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Abstract: Ulam stability problems have received considerable attention in the field of differential
equations. However, how to effectively build the fuzzy model for Ulam stability problems is
less attractive due to varies of differentiabilities requirements. The paper discusses the Ulam
stability of fuzzy differential equations in Banach spaces. After introducing the new definitions of
differentiabilities for fuzzy number-valued mappings, we give some important properties about these
differentiabilities. On these bases, with different differentiabilities and conditions, we prove the Ulam
stability of three kinds of fuzzy differential equations. The obtained conclusions generalize the existing
results.
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1. Introduction

Stability is one of the most important characteristics of dynamic systems. One of the methods to
study stability is introduced by Ulam [1], in which the problem of functional equations concerning the
stability of group homomorphisms was first discussed. Ulam method-based stability analysis was then
investigated by many researchers such as Hyers [2], Rassias [3], and so on. Then, Obloza [4] explored
the Ulam stability of differential equations. Afterwards, Alsina and Ger [5] proved the differential
equation y′ = y satisfied Hyers-Ulam stability. Miura et al. [6,7] and Takahasi et al. [8] discussed the
Ulam stability of the differential equation y′ = λy in some abstract spaces.

As is known to all, fuzzy differential equations play an important role in practical applications,
such as power systems and artificial intelligence. Kaleva [9] proved the existence and uniqueness of
a solution to a fuzzy differential equation x′(t) = f (t, x(t)) provided f satisfied a Lipschitz condition.
After that, Kaleva [10] and Kloeden [11] discussed the peano theorem of fuzzy differential equations
one after another. In the following year, Tomasiello and Macı́as-Dı́az [12] extended a Picard-like
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approach to fuzzy fractional differential equations. Rashid et al. [13] established a relation between the
solutions and approximate solutions of complex fuzzy differential equations with complex membership
grades. Nowadays, the study of fuzzy differential equations is still active, See [14–22].

It is worth noting that the stability of fuzzy differential equations has got scholars’ much attentions
in recent years. Diamond [23] studied the Lyapunov stability. Song et al. [24] studied the stability
properties of the trivial fuzzy solution of fuzzy differential equations. After that, Yakar et al. [25]
considered the Lagrange stability. Other results about the stability of fuzzy differential equations can
be found in Refs. [26–28]. Recently, the Ulam stability of fuzzy differential equations is developed.
For example, Shen and Wang [29] discussed the Ulam stability of fuzzy differential equations under
generalized differentiability by a fixed point approach. Shen [30] explored the Ulam stability of the
following three linear fuzzy differential equations in the real number space:

u′(t) + δ(t)u(t) = σ(t), (1.1)
u′(t) = δ(t)u(t) + σ(t), (1.2)
u′(t) + σ(t) = δ(t)u(t). (1.3)

where u and σ are fuzzy number-valued functions (mappings), δ is a real valued function and equality
symbol means identity of membership functions on each side. Ren et al. [31] introduced a fuzzy
Mellin transform method for solving Hermite fuzzy differential equations and give some Hyers-Ulam
stability results of Hermite fuzzy differential equations. Wang and Sun [32] investigated the existence
and uniqueness of solution to Cauchy problems for a class of nonlinear fuzzy fractional differential
equations with the Riemann-Liouville H-derivative.

In this paper, we further the discussions of Ulam stability for Eqs (1.1)–(1.3) under the different
differentiability and domain space from those in Ref. [30]. Here, the concept of differentiability is the
generalization of that introduced in [33]. Meanwhile, the domain space is a Banach space instead of
the real number space. We first give some preliminaries in section 2, and then, investigate the Ulam
stability of Eqs (1.1)–(1.3) in sections 3–5, respectively.

In this paper, R denotes the set of all real numbers, R+ = (0,∞), I = [0, 1], I0 = (0, 1), T = [a, b] and
T0 = (a, b), where a, b ∈ R with a < b. X is a Banach space, Pkc(X) denotes the set of all non-empty
compact convex subsets of X.

2. Preliminaries

In this section, we review some necessary notions and fundamental results which are useful in this
paper.

