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1. Introduction  

Fundamental importance of Hurwitz-Lerch zeta function has its roots in analytic number theory. 
More recently, a new class of Hurwitz-Lerch zeta function has been introduced and investigated by 
Srivastava [1]. Following this investigation, various new studies with diverse themes can be found in 
the literature [2–11]. By taking motivation from these researches, Tassaddiq [12] has investigated a 
series representation for this class of Hurwitz-Lerch zeta functions by introducing λ-generalized 
gamma function. The original gamma function was first generalized by Chaudhry and Zubair [13] 
which proved very useful for the solution of heat conduction problems. After that some other 
researchers have introduced and investigated different generalizations of gamma function. For 
review of such generalizations, the interested reader is referred to [14,15] and references there in. 
More recently, Mubeen et al [14] have reviewed all previous extensions and used the approach of 
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Chaudhry and Zubair [13] to present some extensions of 𝑘-gamma and 𝑘-beta functions. The 
literature review for gamma function and its generalizations have not only motivated to 
mathematicians for the development of modern theories but their applications in miscellaneous 
subjects are central. The purpose of current study is to find a novel series representation of 
λ-generalized gamma function in relation with delta function. Recent investigations [16–24] are 
mentionable to achieve the goals of this paper. As a result, one can analytically compute various new 
integrals of products of special functions which are not the part of existing literature [25,26].  

Plan of this paper is as follows: essential preliminaries related to the family of λ-generalized 
gamma function as well as test functions spaces are given in Sections 2.1 and 2.2. Organization of 
the remaining part is given as: Section 3.1 includes new series form related with λ-generalized 
gamma function. Section 3.2 consists of the criteria about the existence as well as uses of the novel 
series. Validation of these outcomes is given in Section 3.3. Further results are a part of Sections 3.4 
and 3.5. Section 4 highlights and concludes the present as well as future work. 

2. Materials and method 

2.1. 𝜆-generalized gamma function 

Commonly used symbols are stated as follows 

ℤ+ = ℕ ∶= {1, 2, . . };ℕ0 ≔ {0} ∪ ℕ;ℤ−: = {−1,−2, . . };ℤ0− ∶= {0} ∪ ℤ−. 
 

Here ℕ denotes the set of natural numbers whereas the sets of positive and negative integers 
are symbolized by ℤ+  𝑎𝑛𝑑    ℤ− respectively. Moreover, ℂ denotes the set of complex numbers 
and the set of real is denoted by ℝ.  

Gamma function as a generalization of factorial has its integral representation [13] 

Γ(s) = � ts−1e−t
∞

0
dt;  ℜ(s) > 0. (1) 

Diaz and Pariguan [15] studied its generalization in the following integral form known as 
𝑘-gamma function  

Γ𝑘(s) = � ts−1e
−t𝑘
𝑘

∞

0
dt         (k ≥ 0), (2) 

and one can notice that Γ1(s) = Γ(s) and  

Γ2(s) = � ts−1e
−t2
2

∞

0
dt (3) 

is an integral of Gaussian function, which has fundamental applications. These types of gamma 
function are also important to express other basic notions such as Pochhammer symbols 

(λ)ρ =
Γ(λ + ρ)
Γ(λ) = �

1 (ρ = 0, λ ∈  ℂ ∖ {0})
λ(λ + 1) … (λ + k − 1) (ρ = k ∈  ℕ; λ ∈  ℂ),

� (4) 

and 
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(λ)κ,ρ = Γ𝑘(λ+κρ )
Γ𝑘(λ)

. (5) 

The focus point of this paper is a newly studied special function namely λ-generalized gamma 
function as defined in [12] 

Γ𝑏𝜆(s;𝑎) = � ts−1ex p �−𝑎t −
b
tλ
�

∞

0
dt ;  (λ ≧ 0;ℜ(b) ≧ 0; min[ℜ(s),ℜ(𝑎)] > 0). (6) 

The λ-generalized gamma functions satisfy certain useful relations as investigated in [12] such 
as the generalized difference equation 

Γ𝑎,𝑏
𝜆 (s + 1) =

𝑠
𝑎
Γ𝑎,𝑏
𝜆 (s) +

𝑏𝜆
𝑎
Γ𝑎,𝑏
𝜆 (s − 𝜆), (𝑏 ≥  0), (7) 

and the following inequality known as log-convex property 

Γa,b
λ �

s
p

+
u
q�

≤ �Γa,b
λ (s)�

1
p  �Γa,b

λ (u)�
1
q ; (s, u ∈ ℝ; 1 < 𝑝 < ∞;

