Mathematics

Research article

Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces

K. Tamilvanan ${ }^{1}$, Jung Rye Lee ${ }^{2, *}$ and Choonkil Park ${ }^{3, *}$
${ }^{1}$ Department of Mathematics, Government Arts College for Men, Krishnagiri, Tamilnadu 635001, India
${ }^{2}$ Department of Mathematics, Daejin University, Kyunggi 11159, Korea
${ }^{3}$ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
* Correspondence: Email: jrlee@daejin.ac.kr, baak@hanyang.ac.kr.

Abstract

In this paper, we introduce a mixed type finite variable functional equation deriving from quadratic and additive functions and obtain the general solution of the functional equation and investigate the Hyers-Ulam stability for the functional equation in quasi-Banach spaces.

Keywords: additive functional equation; quadratic functional equation; Hyers-Ulam stability; quasi-Banach space; p-Banach space
Mathematics Subject Classification: 39B52, 39B72, 39B82

1. Introduction

The stability problem of functional equations originated from a question of Ulam [27] in 1940, concerning the stability of group homomorphisms. Let $\left(G_{1}, \cdot\right)$ be a group and let ($G_{2}, *$) be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$, such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x, y), h(x) * h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$? In other words, under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, Hyers [12] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-L(x)\| \leq \epsilon
$$

In 1978, Rassias [23] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

Quadratic functional equation was used to characterize inner product spaces [1, 2, 13]. A square norm on an inner product space satisfies the important parallelogram equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is related to a symmetric bi-additive mapping [1,16]. It is natural that each equation is called a quadratic functional equation. In particular, every solution of the quadratic $\mathrm{Eq}(1.1)$ is said to be a quadratic mapping. It is well known that a mapping f between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive mapping B such that $f(x)=B(x, x)$ for all x (see [1,16]). The bi-additive mapping B is given by

$$
\begin{equation*}
B(x, y)=\frac{1}{4}(f(x+y)-f(x-y)) . \tag{1.2}
\end{equation*}
$$

A Hyers-Ulam stability problem for the quadratic functional Eq (1.1) was proved by Skof [25] for mappings $f: E_{1} \rightarrow E_{2}$ where E_{1} is a normed space and E_{2} is a Banach space ([16]). Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group. In [5], Czerwik proved the Hyers-Ulam stability of the quadratic functional Eq (1.1). Grabiec [11] generalized these results mentioned above.

Elqorachi and M. Th. Rassias [6] have been extensively studied the Hyers-Ulam stability of the generalized trigonometric functional equations

$$
\begin{array}{ll}
f(x y)+\mu(y) f(x \sigma(y))=2 f(x) g(y)+2 h(y), & x, y \in S, \\
f(x y)+\mu(y) f(x \sigma(y))=2 f(y) g(x)+2 h(x), & x, y \in S, \tag{1.4}
\end{array}
$$

where S is a semigroup, $\sigma: S \rightarrow S$ is an involutive morphism, and $\mu: S \rightarrow \mathbb{C}$ is a multiplicative function such that $\mu(x \sigma(x))=1$ for all $x \in S$. Jung [19] proved the stability theorems for n-dimensional quartic-cubic-quadratic-additive type functional equations of the form $\sum_{i=1}^{l} c_{i} f\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right)=0$ by applying the direct method. These stability theorems can save us the trouble of proving the stability of relevant solutions repeatedly appearing in the stability problems for various functional equations. Lee [18] introduced general quintic functional equation and general sextic functional equations such as the additive functional equation and the quadratic
functional equation. He investigated the Hyers-Ulam stability results. Kayal et al. [24] established the Hyers-Ulam stability results belonging to two different set valued functional equations in several variables, namely, additive and cubic. The results were obtained in the contexts of Banach spaces. See $[10,15,20]$ for more information on functional equations and their stability.

Jun and Kim [14] obtained the Hyers-Ulam stability for a mixed type of cubic and additive functional equations. In addition theHyers-Ulam for a mixed type of quadratic and additive functional equations

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+2 f(2 x)-2 f(x) \tag{1.5}
\end{equation*}
$$

in quasi-Banach spaces have been investigated by Najati and Moghimi [21]. Najati and Eskandani [22] introduced the following functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+2 f\left(2 x_{-} 4 f(x) .\right. \tag{1.6}
\end{equation*}
$$

It is easy to see that the function $f(x)=a x^{3}+b x$ is a solution of the functional Eq (1.6). They established the general solution and the Hyers-Ulam stability for the functional Eq (1.6) in quasiBanach spaces. In 2009, Eshaghi Gordji et al. [7] introduced the following mixed type cubic, quadratic and additive functional equations for a fixed integer k with $k \neq 0, \pm 1$:

$$
\begin{equation*}
f(x+k y)+f(x-k y)=k^{2} f(x+y)+k^{2} f(x-y)+2\left(1-k^{2}\right) f(x) \tag{1.7}
\end{equation*}
$$

and proved the function $f(x)=a x^{3}+b x^{2}+c x$ is a solution of the functional Eq (1.7). They investigated the general solution of (1.7) in vector spaces, and established the Hyers-Ulam stability of the functional Eq (1.7) in quasi-Banach spaces.