If a function u : X → [0, 1] satisfies the following conditions:

(i) u is normal, i.e., there exists x0 ∈ X such that u(x0) = 1;

(ii) [u]α = {x ∈ X : u(x) ≥ α} ∈ Pkc(X), ∀α ∈ (0, 1];

(iii) u is upper-semicontinuous;;

(iii) the support set of u : [u]0 = supp(u) = cl{x : u(x) > 0} is a compact set, where “cl” means the
closure operator.
Then u is called a fuzzy number on X. The set of all fuzzy numbers on X is denoted by XF .
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A mapping D : XF×XF → R+∪{0} is defined by D(u, v) = sup
α∈I

dH ([u]α, [v]α), where dH is Hausdorff

metric, then (XF ,D) is a complete metric space. For u, v ∈ XF , λ ∈ R, the addition u + v and scalar
multiplication λ · u are introduced by Zadeh extension principle. If there exists w ∈ XF such that
u = v + w, then w is called the H-difference of u and v, and denoted by u− v. Obviously, u = v + (u− v).

The details about the fuzzy number space can be found in [9,22,34] and so on. On these bases, we
obtain the following result easily:
Theorem 2.1. Let u, v,w, γ ∈ XF , and the H-difference has the following properties:

(H1) For u, v,w ∈ XF , if u − w exists, then (u + v) − w and (u + v) − w = (u − w) + v exist;

(H2) For u, v,w, γ ∈ XF , if u − v exists, then (γ + u) − (γ + v) and (γ + u) − (γ + v) = u − v exist.

The following definition extends the corresponding concept in [33] from the real number space to a
Banach space.
Definition 2.2. Let F : T0 → XF be a fuzzy number-valued mapping, t0 ∈ T0, F′(t0) ∈ XF . If for all
h > 0 sufficiently small,

(i) the H-differences F(t0 + h) − F(t0) and F(t0) − F(t0 − h) exist, and

lim
h→0

F(t0+h)−F(t0)
h = lim

h→0

F(t0)−F(t0−h)
h

= F′(t0);

or

(ii) the H-differences F(t0) − F(t0 + h) and F(t0 − h) − F(t0) exist, and

lim
h→0

F(t0)−F(t0+h)
(−h) = lim

h→0

F(t0−h)−F(t0)
(−h)

= F′(t0)

or

(iii) the H-differences F(t0 + h) − F(t0) and F(t0 − h) − F(t0) exist, and

lim
h→0

F(t0+h)−F(t0)
h = lim

h→0

F(t0−h)−F(t0)
(−h)

= F′(t0)

or

(iv) the H-differences F(t0) − F(t0 + h) and F(t0) − F(t0 − h) and exist, and

lim
h→0

F(t0)−F(t0+h)
(−h) = lim

h→0

F(t0)−F(t0−h)
h

= F′(t0)

(h and −h at denominators denote 1
h and −1

h , respectively), then F is said to be (i)-differentiable or
(ii)-differentiable or (iii)-differentiable or (iv)-differentiable at t0, respectively. If F satisfies all of
(i)-(iv), then F is said to be differentiable at t0. If F is (i)-differentiable ((ii)-differentiable,
(iii)-differentiable, (iv)-differentiable, differentiable) at every point of T0, then F is said to be
(i)-differentiable ((ii)-differentiable, (iii)-differentiable, (iv)-differentiable, differentiable) on T0.

In this paper, we develop our discussion in the cases of (iii) and (iv) differentiabilities.
Theorem 2.3. Let F,G : T0 → XF be two fuzzy mappings. Suppose the H-difference F(t)−G(t) exists
for t ∈ T0.

(1) If F is (iii)-differentiable and G is (iv)-differentiable on T0, then F −G is (iii)-differentiable on
T0;

(2) If F is (iv)-differentiable and G is (iii)-differentiable on T0, then F −G is (iv)-differentiable on
T0.
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Moreover, in the case (1) or (2), for all t ∈ T0, we have (F −G)′ (t) = F′(t) + (−1) ·G′(t).
Proof. We only prove (1), the method used here is similar to Theorem 9 in [33].

