2)

λ∫
m

~β−1(λ, σ(t1))φ1(t1)φ2(t2)∆t1,

which leads to
ψ1(t2)Q(t2)Iβm

(
φ1P

)
(λ) + ψ2(t2)Q(t2)Iβm

(
φ2P

)
(λ)

≥ ψ1(t2)ψ2(t2)Iβm
(
P2)(λ) + Q2(t2)Iβm

(
φ1φ2

)
(λ). (3.10)

For t2 ∈ (m, λ) and multiplying both sides of (3.10) by ~γ−1(λ, σ(t2)), and integrating integrating the
preceeding inequality with respect to t2 over (m, λ), one has

Iγm
(
ψ1Q

)
(λ)Iβm

(
φ1P

)
(λ) + Iγm

(
ψ2Q

)
(λ)Iβm

(
φ2P

)
(λ)
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≥ Iγm
(
ψ1ψ2

)
(λ)Iβm

(
P2)(λ) + Iγm

(
Q2)(λ)Iβm

(
φ1φ2

)
(λ).

Making use of the arithmetic-geometric mean inequality, we obtain

Iγm
(
ψ1Q

)
(λ)Iβm

(
φ1P

)
(λ) + Iγm

(
ψ2Q

)
(λ)Iβm

(
φ2P

)
(λ)

≥ 2
√
I
γ
m
(
ψ1ψ2

)
(λ)Iβm

(
P2)(λ) + I

γ
m
(
Q2)(λ)Iβm

(
φ1φ2

)
(λ),

which leads to the desired inequality (3.7). �

Theorem 3.3. For β, γ ≥ 1,m ≥ 0 and let there are two positive integrable functions P and Q defined
on [0,∞)T such that (3.1) holds for all λ > m. Then

Iγm

(ψ2PQ

φ1

)
(λ)Iβm

(φ2PQ

ψ1

)
(λ) ≥ IβmP

2(λ)IγmQ
2(λ). (3.11)

Proof. From (3.1), we observe that

λ∫
m

~β−1(λ, σ(t1))
φ2(t1)
ψ1(t1)

P(t1)Q(t1)∆t1 ≥

λ∫
m

~β−1(λ, σ(t1))P2(t1)∆t1,

which implies

Iβm

(φ2PQ

ψ1

)
(λ) ≥ IβmP

2(λ). (3.12)

Analogously, we obtain

λ∫
m

~γ−1(λ, σ(t2))
ψ2(t2)
φ1(t2)

P(t2)Q(t2)∆t2 ≥

λ∫
m

~γ−1(λ, σ(t2))Q2(t2)∆t2,

from which one has
Iγm

(ψ2PQ

φ1

)
(λ) ≥ IγmQ

2(λ). (3.13)

Multiplying (3.12) and (3.13) side by side, we get the desired inequality (3.11). �

4. Čebyšev type inequalities

In this section, we will present some fractional integral inequalities on time scales.

Theorem 4.1. For β, γ ≥ 1,m ≥ 0 and and let there are two synchronous functions P and Q defined
on [0,∞)T and S ≥ 0. Then for all λ > m, we have

Iγm
(
PQS

)
(λ)

(
~β(λ,m)

)
+ Iβm

(
PQS

)
(λ)

(
~γ(λ,m)

)
≥ Iγm

(
PS

)
(λ)Iβm

(
Q
)
(λ) + Iβm

(
P
)
(λ)Iγm

(
QS

)
(λ) + Iγm

(
P
)
(λ)Iβm

(
QS

)
(λ)

+ Iβm
(
PS

)
(λ)Iγm

(
Q
)
(λ) − Iγm

(
PQ

)
(λ)Iβm

(
S
)
(λ) − Iβm

(
PQ

)
(λ)Iγm

(
S
)
(λ). (4.1)
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Proof. Under the assumption of Theorem 4.1, we have(
P(t2) − P(t1)

)(
Q(t2) − Q(t1)

)(
S(t2) + S(t1)

)
≥ 0.

