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1. Introduction

Inertial neural networks system is a class of second order delay differential equations proposed by
Babcock and Westervelt [1]. It is established by introducing an inertia term into the multi-directional
associative memory neural networks, and is widely used in the fields of optimization, associative
memory, image processing, psychophysics, and adaptive pattern recognition [1]. Therefore, it is of
great significance to study the dynamic behaviors (such as stability [2–6], dissipation [7–9], Hopf
bifurcation [10–12], Lagrange stability [13–15], synchronization [16–20], etc.) of the system in the
application of inertial neural networks. It is worth noting that the dynamics analysis on inertial neural
networks is usually to convert them into a first-order differential system by reducing order variable
substitution under the assumption that the activation functions are bounded [21–24]. In particular, the
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periodicity, stability and convergence for the inertial neural networks systems have been established
in [25–30] by using the reduced order method. However, this method needs to introduce some new
parameters, which will raise the dimension in the inertial neural networks system. This will increase
huge amounts of computation and it is difficult to achieve in practice [3, 4, 20]. Therefore, the authors
of [3, 4, 20] have developed some non-reduced order methods to establish the stability and
synchronization conditions of inertial neural networks with constant or time-varying delays,
respectively.

Because there are many parallel paths with a series of different axon sizes and lengths in the neural
networks, it is necessary to introduce continuous distributed delays to describe the transmission of
neuron signals. In recent years, a large number of literatures have studied the dynamic behaviors
of inertial neural networks with unbounded distributed delays [31–37]. In particular, the author of
literature [36] studied the global convergence of inertial neural networks with continuous distributed
delays by using a non-reduced order method:

x′′i (t) = −ai(t)x′i(t) − bi(t)xi(t) +

n∑
j=1

ci j(t)P̃ j(x j(t))

+

n∑
j=1

hi j(t)
∫ +∞

0
Ki j(u)R̃ j(x j(t − u))du + Ji(t), i ∈ S := {1, 2, · · · , n}, (1.1)

and
xi(s) = ϕi(s), x′i(s) = ψi(s), −∞ ≤ s ≤ 0, ϕi, ψi ∈ BC((−∞, 0],R), (1.2)

where BC((−∞, 0],R) is the set of all continuous and bounded functions from (−∞, 0] to R, x(t) =

(x1(t), x2(t), · · · , xn(t)) is the state vector, x′′(t) is called an inertial term of (1.1), the time-varying
connection weights ci j, hi j : R → R and ai, bi : R → (0,+∞) are bounded and continuous functions,
the delay kernel Ki j : [0, +∞)→ R is a continuous function, the external input Ji(t) and the activation
function P̃ j and R̃ j are continuous, and i, j ∈ S .

Unfortunately, in the initial values (1.2) which also adopted in [24, 35], the assumption that

x′i(s) = ψi(s), −∞ ≤ s ≤ 0, ψi ∈ BC((−∞, 0],R),

is incorrect. In fact, in the system (1.1), the transmission term ai(t)x′i(t) is not affected by the delays.
Combined with the theory of the delay differential equation, we can see that in the initial problem (1.2),
it is not necessary to assume that x′i(t) is bounded and continuous on (−∞, 0], which leaves room for
further improvement.

On the other hand, the dynamic characteristics of the inertial neural networks are usually affected
by time-varying delays and distributed delays. Therefore, it is especially significant to study the
following inertial neural networks system with bounded time-varying delays and unbounded
continuously distributed delays:

x′′i (t) = −ai(t)x′i(t) − bi(t)xi(t) +

n∑
j=1

ci j(t)P̃ j(x j(t)) +

n∑
j=1

di j(t)Q̃ j(x j(t − τi j(t)))

+

n∑
j=1

hi j(t)
∫ +∞

0
Ki j(u)R̃ j(x j(t − u))du + Ji(t), i ∈ S , (1.3)
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where Ji, ci j, di j, hi j : R → R, ai, bi : R → (0,+∞) and τi j : R → R+ are bounded and continuous
functions, the delay kernel Ki j ∈ C([0,+∞),R) is a continuous function, the activation functions
P̃i, Q̃i, R̃i are continuous, and i, j ∈ S .