Since F is (iii)-differentiable and G is (iv)-differentiable, for any t ∈ T0 and h > 0, there exist
u1(t, h), u2(t, h), v1(t, h), v2(t, h) ∈ XF such that

F(t + h) = F(t) + u1 (t, h) , (2.1)
F(t − h) = F(t) + u2 (t, h) , (2.2)
G(t) = G(t + h) + v1 (t, h) , (2.3)
G(t) = G(t − h) + v2 (t, h) , (2.4)

and

lim
h→0

u1 (t, h)
h

= lim
h→0

u2 (t, h)
h

= F′(t), (2.5)

lim
h→0

v1 (t, h)
(−h)

= lim
h→0

v2 (t, h)
(−h)

= G′(t), (2.6)

From (2.1) and (2.3), we get

F(t + h) + G(t) = F(t) + G(t + h) + u1 (t, h) + v1 (t, h) , (2.7)

Since the H-differences F(t) −G(t) and F(t + h) −G(t + h) exist, from (2.7) and Theorem 2.1 we have

F(t + h) −G(t + h) = F(t) −G(t) + u1 (t, h) + v1 (t, h),

which implies that (F(t + h) −G(t + h)) − (F(t) −G(t)) = u1 (t, h) + v1 (t, h).
From (2.5) and (2.6), we get

lim
h→0

(F(t+h)−G(t+h))−(F(t)−G(t))
h = F′(t)+(−1)G′(t).

Similarly, from (2.2), (2.4)–(2.6) and Theorem 2.1, we obtain

lim
h→0

(F(t−h)−G(t−h))−(F(t)−G(t))
−h = F′(t) + (−1)G′(t).

Hence, F −G is (iii)-differentiable on T0 and (F −G)′ (t) = F′(t) + (−1) ·G′(t). The proof ends.
For convenience, we introduce the following conditions:

(C1) For a given t ∈ T0, if F(t + h) − F(t) and F(t − h) − F(t) exist for sufficiently small h > 0;

(C2) For a given t ∈ T0, if F(t) − F(t + h) and F(t) − F(t − h) exist for sufficiently small h > 0;

(C3) For a given t ∈ T0, if F(t + h) − F(t) and F(t) − F(t − h) exist for sufficiently small h > 0;

(C4) For a given t ∈ T0, if F(t) − F(t + h) and F(t − h) − F(t) exist for sufficiently small h > 0.

Based on Theorem 2.5 in [30], we can verify the following theorem.
Theorem 2.4. Let f : T0 → R be differentiable, and G : T0 → XF be (iii)-differentiable or (iv)-
differentiable on T0,

(i) if f (t) · f ′(t) > 0 and G is (iii)-differentiable on T0, then f ·G is (iii)-differentiable on T0 and

( f ·G)′(t) = f ′(t) ·G(t) + f (t) ·G′(t);
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(ii) if f (t) · f ′(t) < 0 and G is (iii)-differentiable on T0, then f ·G is (iii)-differentiable on T0 and

( f ·G)′(t) = f (t) ·G′(t) − (− f ′(t)) ·G(t);

(iii) if f (t) · f ′(t) < 0 and G is (iii)-differentiable on T0 and f ·G satisfies condition (C2), then f ·G
is (iv)-differentiable on T0 and

( f ·G)′(t) = f ′(t) ·G(t) − (− f (t)) ·G′(t);

(iv) if f (t) · f ′(t) > 0 and G is (iv)-differentiable on T0 and f ·G satisfies condition (C1), then f ·G
is (iii)-differentiable on T0 and

( f ·G)′(t) = f ′(t) ·G(t) − (− f (t)) ·G′(t);

(v) if f (t) · f ′(t) > 0 and G is (iv)-differentiable on T0, then f ·G is (iv)-differentiable on T0 and

( f ·G)′(t) = f (t) ·G′(t) − (− f ′(t)) ·G(t);

(vi) if f (t) · f ′(t) < 0 and G is (iv)-differentiable on T0, then f ·G is (iv)-differentiable on T0 and

( f ·G)′(t) = f ′(t) ·G(t) + f (t) ·G′(t).

Proof. The proofs of them is similar, we only show (vi). Suppose that f (t) < 0, f ′(t) > 0 and G is
(iv)-differentiable on T0, then for any t ∈ T0 and any sufficiently small h > 0, there exists u (t, h) ∈ XF

such that

G(t) = G(t + h) + u (t, h) and lim
h→0

u(t,h)
−h = G′ (t).

We also have f (t) = f (t + h) + v (t, h), where lim
h→0

v(t,h)
(−h) = f ′(t). Then

G(t) · f (t) = G(t + h) · f (t + h) + u (t, h) · f (t + h) + G(t + h) · v (t, h) + u (t, h) · v (t, h),

so

G(t) · f (t) −G(t + h) · f (t + h) = u (t, h) · f (t + h) + G(t + h) · v (t, h) + u (t, h) · v (t, h).