1
p

+
1
q

= 1). 
(8) 

For, 𝜆 = 1, (6) reduces to the following generalization of Γ(s) as defined in [13] 

Γ𝑏(s) = � ts−1𝑒−t−
b
t  

∞

0
dx,         (ℜ(𝑠) > 0, 𝑏 ≥ 0, ). (9) 

Further comprehensive details and new developments about gamma functions can be found in recent 
important works [27–36] and references therein 

2.2. Distributions and test functions 

Corresponding to each space of test functions there is a dual space known as space of 
distributions (or generalized functions). Consideration of such functions is vital due to their 
important property of representing the singular functions. In this way, one can apply different 
operations of calculus as in the case of classical functions. For the requirements of this investigation 
we need to mention about delta function, which is a commonly used singular function given by  

〈δ(s −ω),℘(s)〉  =  ℘(ω) (∀℘ ∈  𝐷,ω ∈  ℝ) (10) 

and 

δ(−s) =  δ(s);  δ(ωs) =  
δ(s)
|ω| , where  𝜔 ≠ 0. (11) 

An ample discussion and explanation of distributions (or generalized functions) has been 
presented in five different volumes by Gelfand and Shilov [37]. Functions having compact support 
and infinitely differentiable as well as fast decaying are commonly used test functions. The spaces 
containing such functions are denoted by  𝐷 and 𝑆 respectively. Obviously, corresponding duals 
are the spaces 𝐷′ and 𝑆′. A mentionable fact about such spaces is that 𝐷 and 𝐷′ do not hold the 
closeness property with respect to Fourier transform but 𝑆 and 𝑆′ do. In this way it is remarkable 
that the elements of 𝐷′ have Fourier transforms that form distributions for entire functions space 𝑍 
whose Fourier transforms belong to 𝐷 [38]. Further to this explanation, it is noticeable that as the 
entire function is nonzero for a particular range ω1 < 𝑠 < ω2, but zero otherwise so the following 
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inclusion of above mentioned spaces holds 

 𝑍 ∩  𝐷 ≡ 0;𝑍 ⊂ 𝑆 ⊂ 𝑆′ ⊂ 𝑍′;𝐷 ⊂ 𝑆 ⊂ 𝑆′ ⊂ 𝐷′. (12) 

More specifically, space Z comprise of entire and analytic functions sustaining the subsequent 
criteria 

|sq ℘(s)| ≤ C𝑞eη|θ|;  (q ∈ ℕ0). (13) 

Here and what follows, the numbers 𝜂 and 𝐶𝑞 are dependent on ℘. The following identities 
([37], Vol 1, p. 169, Eq (8)), ([38], (p. 159), Eq (4)), see also ([40], p. 201, Eq (9)) will be used in the 
proof of our main result  

ℱ[eαt;  θ] =  2πδ(θ − iα) (14) 

𝑔(s + b) = ∑ 𝑔(j)(s)∞
j=0

bj

j!
.      ∀𝑔 ∈  𝑍′ (15) 

 

δ(s + b) = �δ(j)(s)
∞

j=0

bj

j!
;  where 〈δ(j)(s),℘(s)〉 = (−1)r℘(j)(0). 

(16) 

δ(ω1 − s)δ(s −ω2) =  δ(ω1 − ω2). (17) 

Further such examples are 𝑠𝑖𝑛(𝑡), 𝑐𝑜𝑠(𝑡), 𝑠𝑖𝑛ℎ𝑡 and 𝑐𝑜𝑠ℎ𝑡 whose Fourier transformations are 
delta (singular) functions. The relevant detailed discussions about such spaces can be found in 
[37–41].  

Throughout in this paper, except if mentioned particularly the conditions for the involved 
parameters are taken as stated in Sections (2.1) and (2.2).  

3. Results 

3.1. New Representation of λ-generalized gamma function  

In this section, computation of λ-generalized gamma function is given as a series of complex delta 
function but the discussion about its rigorous use as a generalized function over a space of test 
functions is a part of the next section.  
Theorem 1. λ-generalized gamma function has the subsequent series representation  

Γ𝑏𝜆(s; a) = 2π �
(−𝑎)𝑛(−𝑏)𝑟

n! r!