As is well known that the Lyapunov function structure of unbounded time-delay systems is more
complex than bounded time-delay systems, therefore, the stability of the former is more difficult to
establish than the latter. Especially, there are few studies on the dynamic behaviors of inertial neural
networks with bounded time-varying delays and unbounded distributed delays. So far, we only find
that the authors of [38] have discussed the existence and exponential stability of the periodic solution
of system (1.3) with periodic input functions. However, to the best of our knowledge, there has not yet
been research work on the global convergence analysis for the system (1.3) by utilizing a non-reduce
method.

Regarding the above discussions, in this manuscript, the initial value (1.2) is modified to

xi(s) = ϕi(s), x′i(0) = ψi, −∞ ≤ s ≤ 0, ϕi ∈ BC((−∞, 0],R), ψi ∈ R, (1.4)

and the global convergence criterion of the inertial neural networks (1.3) is established by applying a
non-reduce method. In a nutshell, the contributions of this paper can be summarized as follows. 1)
Without adopting the periodicity on the input functions, a class of inertial neural networks with
bounded time-varying delays and unbounded continuously distributed delays are proposed; 2) Under
some appropriate assumptions, a non-reduce approach is developed to show that all solutions and
their derivatives in the proposed model are convergent to the zero vector; 3) The initial value
conditions (1.2) in [24, 35, 36] are relaxed into a broader situation; 4) Numerical results including
comparisons are presented to verify the obtained theoretical results.

The structure of this paper is as follows. The global convergence of the solutions and their
derivatives of system (1.3) is established in section 2. Then, section 3 presents a concrete example
with the numeric simulations to show the feasibility of the main results. Section 4 contains a
conclusion of this paper and the further research of the topic.

2. Global convergence of system (1.3)

In this section, we use the following Barbarat’s lemma to prove the global convergence of the
system (1.3).

Lemma 2.1 [36] If g(t) is uniformly continuous on interval [0, +∞), and
∫ +∞

0
g(s)ds exists and is

bounded, then lim
t→+∞

g(t) = 0.
Assumptions:
(G1) there exist three constants LP

j , LQ
j and LR

j such that

|P̃ j(u)| ≤ LP
j |u|, |Q̃ j(u)| ≤ LQ

j |u|, |R̃ j(u)| ≤ LR
j |u|, for all u ∈ R, j ∈ S .

(G2) for i, j ∈ S , |Ki j(t)| is integrable on [0,+∞).
(G3) u(t) = max

i∈S
|Ji(t)|, U(t) =

∫ t

0
u(s)ds is bounded on [0,+∞).

(G4) for i, j ∈ S , a′i(t), b′i(t) and (|ci j(t)|LP
j + |di j(t)|L

Q
j + |hi j(t)|LR

j

∫ +∞

0
|Ki j(u)|du)′ are bounded and

continuous on [0,+∞).
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(G5) there exist constants βi > 0 and αi ≥ 0, γi ≥ 0 satisfying

sup
t∈[0,+∞)

Di(t) < 0, inf
t∈[0,+∞)

{4Di(t)Ei(t) − F2
i (t)} > 0, ∀t ∈ R, i ∈ S , (2.1)

where 

Di(t) = αiγi − ai(t)α2
i + 1

2α
2
i

n∑
j=1

(|ci j(t)|LP
j + |di j(t)|L

Q
j + |hi j(t)|LR

j

∫ +∞

0
|Ki j(u)|du),

Ei(t) = −bi(t)αiγi + 1
2

n∑
j=1

(|ci j(t)|LP
j + |di j(t)|L

Q
j + |hi j(t)|LR

j

∫ +∞

0
|Ki j(u)|du)|αiγi|

+1
2

n∑
j=1
α2

j(|c ji(t)|LP
i + d+

jiL
Q
i

1
1−τ̇+

ji
+ h+

jiL
R
i

∫ +∞

0
|K ji(u)|du)

+1
2

n∑
j=1

(|c ji(t)|LP
i + d+

jiL
Q
i

1
1−τ̇+

ji
+ h+

jiL
R
i

∫ +∞

0
|K ji(u)|du)|α jγ j|,

Fi(t) = βi + γ2
i − ai(t)αiγi − bi(t)α2

i ,

τ̇+
i j = sup

t∈[0, +∞)
τ′i j(t), d+

i j = sup
t∈[0, +∞)

|di j(t)|, h+
i j = sup

t∈[0, +∞)
|hi j(t)|, i, j ∈ S .