Hence,

lim
h→0

G(t) · f (t) −G(t + h) · f (t + h)
(−h)

= lim
h→0

u (t, h)
(−h)

· f (t + h) + lim
h→0

v (t, h)
(−h)

·G(t + h) + lim
h→0

u (t, h)
(−h)

· v (t, h)

= f (t) ·G′(t) + f ′(t) ·G(t).

Similarly, we have

lim
h→0

G(t)· f (t)−G(t−h)· f (t−h)
h = f (t) ·G′(t) + f ′(t) ·G(t).

The proof ends.
Theorem 2.5. Let F : T → XF be (iii)-differentiable or (iv)-differentiable and t1, t2 ∈ T , then

(1) F(t2) − F(t1) exists;

(2) there exists a positive real number M such that D (F(t2), F(t1)) ≤ M |t2 − t1|.

Proof. We only show the case that F is (iii)-differentiable.
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Case 1: If t1 = t2, we have F(t2) − F(t1) = θ and D (F(t2), F(t1)) = 0 directly.

Case 2: If t1 < t2. For all s ∈ [t1, t2], by the assumption there exists δ(s) > 0 such that F(s + h) − F(s)
exists and D

(
F(s+h)−F(s)

h , F′(s)
)
< 1 or D (F(s + h) − F(s), hF′(s)) < h for h ∈ (0, δ(s)), hence

D (F (s + h) , F (s)) = D (F (s + h) − F (s) , θ)

≤ D
(
F (s + h) − F (s) , hF′ (s)

)
+ D

(
hF′ (s) , θ

)
< h + hD

(
F′(s), θ

)
= h + hDF′(s),

where DF′(s) = D (F′(s), θ).
So we can find a finite sequence: t1 = s1 < s2 · ·· < sn = t2 such that the interval set {Ii :

Ii = (si − δ(si), si + δ(si)), i = 1, 2, · · ·, n} cover [t1, t2] and Ii ∩ Ii+1 , φ (i = 1, 2, 3 · ··, n − 1). Let
vi ∈ Ii ∩ Ii+1, such that si < vi < si+1 (i = 1, 2, 3 · ··, n − 1), then there exist γ1

(i), γ2
(i) ∈ XF , such that

F(si+1) = F(vi) + γ1
(i) = F(si) + γ2

(i) + γ1
(i) = F(si) + ηi and

D (F(si+1), F(si)) ≤ D (F(si+1), F(vi)) + D (F(vi), F(si))

< (si+1 − vi) + (si+1 − vi)DF′(vi) + (vi − si) + (vi − si)DF′(si)
= (si+1 − si) + (si+1 − si)DF′

where DF′ = max
1≤i≤n−1

{DF′(si),DF′(vi)}, ηi = γ2
(i) + γ1

(i) ∈ XF (i = 1, 2 · ··, n − 1).

Let
n−1∑
i=1
ηi = u ∈ XF , then F(t2) = F(t1) + u and

D (F(t2), F(t1)) < (t2 − t1)(1 + DF′).

Let M1=(1 + DF′) > 0, then D (F(t2), F(t1)) < M1(t2 − t1).

Case 3: t1 > t2. By the similar discussion in Case 2, we can prove there exists M2 > 0 such that
D (F(t2), F(t1)) < M2(t1 − t2). The proof ends..

The following contents about the integral of a fuzzy mapping are generalizations of these in [9].
Definition 2.6. A mapping F : T → XF is measurable if for all α ∈ (0, 1] the set-valued mapping
Fα : T → Pkc(X) defined by

Fα(t) = [F(t)]α

is measurable. The set of all measurable selections of Fα(t) is denoted by S Fα .
Definition 2.7. Let F : T → XF be measurable. If there exists u ∈ XF such that∫

T
Fα(t)dt = [u]α

for all α ∈ (0, 1], then F is said to be integrable over T , u is the integral of F over T and denoted by∫
T

F(t)dt or
∫ b

a
F(t)dt, where ∫

T
Fα(t)dt =

{∫
T

f (t)dt| f ∈ S Fα

}
.