It follows that
P(t2)Q(t2)S(t2) + P(t1)Q(t1)S(t1)

≥ P(t2)Q(t1)S(t2) + P(t1)Q(t2)S(t2) + P(t2)Q(t1)S(t1)

+ P(t1)Q(t2)S(t1) − P(t2)Q(t2)S(t1) − P(t1)Q(t1)S(t2). (4.2)

For t1 ∈ (m, λ) and multiplying both sides of (4.2) by ~β−1(λ, σ(t1)), and integrating integrating the
preceding inequality with respect to t1 over (m, λ), we get(

PQS
)
(t2)

(
~β(λ,m)

)
+ Iβm

(
PQS

)
(λ)

≥ P(t2)S(t2)Iβm
(
Q
)
(λ) + Iβm

(
P
)
(λ)Q(t2)S(t2) + P(t2)Iβm

(
QS

)
(λ)

+ Iβm
(
PS

)
(λ)Q(t2) − P(t2)Q(t2)Iβm

(
S
)
(λ) − Iβm

(
PQ

)
(λ)S(t2). (4.3)

Again, for t2 ∈ (m, λ) and multiplying both sides of (4.2) by ~γ−1(λ, σ(t2)), and integrating integrating
the preceding inequality with respect to t2 over (m, λ), we get

Iγm
(
PQS

)
(λ)

(
~β(λ,m)

)
+ Iβm

(
PQS

)
(λ)

(
~γ(λ,m)

)
≥ Iγm

(
PS

)
(λ)Iβm

(
Q
)
(λ) + Iβm

(
P
)
(λ)Iγm

(
QS

)
(λ) + Iγm

(
P
)
(λ)Iβm

(
QS

)
(λ)

+ Iβm
(
PS

)
(λ)Iγm

(
Q
)
(λ) − Iγm

(
PQ

)
(λ)Iβm

(
S
)
(λ) − Iβm

(
PQ

)
(λ)Iγm

(
S
)
(λ), (4.4)

the required result. �

Theorem 4.2. For β, γ ≥ 1,m ≥ 0 and and let there are three monotonic functions P,Q and S defined
on [0,∞)T satisfying the following(

P(t2) − P(t1)
)(
Q(t2) − Q(t1)

)(
S(t2) − S(t1)

)
≥ 0.

Then for all λ > m, we have

Iγm
(
PQS

)
(λ)

(
~β(λ,m)

)
− Iβm

(
PQS

)
(λ)

(
~γ(λ,m)

)
≥ Iγm

(
PS

)
(λ)Iβm

(
Q
)
(λ) + Iβm

(
P
)
(λ)Iγm

(
QS

)
(λ) − Iγm

(
P
)
(λ)Iβm

(
QS

)
(λ)

− Iβm
(
PS

)
(λ)Iγm

(
Q
)
(λ) + Iγm

(
PQ

)
(λ)Iβm

(
S
)
(λ) − Iβm

(
PQ

)
(λ)Iγm

(
S
)
(λ). (4.5)

Proof. The proof is similar to previous theorem. �

Theorem 4.3. For β, γ ≥ 1,m ≥ 0 and let there are two integrable functions defined on [0,∞)T . Then
for all λ > m, we have

Iγm
(
P2)(γ)(~β(λ,m)) + Iβm

(
Q2)(λ)(~γ(λ,m)) ≥ Iγm

(
P
)
(λ)Iβm

(
Q
)
(λ).
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Proof. Using the elementary result, we have(
P(t2) − Q(t1)

)2
≥ 0.

Thus
P2(t2) + Q2(t1) ≥ 2P(t2)Q(t1).