∞

n,r=0

 δ�𝜃– i(𝜈 + n − λr)�. 
(18) 

Proof. A replacement of 𝑡 = 𝑒𝑥 and 𝑠 = 𝜈 + 𝑖𝜃 in the integral representation of λ-generalized 
gamma function as given in (6) yields the following 

Γ𝑏𝜆(s; a) = � ex(𝜈+𝑖𝜃)exp (−aex)
∞

−∞
exp�−be−λx�dx.          (19) 
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Then the involved exponential function can be represented as  

exp(−aex) exp�−be−λx� = �
(−aex)n

n!

∞

n=0

�
�−be−λx�r

r!

∞

r=0

. 
(20) 

Next, combining the expressions (19) and (20) leads to the following 

Γ𝑏𝜆(s; a) = � e𝑖𝑥𝜃 �
(−𝑎)𝑛(−𝑏)𝑟

n! r!

∞

n,r=0

e(𝜈+n−λr)x
∞

−∞
dx,         

(21) 

which gives 

Γ𝑏𝜆(s; a) = �
(−𝑎)𝑛(−𝑏)𝑟

n! r!

∞

n,r=0

� e𝑖𝑥𝜃
∞

−∞
e(𝜈+n−λr)xdx. 

(22) 

The actions of summation and integration are exchangeable because the involved integral is 
uniformly convergent. An application of identity (14) produces the following 

� e𝑖𝜃x
∞

−∞
e(𝜈+n−λr)xdx = ℱ �e(𝜈+n−λr)x;𝜃� = 2πδ�𝜃– i(𝜈 + n − λr)�. (23) 

A combination of these Eqs (22) and (23) yields the required result (18). □ 
Corollary 1 λ-generalized gamma function has the following series form   

Γ𝑏𝜆(s; a) = 2π �
(−𝑎)𝑛(−𝑏)𝑟(−i(𝜈 + n − λr))p

n! r! p!

∞

n,r,p=0

 δ(p)(θ) 
(24) 

Proof. Eq (24) can be obtained by considering the following combination of Eq (16) as well as Eq (23)  

δ�𝜃– i(𝜈 + n − λr)� = �
(−i(𝜈 + n − λr))p

p!
δ(p)(θ)

∞

p=0

 
(25) 

Next, by making use of this relation in (18) leads to the required form. □ 
Corollary 2 λ-generalized gamma function has the following series form 

Γ𝑏𝜆(s; a) = 2π �
(−𝑎)𝑛(−𝑏)𝑟

n! r!

∞

n,r=0

 δ(s + n − λr).    
(26) 

Proof. Eq (23) can be rewritten as follows 

� e𝑖𝜃x
∞

−∞
e(𝜈+n−λr)xdx = ℱ �e(𝜈+n−λr)x;𝜃� = 2πδ�𝜃– i(𝜈 + n − λr)� = 2πδ � 

1
i
�iθ + (ν + n − λr)��

= 2π|i|δ(ν + iθ + n − λr) = 2πδ(s + n − λr)                                                                         
 

 

 (27) 

Next, by making use of this relation in (18) leads to the required form. □ 
Corollary 3 λ-generalized gamma function has the following series form 
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Γ𝑏𝜆(s; a) = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − λr)p

n! r! p!

∞

n,r,p=0

 δ(p)(s). 
(28) 

Proof. A suitable combination of Eqs (16) and (26) gives 

δ(s + n − λr) = �
(λr − n)p

p!
δ(p)(s)

∞

p=0

;  〈δ(p)(s),℘(s)〉 = (−1)p℘(p)(0), 
(29) 

which is a key to the required form. 
Remark 1. It is to be remarked that the following results are straightforward from the above 
corollaries for λ = 1  

Γ𝑏(s) = 2π �
(−1)𝑛(−𝑏)𝑟

n! r!

∞

n,r=0

 δ�𝜃– i(𝜈 + n − r)�; 
(30) 

 

Γ𝑏(s) = 2π �
(−1)𝑛(−𝑏)𝑟(−i(𝜈 + n − r))p

n! r! p!

∞

n,r,p=0

 δ(p)(θ); 
(31) 

 

Γ𝑏(s) = 2π �
(−1)𝑛(𝑏)𝑟

n! r!

∞

n,r=0

 δ(s + n − r);     
(32) 

Γ𝑏(s) = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − r)p

n! r! p!