Definition 2.8. A mapping F : T → XF is called integrably bounded if there exists an integrable
mapping h : [a, b]→ X such that |x| ≤ h (t) for all x ∈ [F (t)]0.
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It is well known that if a measurable mapping F : T → XF is integrably bounded, then it is
integrable.
Theorem 2.9. If F : [a, b]→ XF is integrable and c ∈ [a, b], then∫ b

a
F(t)dt =

∫ c

a
F(t)dt +

∫ b

c
F(t)dt. (2.8)

Remark. Let
∫ b

a
F(t)dt =

(
−

∫ a

b
F(t)dt

)
when a > b, we can prove that (2.8) still holds for a > c > b.

The set of all continuous mapping F : T → (XF ,D) is denoted by C[T, XF].
The following theorem is the generalization of Corollary 4.1 in [9] from Rn to a Banach space.

Theorem 2.10. If F : T → XF be a continuous fuzzy mapping, then it is integrable.
Simillar to Theorems 2.3 and 2.4 in [30], we can show the following theorem.

Theorem 2.11. Let F : T → XF be a continuous fuzzy mapping. Then, for any x ∈ T ,
(1) the mapping H(x) =

∫ x

a
F(t)dt is (i)-differentiable, and H(x) is Lipschitz continuous. Moreover,

H′(x) = F(x);
(2) H(x) = γ −

∫ x

a
((−1) · F(t)) dt is (ii)-differentiable, and H′(x) = F(x).

3. Ulam stability for Eq (1.1)

In this section, we mainly discuss the Ulam stability for the linear fuzzy differential Eq (1.1) in two
cases: (1) u is (iii)-differentiable and δ(t) > 0; (2) u is (iv)-differentiable and δ(t) < 0.
Theorem 3.1. Let σ ∈ C[T, XF] and δ : T → R+ be a continuous function. Suppose that u : T0 → XF is
continuous and (iii)-differentiable, and the H-difference exp

(∫ t

a
δ(τ)dτ

)
u(t)−

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

exists for each t ∈ T0.
(1) there exists a u0 ∈ XF such that the mapping: ∀t ∈ T0,

ũ (t) = exp
(
−

∫ t

a
δ (τ) dτ

) (
u0 +

∫ t

a
exp

(∫ v

a
δ (τ) dτ

)
σ (v) dv

)
(3.1)

satisfies

D(u(t), ũ(t)) ≤ exp
(
−

∫ t

a
δ(τ)dτ

) (
M+M′) (b − t), (3.2)

where M,M′ > 0.
(2) If ũ(t) satisfies the condition (C3), then ũ(t) is the (i)-differentiable solution of Eq (1.1).

Proof. (1) For convenience, we set

G(t) = exp
(∫ t

a
δ(τ)dτ

)
u(t) and w(t) = G(t) −

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

for each t ∈ T0. Then for arbitrary s, t ∈ T0 with t < s, we have

D (w (t) ,w (s)) = D
(
G(t) +

∫ s

t
exp

(∫ v

a
δ (τ) dτ

)
σ (v) dv,G(s)

)
.

From (i) of Theorem 2.4, we know that G(t) is (iii)-differentiable on T0, which together with Theorem
2.5 implies that there exists M > 0 such that

D(w(t),w(s)) = D
(
G(t) +

∫ s

t
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv,G(s)

)
AIMS Mathematics Volume 5, Issue 6, 6006–6019.
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≤ D (G(t),G(s)) + D
(
θ,

∫ s

t
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
≤ M(s − t) + D

(
θ,

∫ s

t
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
.

Since σ and δ are continuous functions and by Theorem 2.10, we know that exp
(∫ t

a
δ(τ)dτ

)
σ(t) is

integrable on T . Then from (1) of Theorem 2.11, we obtain

D
(
θ,

∫ s

t
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
≤ M′(s − t),

where M′ > 0. Thus

D(w(t),w(s)) ≤
(
M + M′) (s − t), (3.3)

which means that {w(s)}s∈T0 is a Cauchy net in XF . The completeness of the metric space (XF ,D)
implies that there exists a u0 ∈ XF such that w(s) converges to u0 as s → b−. Based on the above
arguments, we obtain

[D(u(t), ũ(t)) = D
(
u(t), exp

(
−

∫ t

a
δ(τ)dτ

) (
u0 +

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
= exp

(
−

∫ t

a
δ(τ)dτ

)
D

(
G(t), u0 +

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
= exp

(
−

∫ t

a
δ(τ)dτ

)
D

(
G(t) −

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv, u0

)
= exp

(
−

∫ t

a
δ(τ)dτ

)
D(w(t), u0)