In this paper, we introduce the following mixed type finite variable functional equation deriving from quadratic and additive functions

$$
\begin{equation*}
\phi\left(\sum_{i=1}^{l} t_{i}\right)=\sum_{1 \leq i<j \leq l} \phi\left(t_{i}+t_{j}\right)-(l+2) \sum_{i=1}^{l}\left[\frac{\phi\left(t_{i}\right)+\phi\left(-t_{i}\right)}{2}\right]-l \sum_{i=1}^{l}\left[\frac{\phi\left(t_{i}\right)-\phi\left(-t_{i}\right)}{2}\right]+\sum_{j=1}^{l} \phi\left(2 t_{j}\right) \tag{1.8}
\end{equation*}
$$

where $\phi(0)=0$ and $l \geq 4$ is a fixed positive integer, which generalizes a quadratic-additive functional equation given in $[17,21]$. It is easy to see that the function $\phi(t)=a t^{2}+b t$ is a solution of the functional Eq (1.8). The primary goal of this paper is to obtain the general solution of the functional $\mathrm{Eq}(1.8)$ and investigate the Hyers-Ulam stability for the functional Eq (1.8) in quasi-Banach spaces. Our results generalize the results given by Najati and Moghimi [21].

Definition 1.1. ([3]) Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the following:
(i) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$.
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$.
(iii) There is a constant $K \geq 1$ such that $\|x+y\| \leq K(\|x\|+\|y\|)$ for all $x, y \in X$.

It follows from condition (iii) that

$$
\left\|\sum_{i=1}^{2 n} x_{i}\right\| \leq K^{n} \sum_{i=1}^{2 n}\left\|x_{i}\right\| \Rightarrow\left\|\sum_{i=1}^{2 n+1} x_{i}\right\| \leq K^{n+1} \sum_{i=1}^{2 n+1}\left\|x_{i}\right\|
$$

for all integers $n \geq 1$ and all $x_{1}, x_{2}, \cdots, x_{2 n+1} \in X$.
The pair $(X,\|\cdot\|)$ is called a quasi-normed space if $\|\cdot\|$ is a quasi-norm on X. The smallest possible K is called the modulus of concavity of $\|\cdot\|$. A quasi-Banach space is a complete quasi-normed space.

A quasi-norm $\|\cdot\|$ is called a p-norm $(0<p \leq 1)$ if

$$
\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$. In this case, a quasi-Banach space is called a p-Banach space.
Given a p-norm, the formula $d(x, y):=\|x-y\|^{p}$ gives us a translation invariant metric on X. By the Aoki-Rolewicz Theorem (see [3]), each quasi-norm is equivalent to some p-norm. Since it is much easier to work with p-norms, we restrict our attention mainly to p-norms. Moreover in [26], Tabor investiagted a version of Hyers-Ulam theorem in quasi-Banach spaces (see [8,9]).

2. Solution of the functional Eq (1.8)

Throughout this section, P and Q will be real vector spaces.
Lemma 2.1. If an odd mapping $\phi: P \rightarrow Q$ satisfies (1.8) for all $t_{1}, t_{2}, \cdots, t_{l} \in P$, then ϕ is additive.
Proof. In the view of the oddness of ϕ, we have $\phi(-t)=-\phi(t)$ for all $t \in P$. Now, (1.8) becomes

$$
\begin{equation*}
\phi\left(\sum_{i=1}^{l} t_{i}\right)=\sum_{1 \leq i<j \leq l} \phi\left(t_{i}+t_{j}\right)-l \sum_{i=1}^{l} \phi\left(t_{i}\right)+\sum_{j=1}^{l} \phi\left(2 t_{j}\right) . \tag{2.1}
\end{equation*}
$$

Setting $\left(t_{1}, t_{2}, \cdots, t_{l}\right)=(0,0, \cdots, 0)$ in (2.1), we get $\phi(0)=0$. Now, letting $\left(t_{1}, t_{2}, \cdots, t_{l}\right)=(t, 0, \cdots, 0)$ in (2.1), we obtain

$$
\begin{equation*}
\phi(2 t)=2 \phi(t) \tag{2.2}
\end{equation*}
$$

for all $t \in P$. Replacing t by $2 t$ in (2.2), we get

$$
\begin{equation*}
\phi\left(2^{2} t\right)=2^{2} \phi(t) \tag{2.3}
\end{equation*}
$$

for all $t \in P$. Again replacing t by $2 t$ in (2.3), we have

$$
\phi\left(2^{3} t\right)=2^{3} \phi(t)
$$

for all $t \in P$. In general, for any positive integer l, we obtain

$$
\phi\left(2^{l} t\right)=2^{l} \phi(t)
$$

for all $t \in P$. Therefore, (2.1) now becomes

$$
\begin{equation*}
\phi\left(\sum_{i=1}^{l} t_{i}\right)=\sum_{1 \leq i<j \leq l} \phi\left(t_{i}+t_{j}\right)-l \sum_{i=1}^{l} \phi\left(t_{i}\right)+\sum_{j=1}^{l} 2 \phi\left(t_{j}\right) \tag{2.4}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in P$. Replacing $\left(t_{1}, t_{2}, \cdots, t_{l}\right)$ by $(x, y, x, y, 0, \cdots, 0)$ in (2.4), we get

$$
\phi(x+y)=\phi(x)+\phi(y)
$$

for all $x, y \in P$. Therefore the mapping $\phi: P \rightarrow Q$ is additive.