Multiplying both sides of above inequality by ~β−1(λ, σ(t1))~γ−1(λ, σ(t2)), and integrating integrating
the preceding inequality with respect to t1 and t2 over (m, λ) × (m, λ), we get

Iγm
(
P2)(γ)(~β(λ,m)) + Iβm

(
Q2)(λ)(~γ(λ,m)) ≥ 2Iγm

(
P
)
(λ)Iβm

(
Q
)
(λ),

the required result. �

Theorem 4.4. For β, γ ≥ 1,m ≥ 0 and let there are two integrable functions defined on [0,∞)T . Then
for all λ > m, we have

Iγm
(
P2)(λ)Iβm

(
Q2)(λ) + Iγm

(
Q2)(λ)Iβm

(
P2)(λ) ≥ 2Iγm

(
PQ

)
(λ)Iβm

(
PQ

)
(λ).

Proof. Using the elementary result, we have(
P(t2)Q(t1) − P(t1)Q(t2)

)2
≥ 0.

Thus
P2(t2)Q2(t1) + P2(t1)Q2(t2) ≥ 2P(t2)Q(t1)P(t1)Q(t2).

Multiplying both sides of above inequality by ~β−1(λ, σ(t1))~γ−1(λ, σ(t2)), and integrating integrating
the preceding inequality with respect to t1 and t2 over (m, λ) × (m, λ), we get

Iγm
(
P2)(λ)Iβm

(
Q2)(λ) + Iγm

(
Q2)(λ)Iβm

(
P2)(λ) ≥ 2Iγm

(
PQ

)
(λ)Iβm

(
PQ

)
(λ),

the required result. �

Theorem 4.5. For β ≥ 1,m ≥ 0, and let two there are two delta-differentiable functions P and Q
defined on [0,∞)T . Also, assume that there is a positive integrable function S1 defined on [0,∞)T such
that P∆ ∈ Ls([0,∞)T ),Q∆ ∈ Lr([0,∞)T ) for s, r, u > 1 having s−1 + s1

−1 = 1, r−1 + r1
−1 = 1, and

u−1 + u1
−1 = 1. Then the following variants hold for all λ > m

2
∣∣∣∣(Iβm(

S1
)
(λ)Iβm

(
PQ

)
(λ) − Iβm

(
S1P

)
(λ)Iβm

(
S1Q

)
(λ)

)∣∣∣∣
≤

(
‖P∆‖us

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1 ∆t1∆t2

) 1
u

(
‖Q∆‖u1

r

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1 ∆t1∆t2

) 1
u1

≤ ‖P∆‖us‖Q
∆‖u1

r

( λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1 ∆t1∆t2

)
. (4.6)
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Proof. Let us suppose the function

G(t1, t2) =
(
Q(t1) − Q(t2)

)(
P(t1) − P(t2)

)
; t1, t2 ∈ (m, λ), (4.7)

which can be written as

G(t1, t2) = P(t1)Q(t1) − P(t1)Q(t2) − P(t2)Q(t1) − Q(t2)P(t2). (4.8)

Multiplying both sides of (4.8) by ~β−1(λ, σ(t1))S1(t1) and then integrating with respect to t1 over (m, λ),
we have

λ∫
m

~β−1(λ, σ(t1))S1(t1)G(t1, t2)∆t1

=

λ∫
m

~β−1(λ, σ(t1))S1(t1)P(t1)Q(t1)∆t1 −

λ∫
m

~β−1(λ, σ(t1))S1(t1)P(t1)Q(t2)∆t1

−

λ∫
m

~β−1(λ, σ(t1))S1(t1)P(t2)Q(t1)∆t1 − Q(t2)P(t2)

λ∫
m

~β−1(λ, σ(t1))S1(t1)∆t1, (4.9)

arrives at
λ∫

m

~β−1(λ, σ(t1))S1(t1)G(t1, t2)∆t1

= Iβm
(
S1PQ

)
(λ) − Q(t2)Iβm

(
S1P

)
(λ) − P(t2)Iβm

(
S1Q

)
(λ) + P(t2)Q(t2)Iβm

(
S1

)
(λ). (4.10)

Further, multiplying both sides of (4.10) ~β−1(λ, σ(t2))S1(t2) and then integrating with respect to t2 over
(m, λ), we have