∞

n,r,p=0

 δ(p)(s).    
(33) 

Now putting 𝑏 = 0 

Γ(s) = 2π�
(−1)n

n!

∞

n=0

δ�θ – i(ν + n)� = 2π �
(−1)n

n!

∞

n,r=0

(−i(ν + n))r

r!
δ(r)(θ); 

(34) 

 

Γ(s) = 2π�
(−1)n

n!

∞

n=0

 δ(s + n);      
(35) 

 

Γ(s) = 2π �
(−1)n

n!

∞

n,r=0

nr

r!
δ(r)(s). 

(36) 

It is noticeable that the above series representations are given in the form of delta functions. 
Such functions make sense only if defined as distributions (generalized functions) over a space of 
test functions as discussed in Section (1.2). Consequently, one needs to be very careful to choose a 
suitable function for which this representation holds true. As an illustration, one can put 𝑏 = 0 in 
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identity (26) and multiply it by 1
Γ0λ(s;a)

 to get the following 

1 = 2π�
(−𝑎)n

n! Γ0λ(s; a)

∞

n=0

δ(s + n).                 
(37) 

Therefore, singular points of delta function at s = −n are canceled with the zeros of Γ0λ(s; a) 

in this expression i.e lim
𝑠→−𝑛

δ(s+n)
Γ0λ(−n;a)

= lim𝑠→−𝑛

1
𝑠+𝑛
1

𝑠+𝑛
= lim𝑠→−𝑛

𝑠+𝑛
𝑠+𝑛

= 1. Hence, by making use of  

δ(t) = �∞   (t = 0)
0    (t ≠ 0),

� (38) 

in the above statement (37), one can get the following 

1 = �2πexp(−𝑎) (s = −n)
0 (s ∈ ℂ ∖ {−n}),

� (39) 

which is false or inconsistent. At the same time, a consideration of the following special product 

〈Γ0𝜆(s; a),
1

Γ0𝜆(s; a)
〉 = 2𝜋�

(−𝑎)n

𝑛!

∞

𝑛=0

〈δ(s + n),
1

Γ0𝜆(s; a)
〉 

(40) 

gives the following 

�  1 
sϵℂ

ds = 2𝜋�
(−𝑎)n

𝑛! Γ0𝜆(−n; a)

∞

𝑛=0

. 
(41) 

Since 1
Γ0𝜆(−n;a)

= 0 due to the poles of gamma functions and we get 

�  1 
sϵℂ

ds = 0 

�  1 
sϵℂ

ds = � 1
+∞

−∞
ds = 0 

⟹∞ = 0. 

(42) 

Therefore, one needs to be very careful in making a choice of function to analyse the behavior 
of new series representation that is discussed in the next subsection. 

3.2. Analysis of the behavior of new representation 

λ-generalized gamma functions Γ𝑏𝜆(s; a)  is expressed in a new form involving singular 
distributions namely delta functions. Therefore, it is proved in the subsequent theorem that this new 
form of Γ𝑏𝜆(s; a) is a generalized function (distribution) over 𝑍 (space of entire test functions). 
Theorem 2 Prove that Γ𝑏𝜆(s; a) acts as a generalized functions (distribution) over 𝑍. 
Proof. For each ℘1(s),℘2(s)ϵ𝑍 and c1, c2ϵℂ  
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〈Γ𝑏𝜆(s; a), c1℘1(s) + c2℘2(s)〉

= 〈2π �
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!

∞

n,r=0

δ(s + n − λr), c1℘1(s) + c2℘2(s)〉 

(43) 

 

⟹ 〈Γ𝑏𝜆(s; a), c1℘1(s) + c2℘2(s)〉 = c1〈Γ𝑏𝜆(s; a),℘1(s)〉 + c2〈Γ𝑏𝜆(s; a),℘2(s)〉. (44) 

Then, for any sequence {℘κ}κ=1∞  in Z converging to zero one can assume that {〈δ(s + n −
λr)),℘κ}κ=1∞→0 due to the continuity of δ(s)  

⇒ {〈Γ𝑏𝜆(s; a),℘κ(𝑠)〉}κ=1∞ = 2π�
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!
{〈δ(s + n − λr)),℘κ(𝑠)〉}κ=1∞ ⟶ 0

∞

n=0

 
(45) 

Henceforth, λ-generalized gamma function is a generalized function (distribution) over test 
function space 𝑍 due to the convergence of its new form (26) explored below 

〈Γ𝑏𝜆(s; a),℘(s)〉 = 2π �
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!