≤ exp
(
−

∫ t

a
δ(τ)dτ

)
(D(w(t),w(s)) + D(w(s), u0))

≤ exp
(
−

∫ t

a
δ(τ)dτ

) ((
M + M′) (s − t) + D (w (s) , u0)

)
. (3.4)

It follows from (3.3) that the expression (3.4) tends to exp
(
−

∫ t

a
δ(τ)dτ

)
(M + M′) (b − t) as s → b−.

That is, the inequality (6) holds.
Now we prove the uniqueness of u0. Assume that there exists u1 ∈ XF such that inequality (3.2)

holds where u0 in (3.1) is replaced by u1. It follows from (3.2) that

exp
(
−

∫ t

a
δ(τ)dτ

)
D(u0, u1)

= exp
(
−

∫ t

a
δ(τ)dτ

)
D

(
u0 +

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv, u1 +

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
≤ D

(
u(t), exp

(
−

∫ t

a
δ(τ)dτ

) (
u0 +

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

))
+ D

(
u(t), exp

(
−

∫ t

a
δ(τ)dτ

) (
u1 +

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

))
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≤ 2 exp
(
−

∫ t

a
δ(τ)dτ

) (
M + M′) (b − t)

for each t ∈ T0. So

D(u0, u1) ≤ 2 (M + M′) (b − t)

for each t ∈ T0. Since 2 (M+M′) (b− t) tends to 0 as t → b−, we get u0 ≡ u1. This completes the proof.
(2) Next, we shall consider the differentiability of ũ given by (3.2). Setting

f (t) = exp
(
−

∫ t

a
δ(τ)dτ

)
and H(t) = u0 +

∫ t

a
exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

From (1) of Theorem 2.11, it is easy to see that H(t) is (i)-differentiable on T0. If f (t) ·H(t) satisfies the
condition (C3) on T0, by (ii) of Theorem 5 in [30], we obtain that ũ(t) = f (t) · H(t) is (i)-differentiable
on T0, since f (t) · f ′(t) < 0 holds for t ∈ T0. Moreover, we have

ũ′(t) = ( f (t) · H(t))′ = f (t) · H′(t) − (− f ′(t)) · H(t) = σ(t) − δ(t)ũ(t)

Thus ũ′(t) + δ(t)ũ(t) = σ(t). That is to say, ũ(t) is a (i)-differentiable solution of the fuzzy differential
Eq (1.1).
Theorem 3.2. Let σ ∈ C[T, XF] and δ : T → R− be a continuous function. Suppose u : T0 → XF is
continuous and (iv)-differentiable.

(1) Then there exists a u0 ∈ XF such that

exp
(∫ t

a
δ(τ)dτ

)
u(t) +

∫ t

a
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv→ u0 (3.5)

as t → b−.
(2) If the H-difference u0 −

∫ t

a
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv exists on T0, then the mapping: ∀t ∈ T0,

ũ(t) = exp
(
−

∫ t

a
δ(τ)dτ

) (
u0 −

∫ t

a
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
(3.6)

satisfies

D (u(t), ũ(t)) ≤ exp
(
−

∫ t

a
δ(τ)dτ

) (
M+M′) (b − t) (3.7)

where M,M′ > 0.
(3) If ũ(t) satisfies the condition (C4), then ũ(t) is the (ii)-differentiable solution of Eq (1.1).

Proof. (1) For simplicity, let

G(t) = exp
(∫ t

a
δ(τ)dτ

)
u(t) and w(t) = G(t) +

∫ t

a
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

for each t ∈ T0. By (vi) of Theorem 2.4, we obtain G(t) is (iv)-differentiable. Then, for any s, t ∈ T0

with t < s, we can infer from Theorem 2.5 that there exists M > 0 such that

D (w (t) ,w (s))

= D
(
G (t) +

∫ t

a
− exp

(∫ v

a
δ (τ) dτ

)
σ (v) dv, G (s) +

∫ s

a
− exp

(∫ v

a
δ (τ) dτ

)
σ (v) dv

)
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≤ D (G(t),G(s)) + D
(
θ,

∫ s

t
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
≤ M(s − t) + D

(
θ,

∫ s

t
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
.