Lemma 2.2. If an even mapping $\phi: P \rightarrow Q$ satisfies $\phi(0)=0$ and (1.8) for all $t_{1}, t_{2}, \cdots, t_{l} \in P$, then ϕ is quadratic.

Proof. In view of the evenness of ϕ, we have $\phi(-t)=\phi(t)$ for all $t \in P$. Now, (1.8) becomes

$$
\begin{equation*}
\phi\left(\sum_{i=1}^{l} t_{i}\right)=\sum_{1 \leq i<j \leq l} \phi\left(t_{i}+t_{j}\right)-(l+2) \sum_{i=1}^{l} \phi\left(t_{i}\right)+\sum_{j=1}^{l} \phi\left(2 t_{j}\right) \tag{2.5}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in P$. Replacing $\left(t_{1}, t_{2}, \cdots, t_{l}\right)$ by $(t, 0, \cdots, 0)$ in (2.5), we obtain

$$
\begin{equation*}
\phi(2 t)=2^{2} \phi(t) \tag{2.6}
\end{equation*}
$$

for all $t \in P$. Replacing t by $2 t$ in (2.6), we have

$$
\begin{equation*}
\phi\left(2^{2} t\right)=2^{4} \phi(t) \tag{2.7}
\end{equation*}
$$

for all $t \in P$. Replacing t by $2 t$ in (2.7), we obtain

$$
\phi\left(2^{3} t\right)=2^{6} \phi(t)
$$

for all $t \in P$. In general, for any positive integer l, we get

$$
\phi\left(2^{l} t\right)=2^{2 l} \phi(t)
$$

for all $t \in P$. Therefore, (2.5) becomes

$$
\begin{equation*}
\phi\left(\sum_{i=1}^{l} t_{i}\right)=\sum_{1 \leq i<j \leq l} \phi\left(t_{i}+t_{j}\right)-(l+2) \sum_{i=1}^{l} \phi\left(t_{i}\right)+\sum_{j=1}^{l} 4 \phi\left(t_{j}\right) \tag{2.8}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in P$. Replacing $g\left(t_{1}, t_{2}, \cdots, t_{l}\right)$ by $(x, y,-x,-y, 0, \cdots, 0)$ in (2.8), we get

$$
\phi(x+y)+\phi(x-y)=2 \phi(x)+2 \phi(y)
$$

for all $x, y \in P$. Therefore the mapping $\phi: P \rightarrow Q$ is quadratic.
Lemma 2.3. A mapping $\phi: P \rightarrow Q$ satisfies $\phi(0)=0$ and (1.8) for all $t_{1}, t_{2}, \cdots, t_{l} \in P$ if and only if there exist a symmetric bi-additive mapping $B: P \times P \rightarrow Q$ and an additive mapping $A: P \rightarrow Q$ such that $\phi(t)=B(t, t)+A(t)$ for all $t \in P$.

Proof. Let ϕ with $\phi(0)=0$ satisfy (1.8). We decompose ϕ into the even part and odd part by putting

$$
\phi_{e}=\frac{1}{2}(\phi(t)+\phi(-t)) \quad \text { and } \quad \phi_{o}(t)=\frac{1}{2}(\phi(t)-\phi(-t))
$$

for all $t \in P$. It is clear that $\phi(t)=\phi_{e}(t)+\phi_{o}(t)$ for all $t \in P$. It is easy to show that the mappings ϕ_{e} and ϕ_{o} satisfy (1.8). Hence by Lemmas 2.1 and 2.2 , we obtain that ϕ_{e} and ϕ_{o} are quadratic and additive, respectively. Therefore, there exists a symmetric bi-additive mapping $B: P \times P \rightarrow Q$ such that $\phi_{e}(t)=B(t, t)$ for all $t \in P$. So $\phi(t)=B(t, t)+A(t)$ for all $t \in P$, where $A(t)=\phi_{o}(t)$ for all $t \in P$.

Conversely, assume that there exist a symmetric bi-additive mapping $B: P \times P \rightarrow Q$ and an additive mapping $A: P \rightarrow Q$ such that $\phi(t)=B(t, t)+A(t)$ for all $t \in P$. By a simple computation one can show that the mappings $t \mapsto B(t, t)$ and A satisfy the functional Eq (1.8). So the mapping ϕ satisfies (1.8).

3. Hyers-Ulam stability of (1.8)

Throughout this section, assume that E is a quasi-Banach space with quasi-norm $\|\cdot\|$ and that F is a p-Banach space with p-norm $\|\cdot\|$. Let K be the modulus of concavity of $\|\cdot\|$.