∞

n,r=0

〈δ(s + n − λr),℘(s)〉;  (∀℘(s)ϵΖ)

= 2π �
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!

∞

n,r=0

 ℘(λr − n),

 

(46) 

whereas, 

〈δ(s + n − λr),℘(s)〉 = ℘(λr − n). (47) 

One can observe that ∀℘ϵΖ;  ℘(λr − n) are functions of slow growth as well as 

𝐬𝐮𝐦 𝐨𝐯𝐞𝐫 𝐭𝐡𝐞 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭𝐬 = �
(−𝒂)𝒏(−𝒃)𝒓

𝒏! 𝒓!

∞

𝐧,𝐫=𝟎

 =  𝐞𝐱𝐩(−𝒂 − 𝒃)                               (48) 

exists and is rapidly decreasing. Consequently, for  ∀℘(𝑠)𝜖𝛧; 〈Γ𝑏𝜆(s; a),℘(s)〉 as a product of the 
functions of slow growth and rapid decay is convergent. Similarly, other special cases as given in 
(30–36) are also meaningful in the sense of distributions. This fact is also obvious by making use of 
basic Abel theorem. □ 

Hence the behavior of this new series is discussed for the functions of slow growth but it is 
mentionable that this new series may converge for a larger class of functions. Consequently, new 
integrals of products of different functions in view of this new form of Γ𝑏𝜆(s; a) are obtained. For 
example, start with a basic illustration i-e ℘(𝑠) = 𝜏𝑠𝜉(𝜉 > 0; 𝑠 ∈ ℂ).  Hence by considering (26) 
and shifting property of delta function the inner product 〈Γ𝑏𝜆(s; a),℘(𝑠)〉 yields 

� 𝜏𝑠𝜉Γ𝑏𝜆(s; a)
𝑧𝜖ℂ

𝑑𝑠 = 2𝜋 �
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!

∞

n,r=0

τ−𝑛ξ+𝜆rξ = 2𝜋�
�−aτ−ξ�n

n!

∞

n=0

�−𝑏τ𝜆ξ�r

r!

= 2π ex p�−aτ−ξ − 𝑏τ𝜆ξ�. 

(49) 

Similarly, by considering the distributional form of generalized gamma function as given in (32), we 
obtain the following specific form of (49) with λ = a = 1 
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� 𝜏𝑠𝜉Γ𝑏1(s; 1)
𝑠𝜖ℂ

𝑑𝑠 = � 𝜏𝑠𝜉Γ𝑏(s)
𝑠𝜖ℂ

𝑑𝑠

= 2𝜋�
�−aτ−ξ�n

n!

∞

n=0

�−𝑏τξ�r

r!
= 2πex p�−aτ−ξ − 𝑏τξ� .                  

 

 

(50) 
Remark 2. Sequences as well as sums of delta function have significant importance in diverse 
engineering problems, for example these are used as an electromotive force in electrical engineering. 
This is noticeable that if one multiplies {δ(s + n − 𝜆r)}𝑛=0∞  with 2𝜋 exp(−𝑎 − 𝑏) then it will 
produce the distributional representation of λ-generalized gamma function. Furthermore, if one takes 
𝑎 = 1 = λ; 𝑏 = 0, then related outcome do hold for special cases as well. This discussion illustrates 
the possibility of further important identities. For instance if one considers 𝜏 = 𝑒−1 in (49) then it 
will compute Laplace transform of  Γ𝑏𝜆(s; a). Therefore it becomes more important to check the 
validation of such results that is discussed in the following section. 

