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Abstract: In this paper, we consider the existence of an reversed S -shaped connected component in the
set of positive solutions for second order periodic boundary value problem with a sign-changing weight
function. By bifurcation technique, we identify the interval of bifurcation parameter in which the
periodic boundary value problem has one or two or three positive solutions according to the asymptotic
behavior of f at 0 and∞.
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1. Introduction

In this paper, we show the existence of reversed S -shaped connected component of positive
solutions for second order periodic boundary value problem(PBVP) − u′′(t) + q(t)u(t) = λh(t) f (u(t)), t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),
(1.1)

where q ∈ C([0, 2π], (0,∞)), f ∈ C(R,R), λ > 0 is a parameter, and h ∈ C[0, 2π] is a sign-changing
function.

In recent years, periodic boundary value problem have been discussed by many authors via
topological degree theory, fixed point theorems and bifurcation technique (see, for
example, [2, 4–10, 12–14, 18] and the references therein).

In [4], Dai et al. studied a unilateral global bifurcation result for a class of quasilinear PBVP − (ϕp(u′))′ + q(t)ϕp(u) = λm(t) f (u), t ∈ (0,T ),
u(0) = u(T ), u′(0) = u′(T ),

(1.2)
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where ϕp(s) = |s|p−2s, p > 1, q ∈ C([0,T ], (0,∞)), f ∈ C(R,R), m ∈ C[0,T ] change its sign, λ is a
parameter. They using the bifurcation technique to derive that the interval of parameter λ in which the
above problem (1.2) has one or two positive solutions according to the asymptotic behavior of f at 0
and∞.

In 2015, Sim and Tanaka [17] studied the global structure of positive solutions set for the
p-Laplacian problem  − (ϕp(u′))′ + λh(x) f (u) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(1.3)

where λ > 0 is a parameter, f ∈ C[0,∞), f (0) = 0, f > 0 for all s > 0, the weight function h ∈ C[0, 1]
satisfies the condition
(F0) there exist a, b ∈ [0, 1] such that a < b, h(x) > 0 on (a, b) and h(x) ≤ 0 on [0, 1]\[a, b].

By bifurcation technique, they proved that there is an unbounded component which is bifurcating
from the trivial solution, grows to the right from the initial point, to the left at some point, and to
the right near λ = ∞. Roughly speaking, there exists an S -shaped connected component of positive
solutions for problem (1.3). See Figure 1(i). Inspired by [17], in [9], the authors have established a
similar result to the problem (1.1) with the weight function h satisfies condition (F0).

Figure 1. (i) S-shaped connected component. (ii) reversed S-shaped connected component.

We mention that recently existence and multiplicity results for nonlinear nonhomogeneous
parametric robin problems were proved by Papageorgiou et al. [15, 16]. In particular, in [16], the
authors proved a bifurcation-type theorem for small values of the parameter. More precise, they
showed that there exists λ∗ > 0 such that for all λ ∈ (0, λ∗), the robin problem has at least two positive
solutions, and for all λ = λ∗, the problem has at least one positive solution, and for all λ > λ∗, the
problem has no positive solution.

Motivated by these studies, in this paper, we show the existence of reversed S -shaped connected
component of positive solutions for (1.1). As a by-product, we determine the interval of λ in which
problem (1.1) has one or two or three positive solutions under the suitable conditions on the weight
function and nonlinearity.
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Consider problem (1.1). Suppose that f satisfies
(H0) f ∈ C(R,R) with f (s)s > 0 for s , 0.

Let λ+
0 be the first eigenvalue for the following linear eigenvalue problem − u′′(t) + q(t)u(t) = λh(t)u(t), t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).
(1.4)

It is well-known that λ+
0 is simple eigenvalue with positive eigenfunction. See [3].

Remark 1.1. The eigenvalue λ+
0 is the minimum of the “Rayleigh quotient”, that is

λ+
0 = inf

{ ∫ 2π

0

(
(v′)2 + qv2)dt| v(0) = v(2π), v′(0) = v′(2π),

∫ 2π

0
hv2dt = 1

}
.

Furthermore, we assume that
(H1) there exist constants α > 0, f0 > 0, and f1 > 0 such that

lim
s→0+

f (s) − f0s
s1+α

= f1;

(H2) f∞ := lim
s→∞

f (s)
s = ∞;

(H3) there exists s0 > 0 such that 0 ≤ s ≤ s0 implies that

f (s) ≤
f0

2πλ+
0 ĥM

s0,

where q̂ = max
s∈[0,2π]

q(s), ĥ = maxs∈[0,2π] |h(s)|, M be as in (2.1).