(G6) for i, j ∈ S , τi j is continuously differentiable, and τ′i j(t) = τ̇i j < 1 for all t ∈ R.
Remark 2.1. Combining (G1), (G2) and the basic theory on functional differential equation with

infinite delay in [40], one can show that all solutions of the initial value problem (1.3) and (1.4) exist
on [0, +∞).

Remark 2.2. In this paper, (G3) means that the input functions are absolutely integrable on [0, +∞),
and (G4), which is related the delay kernels, implies the specific effect of time delay functions on the
convergence of system (1.3).

Theorem 2.1 Assume that (G1)–(G6) hold. Let x(t) = (x1(t), x2(t), · · · , xn(t)) be a solution of the
initial value problem (1.3) and (1.4). Then lim

t→+∞
xi(t) = 0, lim

t→+∞
x′i(t) = 0.

Proof. According to (G3), (G5) and the boundedness of coefficients in (1.3), one can choose two
positive constants ρ and % such that

−ρ = max
i∈S

sup
t∈[0,+∞)

e−U(t)Di(t), −% = max
i∈S

sup
t∈[0,+∞)

e−U(t)
[
Ei(t) −

(Fi(t))2

4Di(t)

]
. (2.2)

Let

W(t) = e−U(t)
{1
2

n∑
i=1

βix2
i (t) +

1
2

n∑
i=1

(αix′i(t) + γixi(t))2

+
1
2

n∑
i=1

n∑
j=1

(α2
i d+

i j + |αiγi|d+
i j)L

Q
j

1
1 − τ̇+

i j

∫ t

t−τi j(t)
x2

j(s)ds

+
1
2

n∑
i=1

n∑
j=1

(α2
i h+

i j + |αiγi|h+
i j)L

R
j

∫ +∞

0
|Ki j(u)|

∫ t

t−u
x2

j(s)ds du +
1
2

n∑
i=1

α2
i

}
.

It follows from (G2), (G3), (G6) and (1.3) that
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W ′(t) = −u(t)W(t) + e−U(t)
{ n∑

i=1

(βi + γ2
i )xi(t)x′i(t) +

n∑
i=1

(α2
i x′i(t) + αiγixi(t))

×
[
− ai(t)x′i(t) − bi(t)xi(t) +

n∑
j=1

ci j(t)P̃ j(x j(t)) +

n∑
j=1

di j(t)Q̃ j(x j(t − τi j(t)))

+

n∑
j=1

hi j(t)
∫ +∞

0
Ki j(u)R̃ j(x j(t − u))du + Ji(t)

]
+

n∑
i=1

αiγi(x′i(t))
2

+
1
2

n∑
i=1

n∑
j=1

(α2
i d+

i j + |αiγi|d+
i j)L

Q
j

1
1 − τ̇+

i j
x2

j(t)

−
1
2

n∑
i=1

n∑
j=1

(α2
i d+

i j + |αiγi|d+
i j)L

Q
j

1
1 − τ̇+

i j
x2

j(t − τi j(t))(1 − τ′i j(t))

+
1
2

n∑
i=1

n∑
j=1

(α2
i h+

i j + |αiγi|h+
i j)L

R
j

∫ +∞

0
|Ki j(u)|dux2

j(t)

−
1
2

n∑
i=1

n∑
j=1

(α2
i h+

i j + |αiγi|h+
i j)L

R
j

∫ +∞

0
|Ki j(u)|x2

j(t − u)du

≤ e−U(t)
{
− u(t)

1
2

n∑
i=1

[
(αix′i(t) + γixi(t))2 − 2αi|αix′i(t) + γixi(t)| + α2

i

]
+

n∑
i=1

(βi + γ2
i − ai(t)αiγi − bi(t)α2

i )xi(t)x′i(t)

+

n∑
i=1

(αiγi − ai(t)α2
i )(x′i(t))

2 −

n∑
i=1

bi(t)αiγix2
i (t)