In this section, using an idea of Gavruta we prove the Hyers-Ulam stability of the functional Eq (1.8) in the spirit of Hyers, Ulam and Rassias. For convenience, we use the following abbreviation for a given mapping $\phi: E \rightarrow F$:

$$
\begin{aligned}
D \phi\left(t_{1}, t_{2}, \cdots, t_{l}\right):=\quad \phi\left(\sum_{i=1}^{l} t_{i}\right)-\sum_{1 \leq i<j \leq l} \phi\left(t_{i}\right. & \left.+t_{j}\right)+(l+2) \sum_{i=1}^{l}\left[\frac{\phi\left(t_{i}\right)+\phi\left(-t_{i}\right)}{2}\right] \\
& +l \sum_{i=1}^{l}\left[\frac{\phi\left(t_{i}\right)-\phi\left(-t_{i}\right)}{2}\right]-\sum_{j=1}^{l} \phi\left(2 t_{j}\right)
\end{aligned}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$.
We will use the following lemma in this section.
Lemma 3.1. [21] Let $0 \leq p \leq 1$ and let $x_{1}, x_{2}, \cdots, x_{n}$ be nonnegative real numbers. Then

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{p} \leq \sum_{i=1}^{n} x_{i}^{p}
$$

Theorem 3.2. Let $v \in\{-1,1\}$ be fixed and let $\chi: E^{l} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} 2^{2 l v} \chi\left(\frac{t_{1}}{2^{l v}}, \frac{t_{2}}{2^{l v}}, \cdots, \frac{t_{l}}{2^{l v}}\right)=0 \tag{3.1}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$ and

$$
\begin{equation*}
\tilde{\psi}_{e}(t):=\sum_{g=\frac{+1 v}{2}}^{\infty} 2^{2 g v p} \chi^{p}\left(\frac{t}{2^{g v}}, 0, \cdots, 0\right)<\infty \tag{3.2}
\end{equation*}
$$

for all $t \in E$. Suppose that an even mapping $\phi: E \rightarrow F$ with $\phi(0)=0$ satisfies the inequality

$$
\begin{equation*}
\left\|D \phi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\| \leq \chi\left(t_{1}, t_{2}, \cdots, t_{l}\right) \tag{3.3}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Then the limit

$$
\begin{equation*}
\Phi(t):=\lim _{l \rightarrow \infty} 2^{2 l v} \phi\left(\frac{t}{2^{l v}}\right) \tag{3.4}
\end{equation*}
$$

exists for all $t \in E$ and $\Phi: E \rightarrow F$ is a unique quadratic mapping satisfying

$$
\begin{equation*}
\|\phi(t)-\Phi(t)\| \leq \frac{K}{2^{2}}\left[\tilde{\psi}_{e}(t)\right]^{\frac{1}{p}} \tag{3.5}
\end{equation*}
$$

for all $t \in E$.

Proof. Let $v=1$. Replacing $\left(t_{1}, t_{2}, \cdots, t_{l}\right)$ by $(t, 0, \cdots, 0)$ in (3.3), we obtain

$$
\begin{equation*}
\left\|\phi(2 t)-2^{2} \phi(t)\right\| \leq \chi(t, 0, \cdots, 0) \tag{3.6}
\end{equation*}
$$

for all $t \in E$. Let us take $\psi_{e}(t)=\chi(t, 0, \cdots, 0)$ for all $t \in E$. Then by (3.6), we have

$$
\begin{equation*}
\left\|\phi(2 t)-2^{2} \phi(t)\right\| \leq \psi_{e}(t) \tag{3.7}
\end{equation*}
$$

for all $t \in E$. If we replace t by $\frac{t}{2^{l+1}}$ in (3.7) and multiply both sides of (3.7) by $2^{2 l}$, then we get

$$
\begin{equation*}
\left\|2^{2(l+1)} \phi\left(\frac{t}{2^{l+1}}\right)-2^{2 l} \phi\left(\frac{t}{2^{l}}\right)\right\| \leq K 2^{2 l} \psi_{e}\left(\frac{t}{2^{l+1}}\right) \tag{3.8}
\end{equation*}
$$

for all $t \in E$ and all nonnegative integers l. Since F is a p-Banach space, by (3.8) we obtain

$$
\begin{equation*}
\left\|2^{2(l+1)} \phi\left(\frac{t}{2^{l+1}}\right)-2^{2 k} \phi\left(\frac{t}{2^{k}}\right)\right\|^{p} \leq \sum_{g=k}^{l}\left\|2^{2(g+1)} \phi\left(\frac{t}{2^{g+1}}\right)-2^{2 g} \phi\left(\frac{t}{2^{g}}\right)\right\|^{p} \leq K^{p} \sum_{g=k}^{l} 2^{2 g p} \psi_{e}^{p}\left(\frac{t}{2^{g+1}}\right) \tag{3.9}
\end{equation*}
$$

for all nonnegative integers l and k with $l \geq k$ and all $t \in E$. Since $\psi_{e}^{p}(t)=\chi^{p}(t, 0, \cdots, 0)$ for all $t \in E$, by (3.2), we have