Notice that if (H1) holds, then

lim
s→0+

f (s)
s

= f0. (1.5)

Indeed, under (H0) and (H1), we have an unbounded subcontinuum which is bifurcating from
(λ+

0 / f0, 0) and goes leftward. Conditions (H0) and (H3) lead the unbounded sub-continuum to the
right at some point, and finally to the left near λ = 0. Roughly speaking, we shall show that there
exists a reversed S -shaped connected component of positive solutions of (1.1). See Figure 1(ii).

Our main result is the following theorem
Theorem 1.1. Assume that (H0)–(H3) hold. Then there exist λ∗ ∈ (0, λ

+
0

f0
) and λ∗ > λ+

0
f0

such that
(i) (1.1) has at least one positive solution if 0 < λ < λ∗;
(ii) (1.1) has at least two positive solutions if λ = λ∗;
(iii) (1.1) has at least three positive solutions if λ∗ < λ < λ+

0 / f0;
(iv) (1.1) has at least two positive solutions if λ+

0 / f0 < λ ≤ λ
∗;

(v) (1.1) has at least one positive solution if λ > λ∗.
Remark 1.1. Let us consider the function

f (s) = ms + s ln(1 + s), m > 0, s ∈ [0,∞).

Obviously, f satisfies (H1) and (H2) with

α = 1, f0 = m, f1 = 1.
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It is easy to see that if m > 0 is sufficiently large, then this function satisfies (H3).
Remark 1.2. If the conditions of f in this paper are compared with those of f in [9, 17], it is easy
to see that f is superlinear near ∞ according to (H2), so we cannot find a constant f ∗ > 0 such that
f (s) ≤ f ∗s for all s ≥ 0. This will bring great difficulty to the study of the global structure of the
positive solutions set for (1.1). On the other hand, in [9, 17], the authors used a key condition about
the weight function h, see (F0). We note that the concavity and convexity of the positive solutions of
(1.1) can be deduced directly from (F0) and the nonlinearity in the equation. However, in this paper,
we don’t make any additional assumptions about the weight function h.

The paper is organized as follows. In Section 2, we show the existence of bifurcation from simply
eigenvalue for the corresponding problem and the leftward direction near the initial point. Section 3 is
devoted to showing the change of direction of bifurcation, and complete the proof of Theorem 1.1.

2. Preliminaries and leftward bifurcation

Let G(t, s) is the Green’s function of the homogeneous PBVP − u′′(t) + q(t)u(t) = 0, t ∈ (0, 2π),
u(0) = u(2π), u′(0) = u′(2π).

By [1, Theorem 2.5], we know that G(t, s) > 0, ∀t, s ∈ [0, 2π].
Denote

M = max
0≤t,s≤2π

G(t, s). (2.1)

Let Y = C[0, 2π] with the norm
‖u‖∞ = max

t∈[0,2π]
|u(t)|,

E = {u ∈ C1[0, 2π] : u(0) = u(2π), u′(0) = u′(2π)} with the norm

‖u‖ = max
t∈[0,2π]

|u(t)| + max
t∈[0,2π]

|u′(t)|,

and P = {u ∈ E : u(t) ≥ 0} be the positive cone in E.
Lemma 2.1. ( [4, Theorem 4.3]) Assume f0 ∈ (0,∞), f∞ ∈ (0,∞), then (λ

+
0

f0
, 0) is a bifurcation point of

problem (1.1). Moreover, there is an unbounded component C of the set for the solutions of problem
(1.1) and

C ⊂
(
{(R+ × intP)} ∪ {(

λ+
0

f0
, 0)}

)
.

Furthermore, C emanating from (λ
+
0

f0
, 0) and joining to ( λ

+
0

f∞
,∞).

Lemma 2.2. ( [11]) Let X be a Banach space and let Cn be a family of closed connected subsets of X.
Assume that:

(i) there exist zn ∈ Cn, n = 1, 2, · · · , and z∗ ∈ X, such that zn → z∗;
(ii) rn = sup{||x|||x ∈ Cn} = ∞;
(iii) for every R > 0, (

⋃∞
n=1 Cn) ∩ B̄R(0) is a relatively compact set of X.

Then D := lim supn→∞Cn is unbounded, closed and connected.
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Lemma 2.3. If f0 ∈ (0,∞) and f∞ = ∞, then the unbounded subcontinuum C of positive solutions for
(1.1) joins (λ

+
0

f0
, 0) to (0,∞).