+
1
2

n∑
i=1

n∑
j=1

(α2
i d+

i j + |αiγi|d+
i j)L

Q
j

1
1 − τ̇+

i j
x2

j(t)

−
1
2

n∑
i=1

n∑
j=1

(α2
i d+

i j + |αiγi|d+
i j)L

Q
j x2

j(t − τi j(t))

+
1
2

n∑
i=1

n∑
j=1

(α2
i h+

i j + |αiγi|h+
i j)L

R
j

∫ +∞

0
|Ki j(u)|dux2

j(t)

−
1
2

n∑
i=1

n∑
j=1

(α2
i h+

i j + |αiγi|h+
i j)L

R
j

∫ +∞

0
|Ki j(u)|x2

j(t − u)du

+

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|ci j(t)||P̃ j(x j(t))|

+

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|di j(t)||Q̃ j(x j(t − τi j(t)))|
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+

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|hi j(t)|

∫ +∞

0
|Ki j(u)||R̃ j(x j(t − u))|du

}
≤ e−U(t)

{ n∑
i=1

(βi + γ2
i − ai(t)αiγi − bi(t)α2

i )xi(t)x′i(t) +

n∑
i=1

(αiγi − ai(t)α2
i )(x′i(t))

2

+

n∑
i=1

[
− bi(t)αiγi +

1
2

n∑
j=1

(α2
jd

+
ji + |α jγ j|d+

ji)L
Q
i

1
1 − τ̇+

ji

+
1
2

n∑
j=1

(α2
jh

+
ji + |α jγ j|h+

ji)L
R
i

∫ +∞

0
|K ji(u)|du

]
x2

i (t)

−
1
2

n∑
i=1

n∑
j=1

(α2
i d+

i j + |αiγi|d+
i j)L

Q
j x2

j(t − τi j(t))

−
1
2

n∑
i=1

n∑
j=1

(α2
i h+

i j + |αiγi|h+
i j)L

R
j

∫ +∞

0
|Ki j(u)|x2

j(t − u)du

+

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|ci j(t)||P̃ j(x j(t))|

+

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|di j(t)||Q̃ j(x j(t − τi j(t)))|

+

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|hi j(t)|

∫ +∞

0
|Ki j(u)||R̃ j(x j(t − u))|du

}
. (2.3)

The assumption (G1) and the fact that uv ≤ 1
2 (u2 + v2)(u, v ∈ R) entail that

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|ci j(t)||P̃ j(x j(t))|

≤
1
2

n∑
i=1

n∑
j=1

α2
i |ci j(t)|LP

j (x′i(t))
2

+
1
2

n∑
i=1

n∑
j=1

(|αiγi||ci j(t)|LP
j + α2

j |c ji(t)|LP
i + |α jγ j||c ji(t)|LP

i )x2
i (t),

n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|di j(t)||Q̃ j(x j(t − τi j(t)))|

≤
1
2

n∑
i=1

n∑
j=1

α2
i |di j(t)|L

Q
j (x′i(t))

2 +
1
2

n∑
i=1

n∑
j=1

|αiγi||di j(t)|L
Q
j x2

i (t)

+
1
2

n∑
i=1

n∑
j=1

|(α2
i |di j(t)|L

Q
j + |αiγi||di j(t)|L

Q
j )x2

j(t − τi j(t)),

and
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n∑
i=1

n∑
j=1

(α2
i |x
′
i(t)| + |αiγi||xi(t)|)|hi j(t)|

∫ +∞

0
|Ki j(u)||R̃ j(x j(t − u))|du

≤
1
2

n∑
i=1

n∑
j=1

α2
i |hi j(t)|LR

j

∫ +∞

0
|Ki j(u)|du(x′i(t))

2

+
1
2

n∑
i=1

n∑
j=1

|αiγi||hi j(t)|LR
j

∫ +∞

0
|Ki j(u)|dux2

i (t)

+
1
2

n∑
i=1

n∑
j=1

(α2
i |hi j(t)|LR

j + |αiγi||hi j(t)|LR
j )