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)G(t1, t2)∆t1∆t2

= 2
(
Iβm

(
S1

)
(λ)Iβm

(
PQ

)
(λ) − Iβm

(
S1P

)
(λ)Iβm

(
S1Q

)
(λ)

)
. (4.11)

On contrast, we have

G(t1, t2) =

t2∫
t1

t2∫
t1

P∆(θ)Q∆(ϑ)∆θ∆ϑ. (4.12)

Taking into account the Hölder’s inequality, we have

|P(t1) − P(t2)| ≤ |t1 − t2|
1
s1

∣∣∣∣ t2∫
t1

|P∆(θ)|s∆θ
∣∣∣∣ 1

s
(4.13)

and

|Q(t1) − Q(t2)| ≤ |t1 − t2|
1
r1

∣∣∣∣ t2∫
t1

|Q∆(ϑ)|r∆ϑ
∣∣∣∣ 1

r
. (4.14)
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Conducting product between (4.13) and (4.14), we get

|G(t1, t2)| ≤ |
(
P(t1) − P(t2)

)(
Q(t1) − Q(t2)

)
|

≤ |t1 − t2|
1
s1

+ 1
r1

∣∣∣∣ t2∫
t1

|P∆(θ)|s∆θ
∣∣∣∣ 1

s
∣∣∣∣ t2∫

t1

|Q∆(ϑ)|r∆ϑ
∣∣∣∣ 1

r
. (4.15)

Thus, from (4.11) and (4.15), we have

2
∣∣∣∣(Iβm(

S1
)
(λ)Iβm

(
PQ

)
(λ) − Iβm

(
S1P

)
(λ)Iβm

(
S1Q

)
(λ)

)∣∣∣∣
=

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)
∣∣∣G(t1, t2)

∣∣∣∆t1∆t2

≤

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)

× |t1 − t2|
1
s1

+ 1
r1

∣∣∣∣ t2∫
t1

|P∆(θ)|s∆θ
∣∣∣∣ 1

s
∣∣∣∣ t2∫

t1

|Q∆(ϑ)|r∆ϑ
∣∣∣∣ 1

r
∆t1∆t2. (4.16)

Further, taking into consideration the Hölder’s inequality for bivariate integral, we have

2
∣∣∣∣(Iβm(

S1
)
(λ)Iβm

(
PQ

)
(λ) − Iβm

(
S1P

)
(λ)Iβm

(
S1Q

)
(λ)

)∣∣∣∣
≤

( λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1

∣∣∣∣ t2∫
t1

|P∆(θ)|s∆θ
∣∣∣∣ u

s
∆t1∆t2

) 1
u

×

( λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1

∣∣∣∣ t2∫
t1

|Q∆(ϑ)|r∆ϑ
∣∣∣∣ u1

r
∆t1∆t2

) 1
u1
. (4.17)

Now, using the following properties

∣∣∣∣ t2∫
t1

|P∆(θ)|s∆θ
∣∣∣∣ 1

s
≤ ‖P∆‖s and

∣∣∣∣ t2∫
t1

|Q∆(ϑ)|r∆ϑ
∣∣∣∣ 1

r
≤ ‖Q∆‖r. (4.18)

From (4.17), we have

2
∣∣∣∣(Iβm(

S1
)
(λ)Iβm

(
PQ

)
(λ) − Iβm

(
S1P

)
(λ)Iβm

(
S1Q

)
(λ)

)∣∣∣∣
≤

(
‖P∆‖us

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1 ∆t1∆t2

) 1
u
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×

(
‖Q∆‖u1

r

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1 ∆t1∆t2

) 1
u1
. (4.19)

Therefore, we conclude that

2
∣∣∣∣(Iβm(

S1
)
(λ)Iβm

(
PQ

)
(λ) − Iβm

(
S1P

)
(λ)Iβm

(
S1Q

)
(λ)