Proof. Define the cut-off function of f as the following

fn(s) =


f (s), s ∈ [0, n],
2n2 − f (n)

n
(s − n) + f (n), s ∈ (n, 2n),

ns, s ∈ [2n,∞).

Consider the following second order periodic boundary value problem − u′′(t) + q(t)u(t) = λh(t) fn(u(t)), t ∈ (0, 2π),
u(0) = u(2π), u′(0) = u′(2π).

(2.2)

Clearly, limn→∞ fn(s) = f (s), ( fn)0 = f0 and ( fn)∞ = n. Lemma 2.1 implies that there exists a sequence
of unbounded continua (C)n of solutions to problem (2.2) emanating from (λ

+
0

f0
, 0) and joining to (λ

+
0
n ,∞).

By Lemma 2.2, there exists an unbounded component C of limn→∞ Cn such that (λ
+
0

f0
, 0) ∈ C and

(0,∞) ∈ C. This completes the proof. �
Lemma 2.4. [9, Lemma 2.2] Assume (H1). Let {(λn, un)} is a sequence of positive solutions to (1.1)
which satisfies λn →

λ+
0

f0
and ‖un‖ → 0. Let φ is the positive eigenfunction corresponding to λ+

0 ,
which satisfies ‖φ‖ = 1. Then there exists a subsequence of {un}, again denoted by {un}, such that un

‖un‖

converges uniformly to φ on [0, 2π].
Lemma 2.5. Let α ≥ 0 and let φ be the positive eigenfunction corresponding to λ+

0 . Then∫ 2π

0
h(t)[φ(t)]2+αdt > 0.

Proof. Multiplying the equation of (1.4) by φα+1 and integrating it over [0, 2π], we obtain

µ1

∫ 2π

0
h(t)[φ(t)]α+2dt = −

∫ 2π

0
φ′′(t)[φ(t)]α+1dt +

∫ 2π

0
q(t)[φ(t)]α+2dt

= (α + 1)
∫ 2π

0
[φ′(t)]2[φ(t)]αdt +

∫ 2π

0
q(t)[φ(t)]α+2dt > 0.

�
Lemma 2.6. Assume that (H0)–(H2) hold. Let C be as in Lemma 2.3. Then there exists δ > 0 such
that (λ, u) ∈ C and |λ − λ+

0
f0
| + ‖u‖ ≤ δ imply λ < λ+

0
f0

.

Proof. Assume to the contrary that there exists a sequence {(λn, un)} ⊂ C such that λn →
λ+

0
f0
, ||un|| → 0

and λn ≥
λ+

0
f0

. By Lemma 2.4 there exists a subsequence of {un}, again denoted by {un}, such that un
||un ||∞

converges uniformly to φ on [0, 2π]. Multiplying the equation of (1.1) with (λ, u) = (λn, un) by φ and
integrating it over [0, 2π], we have∫ 2π

0
φ(x)

(
− u′′n (x) + q(x)un(x)

)
dx = λn

∫ 2π

0
h(x) f (un(x))φ(x)dx. (2.3)
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By a simple computation, one has that∫ 2π

0
φ(x)

(
− u′′n (x) + q(x)un(x)

)
dx =

∫ 2π

0

(
− φ′′(x) + q(x)φ(x)

)
un(x)dx

= λ+
0

∫ 2π

0
h(x)φ(x)un(x)dx.

(2.4)

Combining (2.3) and (2.4), we obtain∫ 2π

0
h(x) f (un(x))φ(x)dx =

λ+
0

λn

∫ 2π

0
h(x)φ(x)un(x)dx,

and accordingly,∫ 2π

0
h(x)φ(x)[ f (un(x)) − f0un(x)]dx

||un||
1+α
∞

=

∫ 2π

0
h(x)φ(x)[λ

+
0
λn

un(x) − f0un(x)]dx

||un||
1+α
∞

.

Because ∫ 2π

0
h(x)φ(x)[ f (un(x)) − f0un(x)]dx

||un||
1+α
∞

=

∫ 2π

0
h(x)φ(x)

f (un(x)) − f0un(x)
(un(x))1+α

[ un(x)
||un||∞

]1+α
dx.

By Lebesgue’s dominated convergence theorem, Lemma 2.5, and condition (H1), we have∫ 2π

0
h(x)φ(x)[ f (un(x)) − f0un(x)]dx

||un||
1+α
∞

→ f1

∫ 2π

0
h(x)φ2+αdx > 0.