$$
\begin{equation*}
\sum_{g=1}^{\infty} 2^{2 g p} \psi_{e}^{p}\left(\frac{t}{2^{g}}\right)<\infty \tag{3.10}
\end{equation*}
$$

for all $t \in E$. Therefore, it follows from (3.9) and (3.10) that the sequence $\left\{2^{2 l} \phi\left(\frac{t}{2^{l}}\right)\right\}$ is a Cauchy sequence for each $t \in E$. Since F is complete, the sequence $\left\{2^{2 l} \phi\left(\frac{t}{2^{l}}\right)\right\}$ converges for each $t \in E$. So one can define the mapping $\Phi: E \rightarrow F$ given by (3.4) for all $t \in E$. Letting $k=0$ and passing the limit $l \rightarrow \infty$ in (3.9), we have

$$
\begin{equation*}
\|\phi(t)-\Phi(t)\|^{p} \leq K^{p} \sum_{g=0}^{\infty} 2^{2 g p} \psi_{e}^{p}\left(\frac{t}{2^{g+1}}\right)=\frac{K^{p}}{2^{2 p}} \sum_{g=1}^{\infty} 2^{2 g p} \psi_{e}^{p}\left(\frac{t}{2^{g}}\right) \tag{3.11}
\end{equation*}
$$

for all $t \in E$. Therefore, (3.5) follows from (3.2) and (3.11). Now, we show that Φ is quadratic. It follows from (3.1), (3.3) and (3.4) that

$$
\left\|D \Phi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\|=\lim _{l \rightarrow \infty} 2^{2 l}\left\|D \phi\left(\frac{t_{1}}{2^{l}}, \frac{t_{2}}{2^{l}}, \cdots, \frac{t_{l}}{2^{l}}\right)\right\| \leq \lim _{l \rightarrow \infty} 2^{2 l} \chi\left(\frac{t_{1}}{2^{l}}, \frac{t_{2}}{2^{l}}, \cdots, \frac{t_{l}}{2^{l}}\right)=0
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Therefore, the mapping $\Phi: E \rightarrow F$ satisfies (1.8). Since ϕ is an even mapping, (3.4) implies that the mapping $\Phi: E \rightarrow F$ is even. Therefore, by Lemma 2.2 , we get that the mapping $\Phi: E \rightarrow F$ is quadratic.

To prove the uniqueness of Φ, let $\Phi^{\prime}: E \rightarrow F$ be another quadratic mapping satisfying (3.5). Since

$$
\lim _{l \rightarrow \infty} 2^{2 l p} \sum_{g=1}^{\infty} 2^{2 g p} \chi^{p}\left(\frac{t}{2^{g+l}}, 0, \cdots, 0\right)=\lim _{l \rightarrow \infty} \sum_{g=l+1}^{\infty} 2^{2 g p} \chi^{p}\left(\frac{t}{2^{g}}, 0, \cdots, 0\right)=0
$$

for all $t \in E$,

$$
\lim _{l \rightarrow \infty} 2^{2 l p} \tilde{\psi}_{e}\left(\frac{t}{2^{l}}\right)=0
$$

for all $t \in E$. Therefore, it follows from (3.5) and the last equation that

$$
\left\|\Phi(t)-\Phi^{\prime}(t)\right\|^{p}=\lim _{l \rightarrow \infty} 2^{2 l p}\left\|\phi\left(\frac{t}{2^{l}}\right)-\Phi^{\prime}\left(\frac{t}{2^{l}}\right)\right\|^{p} \leq \frac{K^{p}}{2^{2 p}} \lim _{l \rightarrow \infty} 2^{2 l p} \tilde{\psi}_{e}\left(\frac{t}{2^{l}}\right)=0
$$

for all $t \in E$. Hence $\Phi=\Phi^{\prime}$.
For $v=-1$, we can prove this theorem by a similar manner.
Corollary 3.3. Let λ and $r_{1}, r_{2}, \cdots, r_{l}$ be nonnegative real numbers such that $r_{1}, r_{2}, \cdots, r_{l}>2$ or $0 \leq r_{1}, r_{2}, \cdots, r_{l}<2$. Suppose that an even mapping $\phi: E \rightarrow F$ with $\phi(0)=0$ satisfies the inequality

$$
\begin{equation*}
\left\|D \phi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\| \leq \lambda\left(\left\|t_{1}\right\|^{r_{1}}+\left\|t_{2}\right\|^{r_{2}}+\cdots+\left\|t_{l}\right\|^{r_{l}}\right) \tag{3.12}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Then there exists a unique quadratic mapping $\phi: E \rightarrow F$ satisfying

$$
\|\phi(t)-\Phi(t)\| \leq K \lambda\left(\frac{\|t\|^{r_{1} p}}{\mid 2^{2 p}-2^{r_{1} p \mid}}\right)^{\frac{1}{p}}
$$

for all $t \in E$.
Proof. It follows from Theorem 3.2.
Theorem 3.4. Let $v \in\{-1,1\}$ be fixed and let $\chi: E^{l} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} 2^{l v} \chi\left(\frac{t_{1}}{2^{l v}}, \frac{t_{2}}{2^{l v}}, \cdots, \frac{t_{l}}{2^{l v}}\right)=0 \tag{3.13}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$ and