∫ +∞

0
|Ki j(u)|x2

j(t − u)du,

which, together with (G4), (2.2) and (2.3), give

W ′(t) ≤ e−U(t)
{ n∑

i=1

(βi + γ2
i − ai(t)αiγi − bi(t)α2

i )xi(t)x′i(t)

+

n∑
i=1

[
αiγi − ai(t)α2

i +
1
2
α2

i

n∑
j=1

(|ci j(t)|LP
j + |di j(t)|L

Q
j

+|hi j(t)|LR
j

∫ +∞

0
|Ki j(u)|du)

]
(x′i(t))

2

+

n∑
i=1

[
− bi(t)αiγi +

1
2

n∑
j=1

(|ci j(t)|LP
j + |di j(t)|L

Q
j + |hi j(t)|LR

j

∫ +∞

0
|Ki j(u)|du)|αiγi|

+
1
2

n∑
j=1

α2
j(|c ji(t)|LP

i + d+
jiL

Q
i

1
1 − τ̇+

ji
+ h+

jiL
R
i

∫ +∞

0
|K ji(u)|du)

+
1
2

n∑
j=1

(|c ji(t)|LP
i + d+

jiL
Q
i

1
1 − τ̇+

ji
+ h+

jiL
R
i

∫ +∞

0
|K ji(u)|du)|α jγ j|

]
x2

i (t)
}

= e−U(t)
{ n∑

i=1

Di(t)
(
x′i(t) +

Fi(t)
2Di(t)

xi(t)
)2

+

n∑
i=1

(
Ei(t) −

(Fi(t))2

4Di(t)

)
x2

i (t)
}

≤ −ρ

n∑
i=1

(
x′i(t) +

Fi(t)
2Di(t)

xi(t)
)2
− %

n∑
i=1

x2
i (t)

≤ 0, ∀t ∈ [0,+∞). (2.4)

This implies that W(t) ≤ W(0) for all t ∈ [0,+∞), and

1
2

n∑
i=1

βix2
i (t) +

1
2

n∑
i=1

(αix′i(t) + γixi(t))2 ≤ +∞, t ∈ [0,+∞).

Since αi|x′i(t)| ≤ |αix′i(t) + γixi(t)| + |γixi(t)|, it follows that x′i(t) and xi(t) are uniformly bounded on
[0, +∞) for all i ∈ S . According to the continuity of right-hand side functions in (1.3), it is easy to
see that x′′i (t) is also uniformly bounded on [0, +∞) for all i ∈ S , which combining with (G4) lead that
n∑

i=1

(
x′i(t) +

Fi(t)
2Di(t)

xi(t)
)2

and
n∑

i=1
x2

i (t) are uniformly continuous on [0, +∞).
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In addition, (2.4) entails that

n∑
i=1

(
x′i(t) +

Fi(t)
2Di(t)

xi(t)
)2
≤ −

1
ρ

W ′(t),
n∑

i=1

x2
i (t) ≤ −

1
%

W ′(t), ∀t ≤ 0,

and

lim
t→∞

∫ t

0

n∑
i=1

(
x′i(s) +

Fi(s)
2Di(s)

xi(s)
)2

ds ≤
W(0)
ρ

, lim
t→∞

∫ t

0

n∑
i=1

x2
i (s)ds ≤

W(0)
%

,

which, together with Lemma 2.1, lead to

lim
t→∞

xi(t) = 0, lim
t→∞

(
x′i(t) +

Fi(t)
2Di(t)

xi(t)
)

= 0, lim
t→∞

x′i(t) = 0, i ∈ S .

The proof is complete.
Remark 2.3. Obviously, system (1.1) is a special case of system (1.3) when di j = 0, i, j ∈ S ,

and the restrictions on initial value condition (1.4) are weaker than those ones in (1.2), hence all the
results in [30] can be derived from theorem 2.1. Moreover, the global Lipschitz conditions on the
activation functions were crucial in [3, 20, 31] where the convergence on the state vector of inertial
neural networks system was considered. However, in this paper, the global Lipschitz conditions have
been abandoned and the global convergence on the inertial neural networks system with bounded time-
varying delays and unbounded continuously distributed delays has been established. This implies that
Theorem 2.1 generalizes and complements the main results of [3, 20, 30, 31].