Since σ and δ are continuous functions and by Theorem 2.10, we get exp
(∫ t

a
δ(τ)dτσ(t)

)
is integrable

on T , which together with (1) of Theorem 2.11, we have

D
(
θ,

∫ s

t
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv

)
≤ M′(s − t),

where M′ > 0. Then

D (w(t),w(s)) ≤ M(s − t)+M′(s − t) = (M+M′) (s − t).

From the proof of Theorem 3.1, we obtain that w(s) converges to u0 as s → b−. That is to say, the
expression (3.5) holds.

(2) If the H-difference u0 −
∫ t

a
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv = u0H(t) exists on T0, then

D (u (t) , ũ (t)) = D
(
u(t), exp

(
−

∫ t

a
δ(τ)dτ

)
u0H(t)

)
= exp

(
−

∫ t

a
δ(τ)dτ

)
D

(
exp

(∫ t

a
δ(τ)dτ

)
u(t), u0H(t)

)
= exp

(
−

∫ t

a
δ(τ)dτ

)
D (w(t), u0)

≤ exp
(
−

∫ t

a
δ(τ)dτ

)
(D (w(t),w(s)) + D (w(s), u0))

≤ exp
(
−

∫ t

a
δ (τ) dτ

) ((
M+M′) (s − t) + D (w (s) , u0)

)
(3.8)

for any t ∈ T0. It is easy to see that the expression (3.8) tends to exp
(
−

∫ t

a
δ(τ)dτ

)
(M+M′) (b − t) as

s→ b−. Thus, the inequality (3.7) holds.
Now we prove the uniqueness of u0. Assume that there exists u1 ∈ XF such that the H-difference

u1 −
∫ t

a
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv = u1H(t)

exists on T0 and inequality (3.7) holds if u0 in (3.6) is replaced by u1. Then, we have

exp
(
−

∫ t

a
δ(τ)dτ

)
D(u0, u1)

= exp
(
−

∫ t

a
δ(τ)dτ

)
D (u0H(t), u1H(t))

≤ D
(
u(t), exp

(
−

∫ t

a
δ(τ)dτ

)
u0H(t)

)
+ D

(
u(t), exp

(
−

∫ t

a
δ(τ)dτ

)
u1H(t)

)
≤ 2 exp

(
−

∫ t

a
δ(τ)dτ

) (
M+M′) (b − t)

for each t ∈ T0. Therefore for each D(u0, u1) ≤ 2 (M+M′) (b − t). Since 2 (M+M′) (b − t) tends to 0 as
t → b−, we get u0 ≡ u1. This completes the proof.
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(3) Next, we shall consider the differentiability of the fuzzy number-valued mapping ũ(t) given by
(3.6). Setting

f (t) = exp
(
−

∫ t

a
δ(τ)dτ

)
and H(t) = u0 −

∫ t

a
− exp

(∫ v

a
δ(τ)dτ

)
σ(v)dv.

By (2) of Theorem 2.11, it is easy to see that H(t) is (ii)-differentiable and H′(t) = exp
(∫ t

a
δ(τ)dτ

)
σ(t).

Moreover, f (t) · f ′(t) > 0. From (v) of Theorem 5 in [30] and the assumption that ũ(t) = f (t) · H(t)
satisfies the condition (C4) on T0, we know that ũ(t) is (ii)-differentiable on T0 and fulfills

ũ′(t) = ( f (t) · H(t))′ = f (t) · H′(t) − (− f ′(t)) · H(t) = σ(t) − δ(t)ũ(t)

which implies that ũ′(t)+δ(t)ũ(t) = σ(t), i.e., ũ(t) is a (ii)-differentiable solution of the fuzzy differential
Eq (1.1).