$$
\begin{equation*}
\tilde{\psi}_{o}(t):=\sum_{g=\frac{1+v}{2}}^{\infty} 2^{g v p} \chi^{p}\left(\frac{t}{2^{g v}}, 0, \cdots, 0\right)<\infty \tag{3.14}
\end{equation*}
$$

for all $t \in E$. Suppose that an odd mapping $\phi: E \rightarrow F$ satisfies the inequality

$$
\begin{equation*}
\left\|D \phi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\| \leq \chi\left(t_{1}, t_{2}, \cdots, t_{l}\right) \tag{3.15}
\end{equation*}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Then the limit

$$
\begin{equation*}
\Psi(t):=\lim _{l \rightarrow \infty} 2^{l v} \phi\left(\frac{t}{2^{l v}}\right) \tag{3.16}
\end{equation*}
$$

exists for all $t \in E$ and $\Psi: E \rightarrow F$ is a unique additive mapping satisfying

$$
\begin{equation*}
\|\phi(t)-\Psi(t)\| \leq \frac{K}{2}\left[\tilde{\psi}_{o}(t)\right]^{\frac{1}{p}} \tag{3.17}
\end{equation*}
$$

for all $t \in E$.

Proof. Let $v=1$. Replacing $\left(t_{1}, t_{2}, \cdots, t_{l}\right)$ by $(t, 0, \cdots, 0)$ in (3.15), we obtain

$$
\begin{equation*}
\|\phi(2 t)-2 \phi(t)\| \leq \chi(t, 0, \cdots, 0) \tag{3.18}
\end{equation*}
$$

for all $t \in E$. Let us take $\psi_{o}(t)=\chi(t, 0, \cdots, 0)$ for all $t \in E$. Then by (3.18), we have

$$
\begin{equation*}
\|\phi(2 t)-2 \phi(t)\| \leq \psi_{o}(t) \tag{3.19}
\end{equation*}
$$

for all $t \in E$. If we replace t by $\frac{t}{2^{2+1}}$ in (3.19) and multiply both sides of (3.19) by 2^{l}, then we get

$$
\begin{equation*}
\left\|2^{(l+1)} \phi\left(\frac{t}{2^{l+1}}\right)-2^{l} \phi\left(\frac{t}{2^{l}}\right)\right\| \leq K 2^{l} \psi_{o}\left(\frac{t}{2^{l+1}}\right) \tag{3.20}
\end{equation*}
$$

for all $t \in E$ and all nonnegative integers l. Since F is a p-Banach space, by (3.20), we obtain

$$
\begin{equation*}
\left\|2^{(l+1)} \phi\left(\frac{t}{2^{l+1}}\right)-2^{k} \phi\left(\frac{t}{2^{k}}\right)\right\|^{p} \leq \sum_{g=k}^{l}\left\|2^{(g+1)} \phi\left(\frac{t}{2^{g+1}}\right)-2^{g} \phi\left(\frac{t}{2^{g}}\right)\right\|^{p} \leq K^{p} \sum_{g=k}^{l} 2^{g p} \psi_{o}^{p}\left(\frac{t}{2^{g+1}}\right) \tag{3.21}
\end{equation*}
$$

for all nonnegative integers l and k with $l \geq k$ and all $t \in E$. Since $\psi_{o}^{p}(t)=\chi^{p}(t, 0, \cdots, 0)$ for all $t \in E$, by (3.14) we have

$$
\begin{equation*}
\sum_{g=1}^{\infty} 2^{g p} \psi_{o}^{p}\left(\frac{t}{2^{g}}\right)<\infty \tag{3.22}
\end{equation*}
$$

for all $t \in E$. Therefore, it follows from (3.21) and (3.22) that the sequence $\left\{2^{l} \phi\left(\frac{t}{2^{l}}\right)\right\}$ is a Cauchy sequence for all $t \in E$. Since F is complete, the sequence $\left\{2^{l} \phi\left(\frac{t}{2^{l}}\right)\right\}$ converges for all $t \in E$. So one can define the mapping $\Psi: E \rightarrow F$ given by (3.16) for all $t \in E$. Letting $k=0$ and passing the limit $l \rightarrow \infty$ in (3.21), we have

$$
\begin{equation*}
\|\phi(t)-\Psi(t)\|^{p} \leq K^{p} \sum_{g=0}^{\infty} 2^{g p} \psi_{o}^{p}\left(\frac{t}{2^{g+1}}\right)=\frac{K^{p}}{2^{p}} \sum_{g=1}^{\infty} 2^{g p} \psi_{o}^{p}\left(\frac{t}{2^{g}}\right) \tag{3.23}
\end{equation*}
$$

for all $t \in E$. Therefore, (3.17) follows from (3.14) and (3.23). Now, we show that Ψ is additive. It follows from (3.20), (3.22) and (3.17) that