3. A numerical example

Example 3.1. Regard the following inertial neural networks with mixed delays:

x′′1 (t) = −(4.56 + sin2 t)x′1(t) − (13.58 + sin2 t)x1(t) + 1.21(sin t)P̃1(x1(t))
+1.51(cos t)P̃2(x2(t)) − 1.42(sin2 t)Q̃1(x1(t − 0.2 sin2 t))
+1.95(cos2 t)Q̃2(x2(t − 0.2 sin2 t))
−1.83(sin2 t)

∫ +∞

0
sin(2u)
1+u2 R̃1(x1(t − u))du

+0.71(cos2 t)
∫ +∞

0
sin(2u)
1+u2 R̃2(x2(t − u))du + 20 sin4 te−t2 ,

x′′2 (t) = −(4.71 + sin2 t)x′2(t) − (14.45 + sin2 t)x2(t) − 0.83(sin t)P̃1(x1(t))
−1.47(cos t)P̃2(x2(t)) − 1.52(sin2 t)Q̃1(x1(t − 0.2 sin2 t))
+0.95(cos2 t)Q̃2(x2(t − 0.2 sin2 t))
−3.51(sin2 t)

∫ +∞

0
cos(2u)
1+u2 R̃1(x1(t − u))du

+1.17(cos2 t)
∫ +∞

0
cos(2u)
1+u2 R̃2(x2(t − u))du + 30 sin4 te−t2 ,

(3.1)

where P̃1(u) = Q̃1(u) = R̃1(u) = 0.25(|u + 1| − |u − 1|), P̃2(u) = Q̃2(u) = R̃2(u) = 0.5u(sin3 u).
Take αi = γi = 1, β1 = 18.14, β2 = 19.16, LP

i = LQ
i = LK

i = 0.5, i = 1, 2, we gain Di(t) <

0, 4Di(t)Ei(t) > (Fi(t))2, i = 1, 2, t ∈ R. By Theorem 2.1, we can conclude that all solutions of (3.1)
and the derivatives are convergent to the zero vector, respectively. Simulations in Figures 1 and 2
reflect that the theoretical convergence is in sympathy with the numerically observed behavior. Here, it
can be seen from the moving trend of the trajectories in Figures 1, 2 that xi(t) and x′i(t) are convergent
to 0 as t → +∞.
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Figure 1. Numerical solutions x(t) to system (3.1) with initial values: (ϕ1(t), ϕ2(t), ψ1, ψ2) =

(2 sin t + 1,−2 cos t−3, 2, 0), (2 cos t + 2, 3 sin t−1, 0, 3), (−3 sin t−2,−4 sin t + 3,−3,−4), t ∈
(−∞, 0].
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Figure 2. Numerical solutions x′(t) to system (3.1) with initial values: (ϕ1(t), ϕ2(t), ψ1, ψ2) =

(2 sin t + 1,−2 cos t−3, 2, 0), (2 cos t + 2, 3 sin t−1, 0, 3), (−3 sin t−2,−4 sin t + 3,−3,−4), t ∈
(−∞, 0].
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Remark 3.1. It should be pointed out that P̃2(u) = Q̃2(u) = R̃2(u) = 0.5u(sin3 u) does not satisfy the
global Lipschitz condition, and d11, d12, d21, d22 , 0, then all results in the references [24–39, 41–70]
can not be straightly applied to show that every solution and its derivative convergent to the zero vector
in system (3.1). Moreover, as far as the authors know, the convergence on inertial neural networks
with bounded time-varying delays and unbounded continuously distributed delays without applying
the reduced-order method has not been touched in the previous literature. Consequently, the main
results established in this paper are essentially new and complement some existing ones.

4. Conclusions

In this paper, applying differential inequality techniques coupled with Lyapunov function method
instead of the reduced order method, we study the global convergence on inertial neural networks
with bounded time-varying delays and unbounded continuously distributed delays. Some sufficient
assertions have been established to guarantee that every solution and its derivative of the addressed
model are convergent to the zero vector. It should be mentioned that the method applied in this paper
provides a possible approach to study the topic on dynamical behaviours of other inertial neural
networks model with bounded time-varying delays and unbounded continuously distributed delays.
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