Similarly, ∫ 2π

0
h(x)φ(x)[λ

+
0
λn

un(x) − f0un(x)]dx

||un||
1+α
∞

=
λ+

0 − f0λn

λn||un||
α
∞

∫ 2π

0
h(x)φ(x)

un(x)
||un||∞

dx ≤ 0.

This is a contradiction. �

3. Proof of Theorem 1.1

In this section, we show that there is a direction turn of the bifurcation under (F3) condition and
accordingly we finish the proof of Theorem 1.1.
Lemma 3.1. [9, Lemma 3.1] Let (H1) and (H2) hold. Assume that {(λk, uk)} is a sequence of positive
solutions of (1.1). Assume that |λk| < C0 for some constant C0 > 0, and limk→∞ ||uk|| → ∞, then
limk→∞ ||uk||∞ → ∞.

Lemma 3.2. Assume that (H0) and (H3) hold. Let (λ, u) ∈ C be a positive solution of (1.1) with
‖u‖∞ = s0. Then λ > λ+

0
f0

.
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Proof. Let u be a positive solution of (1.1) with ‖u‖∞ = s0, then

s0 = ||u||∞ = max
x∈[0,2π]

λ
∣∣∣∣ ∫ 2π

0
G(x, s)h(s) f (u(s))ds

∣∣∣∣
≤ λM

∫ 2π

0
|h(s)| f (u(s))ds

< λM · 2πĥ
f0

2πλ+
0 ĥM

s0,

= λ ·
f0

λ+
0

s0.

So, it is easy to see that λ > λ+
0

f0
. �

Proof of Theorem 1.1. From Lemma 2.3, there exists an unbounded connected component C in the
positive solutions set of (1.1) and C is bifurcating from (λ

+
0

f0
, 0) and goes leftward.

By Lemma 2.3, it follows that there exists (λ0, u0) ∈ C such that ‖u0‖∞ = s0 and Lemma 2.6
implies that λ0 <

λ+
0

f0
. By Lemmas 2.6, 3.2, C passes through some points (λ

+
0

f0
, v1) and (λ

+
0

f0
, v2) with

‖v1‖∞ < s0 < ‖v2‖∞, and there exist λ and λ which satisfy 0 < λ < λ+
0

f0
< λ and both (i) and (ii):

(i) if λ ∈ (λ
+
0

f0
, λ], then there exist u and v and (λ, u), (λ, v) ∈ C satisfy ‖u‖∞ < s0 < ‖v‖∞;

(ii) if λ ∈ (λ, λ
+
0

f0
], then there exist u and v and (λ, u), (λ, v) ∈ C satisfy ‖u‖∞ < ‖v‖∞ < s0.

Let λ∗ = sup{λ : λ satisfies (i)}, λ∗ = inf{λ : λ satisfies (ii)}. Then second order periodic boundary
value problem (1.1) has a positive solution uλ∗ at λ = λ∗ and uλ∗ at λ = λ∗, respectively.

It is easy to see that C turns to the left at (λ∗, ‖uλ∗‖∞) and C turns to the right at (λ∗, ‖uλ∗‖∞), finally
to the left near λ = 0. In other words, C is a reversed S -shaped component. This complete the proof of
Theorem 1.1. �

Now we strengthen the assumptions on f and h.
(H5) there exists s1 with s1 > 2s0 > 0 such that

min
s∈[s1,2s1]

f (s)
s
≥

f0

λ+
0 h0

[(2π
l
)2

+ q̂
]
,

where l = x2 − x1, q̂ = max
s∈[0,2π]

q(s), h0 =
{
h(t)|t ∈ [3x1+x2

4 , x1+3x2
4 ]

}
;

(H6) there exists β > 0 such that

βh+(t) inf
{ f (s)

s
: s ∈ (0, s1]

}
≥ q(t), t ∈ (x1, x2),

where h+(t) := max{h(t), 0}.
By an argument similar to proving [9, Lemma 3.5] with obvious changes, we may obtain the

following result.
Corollary 3.1. Assume (H0), (H2), (H4)–(H6). Let (λ, u) be a positive solution of (1.1) with ||u||∞ = s1.
Then λ < λ+

0 / f0.
Remark 3.1. Suppose that the hypotheses of Theorem 1.1 hold. Moreover, using the method similar
to proving Lemma 3.2 and Corollary 3.1 infinitely many times, we can obtain the continuum C is
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unbounded, join (λ+
0 / f0, 0) to (0,∞) and oscillates around the axis {λ = λ+

0 / f0} an infinite number of
times. See Figure 2.

Figure 2. Graph of continuum C.
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