$$
\|\Psi(2 t)-2 \Psi(t)\|=\lim _{l \rightarrow \infty}\left\|2^{l+1} \phi\left(\frac{t}{2^{l+1}}\right)-2^{l} \phi\left(\frac{t}{2^{l}}\right)\right\| \leq K \lim _{l \rightarrow \infty} 2^{l} \psi_{o}\left(\frac{t}{2^{l+1}}\right)=0
$$

for all $t \in E$. So $\Psi(2 t)=2 \Psi(t)$ for all $t \in E$. On the other hand, it follows from (3.13), (3.15) and (3.16) that

$$
\left\|D \Psi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\|=\lim _{l \rightarrow \infty} 2^{l}\left\|D \phi\left(\frac{t_{1}}{2^{l}}, \frac{t_{2}}{2^{l}}, \cdots, \frac{t_{l}}{2^{l}}\right)\right\| \leq \lim _{l \rightarrow \infty} 2^{l} \chi\left(\frac{t_{1}}{2^{l}}, \frac{t_{2}}{2^{l}}, \cdots, \frac{t_{l}}{2^{l}}\right)=0
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Therefore, the mapping $\Psi: E \rightarrow F$ satisfies (1.8). Since ϕ is an odd mapping, (3.16) implies that the mapping $\Psi: E \rightarrow F$ is odd. Therefore, by Lemma 2.1 , we get that the mapping $\psi: E \rightarrow F$ is additive.

To prove the uniqueness of Ψ, let $\Psi^{\prime}: E \rightarrow F$ be another additive mapping satisfying (3.17). Since

$$
\lim _{l \rightarrow \infty} 2^{l p} \sum_{g=1}^{\infty} 2^{g p} \chi^{p}\left(\frac{t}{2^{g+l}}, 0, \cdots, 0\right)=\lim _{l \rightarrow \infty} \sum_{g=l+1}^{\infty} 2^{g p} \chi^{p}\left(\frac{t}{2^{g}}, 0, \cdots, 0\right)=0
$$

for all $t \in E$,

$$
\lim _{l \rightarrow \infty} 2^{l p} \tilde{\psi}_{o}\left(\frac{t}{2^{l}}\right)=0
$$

for all $t \in E$. Therefore, it follows from (3.17) and the last equation that

$$
\left\|\Psi(t)-\Psi^{\prime}(t)\right\|^{p}=\lim _{l \rightarrow \infty} 2^{l p}\left\|\phi\left(\frac{t}{2^{l}}\right)-\Psi^{\prime}\left(\frac{t}{2^{l}}\right)\right\|^{p} \leq \frac{K^{p}}{2^{p}} \lim _{l \rightarrow \infty} 2^{l p} \tilde{\psi}_{o}\left(\frac{t}{2^{l}}\right)=0
$$

for all $t \in E$. Hence $\Psi=\Psi^{\prime}$.
For $v=-1$, we can prove this theorem by a similar manner.
Corollary 3.5. Let λ and $r_{1}, r_{2}, \cdots, r_{l}$ be nonnegative real numbers such that $r_{1}, r_{2}, \cdots, r_{l}>1$ or $0 \leq r_{1}, r_{2}, \cdots, r_{l}<1$. Suppose that an odd mapping $\phi: E \rightarrow F$ satisfies the inequality

$$
\left\|D \phi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\| \leq \lambda\left(\left\|t_{1}\right\|^{r_{1}}+\left\|t_{2}\right\|^{r_{2}}+\cdots+\left\|t_{l}\right\|^{r_{l}}\right),
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Then there exists a unique additive function $\phi: E \rightarrow F$ satisfying

$$
\|\phi(t)-\Psi(t)\| \leq K \lambda\left(\frac{\| t| |^{r_{1} p}}{\left|2^{p}-2^{r_{1} p}\right|}\right)^{\frac{1}{p}}
$$

for all $t \in E$.
Proof. It follows from Theorem 3.4.
Proposition 3.6. Let $\chi: E^{l} \rightarrow[0, \infty)$ be a function which satisfies (3.1) and (3.2) for all $t_{1}, t_{2}, \cdots, t_{l} \in$ E and satisfies (3.13) and (3.14) for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Suppose that a mapping $\phi: E \rightarrow F$ with $\phi(0)=0$ satisfies the inequality (3.3) for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Then there exist a unique quadratic mapping $\Phi: E \rightarrow F$ and a unique additive mapping $\Psi: E \rightarrow F$ satisfying (1.8) and

$$
\|\phi(t)-\Phi(t)-\Psi(t)\| \leq \frac{K^{3}}{8}\left\{\left[\tilde{\psi}_{e}(t)+\tilde{\psi}_{e}(-t)\right]^{\frac{1}{p}}+2\left[\tilde{\psi}_{o}(t)+\tilde{\psi}_{o}(-t)\right]^{\frac{1}{p}}\right\}
$$

for all $t \in E$, where $\tilde{\psi}_{e}(t)$ and $\tilde{\psi}_{o}(t)$ were defined in (3.2) and (3.14), respectively, for all $t \in E$.
Proof. Let $\phi_{o}(t)=\frac{\phi(t)-\phi(-t)}{2}$ for all $t \in E$. Then