)∣∣∣∣
≤ ‖P∆‖us‖Q

∆‖u1
r

( λ∫
m

λ∫
m

~β−1(λ, σ(t1))~β−1(λ, σ(t2))S1(t1)S1(t2)|t1 − t2|
1
s1

+ 1
r1 ∆t1∆t2

)
, (4.20)

the required result. �

Theorem 4.6. For β, γ ≥ 1,m ≥ 0 and let there are two delta-differentiable functions P and Q defined
on [0,∞)T . Also, assume that there are two positive integrable function S1 and S2 defined on [0,∞)T
such that P∆ ∈ Ls([0,∞)T ),Q∆ ∈ Lr([0,∞)T ) for s, r, u > 1 having s−1 + s1

−1 = 1, r−1 + r1
−1 = 1, and

u−1 + u1
−1 = 1. Then the following variant holds for all λ > m∣∣∣Iγm(

S2
)
(λ)Iβm

(
S1PQ

)
(λ) − Iγm

(
S1Q

)
(λ)Iβm

(
S1P

)
(λ)

−Iγm
(
S2P

)
(λ)Iβm

(
S1Q

)
(λ) + Iγm

(
S2PQ

)
(λ)Iβm

(
S1

)
(λ)

∣∣∣
≤ ‖P∆‖s‖Q

∆‖r

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~γ−1(λ, σ(t2))
∣∣∣t1 − t2

∣∣∣ 1
s1

+ 1
r1S1(t1)S2(t2)∆t1∆t2. (4.21)

Proof. Multiplying both sides of (4.10) by ~γ−1(λ, σ(t2))S2(t2) and integrating with respect to t2 over
(m, λ), we have

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~γ−1(λ, σ(t2))S2(t2)S1(t1)G(t1, t2)∆t1∆t2

= Iγm
(
S2

)
(λ)Iβm

(
S1PQ

)
(λ) − Iγm

(
S1Q

)
(λ)Iβm

(
S1P

)
(λ)

− Iγm
(
S2P

)
(λ)Iβm

(
S1Q

)
(λ) + Iγm

(
S2PQ

)
(λ)Iβm

(
S1

)
(λ). (4.22)

Taking modulus on both sides of (4.22), one obtains∣∣∣Iγm(
S2

)
(λ)Iβm

(
S1PQ

)
(λ) − Iγm

(
S1Q

)
(λ)Iβm

(
S1P

)
(λ)

−Iγm
(
S2P

)
(λ)Iβm

(
S1Q

)
(λ) + Iγm

(
S2PQ

)
(λ)Iβm

(
S1

)
(λ)

∣∣∣
=

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~γ−1(λ, σ(t2))S1(t1)S2(t2)
∣∣∣G(t1, t2)

∣∣∣∆t1∆t2

≤

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~γ−1(λ, σ(t2))
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×
∣∣∣t1 − t2

∣∣∣ 1
s1

+ 1
r1

∣∣∣∣ t2∫
t1

|P∆(θ)|sdθ
∣∣∣∣ 1

s
∣∣∣∣ t2∫

t1

|Q∆(ϑ)|rdϑ
∣∣∣∣ 1

r
S1(t1)S2(t2)∆t1∆t2

= ‖P∆‖s‖Q
∆‖r

λ∫
m

λ∫
m

~β−1(λ, σ(t1))~γ−1(λ, σ(t2))

×
∣∣∣t1 − t2

∣∣∣ 1
s1

+ 1
r1S1(t1)S2(t2)∆t1∆ (4.23)

�

5. Conclusions

In this work, we have fruitfully applied the RL-fractional integral operator on a time scale to derive
the Pólya-Szegö and Čebyšev type integral inequalities. Our fractional integral inequalities depends on
the graininess function of the time scale. We trust that this possibility can be very useful in applications
of signal processing, providing a concept of coarse-graining in time that can be used to model white
noise that occurs in signal processing or to obtain generalized entropies and new practical meanings
in signal processing. We conclude that the results derived in this paper are general in character and
give some contributions to statistical theory, optimization and helpful for finding the existence and
uniqueness of the integrodifferential equations.
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