3.3. Validation of the results obtained by new representation 

Considering 𝑡 = 𝑒𝑥  as well as 𝑧 = 𝜈 + 𝑖𝜉 in (6), the λ-generalized gamma function can be 
expressed as a Fourier transform given below 

Γ𝑏𝜆(ν + iθ; a) = √2πℱ�eνxexp �−aex − be−𝜆x�; ξ�  (𝑏 > 0),          (51) 

and considering 𝜆 = 1, the generalized gamma function can be expressed as 

Γb,1(ν + iθ) = Γb,1(ν + iθ) = √2πℱ[eνxexp (−ex − be−x); ξ].  (52) 

Fourier transform of an arbitrary function 𝑢(𝑡), satisfy the following 

ℱ�√2πℱ[u(t);θ]; ξ� = 2πu(−ξ). (53) 

Hence, by applying this on identities (51–52), will lead to the following 

ℱ�Γ𝑏𝜆(ν + iθ; a); ξ� =  ℱ�√2πℱ�eνx exp�−aex − be−𝜆x��; ξ�
= f(−ξ) = 2πe−νξex p�−aeξ − be−𝜆ξ� ,

 (54) 

 

equivalently,  

� eiθξ
+∞

−∞
Γ𝑏𝜆(ν + iθ; a)dθ = 2πe−νξex p�−aeξ − be−𝜆ξ�, (55) 

which is also obtainable as a specific case of our main result (49) by substituting 𝜏 = 𝑒; 𝑧 = 𝜈 + 𝑖𝜃. 
Furthermore, a substitution 𝜉 = 0 in (55), leads to the following 

� Γ𝑏𝜆(ν + iθ; a)dθ
+∞

−∞
= 2πex p(−a − b), (56) 

which is also attainable as a precise case of our main result (49). Hence it is testified that the new 
representation of λ-generalized gamma function produces novel identities, which are unattainable by 
known techniques but specific forms of new identities are trustworthy with the known methods. 
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Some interesting special cases are for 𝑎 = 1 = 𝜆  

� eiθξ
+∞

−∞
Γ𝑏(ν + iθ)dθ = 2πe−1−b (57) 

and  𝜉 = 0 = 𝑏     

� Γ(ν + iθ)dθ
+∞

−∞
=

2π
𝑒

.           (58) 

Remark 3. It is noticeable that the new obtained integrals contribute only the sum over residues due 
to the existing poles or singular points in the integrand, which is consistent with the basic result of 
complex analysis. 

Next, an application of Parseval’s identity of Fourier transform in (54), leads to the following 
new results about λ-generalized gamma functions Γ𝑏𝜆(s; a)  

� Γ𝑏𝜆(ν + iθ; a)
+∞

−∞
Γ𝑏𝜆(µ + ıθ; a)����������������𝑑θ =  2𝜋� 𝑡ν+µ−1𝑒−2𝑎𝑡−2b𝑡−λ

∞

0
𝑑𝑡

= 𝜋21−(ν+µ)Γ2𝜆+1𝑏
𝜆 (ν + µ; a). 

(59) 

A substitution 𝑎 = 1 in (59) leads to the following  

� Γ𝑏𝜆(ν + iθ; 1)
+∞

−∞
� Γ𝑏𝜆(ν + ıθ; 1)
+∞

−∞

����������������������
𝑑θ =  2𝜋� 𝑡ν+µ−1𝑒−2𝑡−2

b
t

∞

0
𝑑𝑡

= 𝜋21−(ν+µ)Γ4𝑏(ν + µ) 

(60) 

and 𝑏 = 0 leads to the following known result [16,17] 

� |Γ(ν + iθ)|2
+∞

−∞
𝑑𝜏 =  � 𝑡2ν−1𝑒−2𝑡

∞

0
𝑑𝑡 = 𝜋21−2νΓ(2ν). (61) 

3.4. Further properties of the λ-generalized gamma function as a distribution 

Here, by taking motivation from [38, Chapter 7], a list of basic properties of the λ-generalized 
gamma functions are stated and proved. 
Theorem 3 λ-generalized gamma function holds the subsequent properties as a distribution 

(i) 〈Γ𝑏𝜆(s; a),℘1(s) + ℘2(s)〉 = 〈Γ𝑏𝜆(s; a),℘1(s)〉 + 〈Γ𝑏𝜆(s; a),℘2(s)〉;     ∀℘(s)ϵ𝑍 
(ii) 〈c1Γ𝑏𝜆(s; a),℘(s)〉 = 〈Γ𝑏𝜆(s; a), c1℘(s)〉;      ∀℘(s)ϵ𝑍 
(iii) 〈Γ𝑏𝜆(s − γ; a),℘(s)〉 = 〈Γ𝑏𝜆(s; a),℘(s + γ)〉;      ∀℘(s)ϵ𝑍 