$$
\left\|D \phi_{o}\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\| \leq \frac{1}{2}\left\{\left\|D \phi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\|+\left\|D \phi\left(-t_{1},-t_{2}, \cdots,-t_{l}\right)\right\|\right\}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. And let $\phi_{e}(t)=\frac{\phi(t)+\phi(-t)}{2}$ for all $t \in E$. Then

$$
\left\|D \phi_{e}\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\| \leq \frac{1}{2}\left\{\left\|D \phi\left(t_{1}, t_{2}, \cdots, t_{l}\right)\right\|+\left\|D \phi\left(-t_{1},-t_{2}, \cdots,-t_{l}\right)\right\|\right\}
$$

for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Let us define

$$
\phi(t)=\phi_{e}(t)+\phi_{o}(t)
$$

for all $t \in E$. Now,

$$
\|\phi(t)-\Phi(t)-\Psi(t)\|=\left\|\phi_{e}(t)+\phi_{o}(t)-\Phi(t)-\Psi(t)\right\| \leq\left\|\phi_{e}(t)-\Phi(t)\right\|+\left\|\phi_{o}(t)-\Psi(t)\right\| .
$$

Using Theorems 3.2 and Theorem 3.4, we can prove the remaining proof of the theorem.
Corollary 3.7. Let λ and $r_{1}, r_{2}, \cdots, r_{l}$ be nonnegative real numbers such that $r_{1}, r_{2}, \cdots, r_{l} \neq 2$ or $r_{1}, r_{2}, \cdots, r_{l} \neq 1$. Suppose that a mapping $\phi: E \rightarrow F$ with $\phi(0)=0$ satisfies the inequality (3.12) for all $t_{1}, t_{2}, \cdots, t_{l} \in E$. Then there exists a unique quadratic mapping $\Phi: E \rightarrow F$ and a unique additive mapping $\Psi: E \rightarrow F$ satisfying (1.8) and

$$
\|\phi(t)-\Phi(t)-\Psi(t)\| \leq K^{3} \lambda\left[\left(\frac{\|t\|^{r_{1} p}}{\left|2^{2 p}-2^{r_{1} p \mid}\right|}\right)^{\frac{1}{p}}+\left(\frac{\|t\|^{r_{1} p}}{\left|2^{p}-2^{r_{1} p}\right|}\right)^{\frac{1}{p}}\right]
$$

for all $t \in E$.

4. Conclusions

We have introduced the mixed type finite variable additive-quadratic functional Eq (1.8) and have obtained the general solution of the mixed type finite variable additive-quadratic functional Eq (1.8) in quasi-Banach spaces. Furthermore, we have proved the Hyers-Ulam stability for the mixed type finite variable additive-quadratic functional Eq (1.8) in quasi-Banach spaces.

Conflict of interest

The authors declare that they have no competing interests.

References

1. J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
2. D. Amir, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
3. Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society, 2000.
4. P. W. Cholewa, Remarks on the stability of functional equations, Aequations Math., 27 (1984), 76-86.
5. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg, 62 (1992), 59-64.
6. E. Elqorachi, M. Th. Rassias, Generalized Hyers-Ulam stability of trigonometric functional equations, Mathematics, 6 (2018), 1-11.
7. M. E. Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal-Theor., 71 (2009), 56295643.
8. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
9. P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
10. V. Govindan, C. Park, S. Pinelas, et al. Solution of a 3-D cubic functional equation and its stability, AIMS Mathematics, 5 (2020), 1693-1705.
11. A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48 (1996), 217-235.
12. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222-224.
13. P. Jordan, J. Neumann, On inner products in linear metric spaces, Ann. Math., 36 (1935), 719-723.
14. K. Jun, H. Kim, Ulam stability problem for a mixed type of cubic and additive functional equation, B. Belg. Math. Soc-Sim., 13 (2006), 271-285.
15. S. M. Jung, D. Popa, M. T. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59 (2014), 165-171.
16. P. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
17. T. M. Kim, C. Park, S. H. Park, An AQ-functional equation in paranormed spaces, J. Comput. Anal. Appl., 15 (2013), 1467-1475.
18. Y. Lee, On the Hyers-Ulam-Rassias stability of a general quintic functional equation and a general sextic functional equation, Mathematics, 7 (2019), 1-15.
19. Y. H. Lee, S. M. Jung, A general theorem on the stability of a class of functional equations including quartic-cubic-quadratic-additive equations, Mathematics, 6 (2018), 1-24.
20. Y. Lee, S. Jung, M. T. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61.
21. A. Najati, M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415.
22. A. Najati, G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasiBanach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.
23. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300.
24. P. Saha, T. K. Samanta, N. C. Kayal, et al. Hyers-Ulam-Rassias stability of set valued additive and cubic functional equations in several variables, Mathematics, 7 (2019), 1-11.
25. F. Skof, Proprieta' locali e approssimaziones di operatori, Seminario Mat. e. Fis. di Milano, 53 (1983), 113-129.
26. J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Pol. Math., 83 (2004), 243-255.
27. S. M. Ulam, Problems in Modern Mathematics, John Wiley \& Sons, Inc., 1964.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