4. Ulam stability for Eqs (1.2) and (1.3)

In this section, with the similar proof method of Theorems 3.1 and 3.2, we can prove the Ulam
stability for the linear fuzzy differential Eqs (1.2) and (1.3) in two cases: (1) u is (iii)-differentiable and
δ(t) > 0; (2) u is (iv)-differentiable and δ(t) < 0.
Theorem 4.1. Let σ ∈ C[T, XF] and δ : T → R+ be a continuous function. Suppose u : T0 → XF

is continuous and (iii)-differentiable, exp
(
−

∫ t

a
δ(τ)dτ

)
u(t) satisfies the condition (C1) on T0. If the

H-difference exp
(
−

∫ t

a
δ(τ)dτ

)
u(t) −

∫ t

a
exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv exists for any t ∈ T0, then

(1) there exists a u0 ∈ XF such that the mapping: ∀t ∈ T0,

ũ(t) = exp
(∫ t

a
δ(τ)dτ

) (
u0 +

∫ t

a
exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv

)
satisfies

D(u(t), ũ(t)) ≤ exp
(∫ t

a
δ(τ)dτ

)
(M + M′) (b − t),

where M,M′ > 0.
(2) ũ(t) is the (i)-differentiable solution of Eq (1.2).

Theorem 4.2. Let σ ∈ C[T, XF] and δ : T → R− be a continuous function. Suppose u : T0 → XF is
continuous and (iv)-differentiable, exp

(
−

∫ t

a
δ(τ)dτ

)
u(t) satisfies the condition (C2) on T0.

(1) Then there exists a u0 ∈ XF such that the mapping

w(t) = exp
(
−

∫ t

a
δ(τ)dτ

)
u(t) +

∫ t

a
− exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv→ u0

as t → b−.
(2) If the H-difference u0 −

∫ t

a
− exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv exists on T0, then u0 is unique such that

the mapping: ∀t ∈ T0,

ũ(t) = exp
(∫ t

a
δ(τ)dτ

) (
u0 −

∫ t

a
− exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv

)
satisfies

D(u(t), ũ(t)) ≤ exp
(∫ t

a
δ(τ)dτ

)
(M + M′) (b − t)

where M,M′ > 0.

(3) ũ(t) is the (ii)-differentiable solution of Eq (1.2).
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Theorem 4.3. Let σ ∈ C[T, XF] and δ : T → R+ be a continuous function. Suppose u : T0 → XF is
continuous and (iii)-differentiable, exp

(
−

∫ t

a
δ(τ)dτ

)
u(t) satisfies the condition (C1) on T0.

(1) Then there exists a u0 ∈ XF such that the mapping

w(t) = exp
(
−

∫ t

a
δ(τ)dτ

)
u(t) +

∫ t

a
exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv→ u0

as t → b−.
(2) If the H-difference u0 −

∫ t

a
exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv exists for each t ∈ T0, then the mapping:

∀t ∈ T0,

ũ (t) = exp
(∫ t

a
δ (τ) dτ

) (
u0 −

∫ t

a
exp

(
−

∫ v

a
δ (τ) dτ

)
σ (v) dv

)
satisfies

D(u(t), ũ(t)) ≤ exp
(∫ t

a
δ(τ)dτ

)
(M + M′) (b − t),

where M,M′ > 0.
(3) If ũ(t) satisfies the condition (C3), then ũ(t) is the (i)-differentiable solution of Eq (1.3).

Theorem 4.4. Let σ ∈ C[T, XF] and δ : T → R− be a continuous function. Suppose u : T0 → XF

is continuous and (iv)-differentiable, exp
(
−

∫ t

a
δ(τ)dτ

)
u(t) satisfies the condition (C2) on T0 and the

H-difference exp
(
−

∫ t

a
δ(τ)dτ

)
u(t) −

∫ t

a
− exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv exists for each t ∈ T0.

(1) Then there exists a u0 ∈ XF such that the mapping: ∀t ∈ T0,

ũ(t) = exp
(∫ t

a
δ(τ)dτ

) (
u0 +

∫ t

a
− exp

(
−

∫ v

a
δ(τ)dτ

)
σ(v)dv

)
satisfies

D (u(t), ũ(t)) ≤ exp
(∫ t

a
δ(τ)dτ

)
(M + M′) (b − t)

where M,M′ > 0.
(2) If ũ(t) satisfies the condition (C4), then ũ(t) is the (ii)-differentiable solution of Eq (1.3).

5. Conclusion

The paper introduces some new definitions of differentiabilities for fuzzy number-valued mappings
in Banach spaces and gives their important properties. Under suitable conditions, the paper shows the
solutions of some fuzzy differential equations are stable in the sense of Ulam. By the techniques
introduced in this paper, more results about Ulam stability theorems for linear fuzzy differential
equations are prospective. They will play important roles in the applications of fuzzy differential
equations.
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