(iv) 〈Γ𝑏𝜆(c1s; a),℘(s)〉 = 〈Γ𝑏𝜆(s; a), 1
c1
℘ � s

c1
�〉 ;      ∀℘(s)ϵ𝑍 

(v) 〈Γ𝑏𝜆(c1s − γ; a),℘(s)〉 = 〈Γ𝑏𝜆(s; a), 1
c1
℘ � s

c1
+ γ�〉 ;      ∀℘(s)ϵ𝑍 

(vi) ψ(s)Γ𝑏𝜆ϵ𝑍 is a distribution over 𝑍 for any regular distrbution ψ(z). 
(vii) Γ0𝜆(s + 1) = sΓ0𝜆(s) iff ℘(s − 1) = s℘(s) where ℘ ∈ 𝑍 
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(viii) 〈Γ𝑏𝜆(s; a)(m)(s),℘(s)〉 = ∑ (−𝑎)𝑛(−𝑏)𝑟

𝑛!𝑟!
∞
n,r=0 (−1)m℘m(−n + 𝜆r);     ∀℘(s)ϵ𝑍 

(ix) Γ𝑏𝜆(ω1 − s; a)Γ𝑏𝜆(𝑠 − ω2; a) = (2π exp(−𝑎 − 𝑏))2δ(ω1 − ω2));     ∀℘(s)ϵ𝑍 

(x) 〈ℱ�Γ𝑏𝜆(s; a)�,℘(s)〉 = 〈Γ𝑏𝜆(s; a),ℱ[℘](s)〉;      ∀℘(s)ϵ𝑍 

(xi) 〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π〈Γ𝑏𝜆(s; a),℘(−s)〉;  ∀℘(s)ϵ𝑍 

(xii) 〈Γ𝑏𝜆(s; a),ℱ[℘(s)]〉 = 2π〈Γ𝑏𝜆(s; a),℘𝑇(𝑠)〉, where ℘(−s) = ℘𝑇(s) ;  ∀℘(s)ϵ𝑍 

(xiii) 〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π〈Γ𝑏𝜆(s; a),℘𝑇(s)〉;  ∀℘(s)ϵ𝑍 

(xiv) 〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉;  ∀℘(s)ϵ𝑍 

(xv) ℱ[Γ𝑏𝜆
(m)(s; a)] = [�−it)mΓ𝑏𝜆(s; a)�;  ∀℘(s)ϵ𝑍 

(xvi) Γ𝑏𝜆(s + c1; a) = ∑ (c1)n

n!
Γ𝑏𝜆

(n)(s; a)          ∀℘(s)ϵ𝑍∞
n=0  

where  c1, 𝛾 and c2 are arbitrary real or complex constants. 

Proof. It can be checked that the methodology to prove (i–vi) is trivial that can be achieved by using 
the properties of delta function. Therefore, we start proving (vii)  

            〈Γ0𝜆(s + 1; a),℘(s)〉 = 〈Γ0𝜆(s; a),℘(s − 1)〉,  

⇔ 〈sΓ0𝜆(s; a),℘(s)〉 = 〈Γ0𝜆(s; a),℘(s − 1)〉, 

⇔ 〈Γ0𝜆(s; a), s℘(s)〉 = 〈Γ0𝜆(𝑠; a),℘(s − 1)〉,            

as required. 
Next we prove result (viii) by making use of Eq (16) (see Section 2.1) and we get 

〈Γ𝑏𝜆
(m)(s; a),℘(s)〉 = ∑ (−𝑎)𝑛(−𝑏)𝑟

𝑛!𝑟!
∞
n,r=0 (−1)m℘m(−n + 𝜆r), 

which is meaningful and finite as a product of fastly decaying as well as slow growth functions. 
Result (ix) is proved here in view of relation (17) (see Section 2.1), 

 〈Γ𝑏𝜆(ω1 − s; a)Γ𝑏𝜆(s −ω2),℘(s)〉 = �2π∑ (−𝑎)𝑛(−𝑏)𝑟

𝑛!𝑟!
∞
n,r=0 �

2
〈δ(ω1 − ω2),℘(s)〉 

= (2π exp(−𝑎 − 𝑏))2〈δ(ω1 − ω2)),℘(s)〉. 
Identities (x)–(xv) can also be proved in view of different properties of delta function. Let us start 
proving (x) 

〈ℱ�Γ𝑏𝜆(s; a)�,℘(s)〉 = 2π �
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!

∞

n,r=0

〈ℱ[δ(s + n − 𝜆r)],℘(s)〉 
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                  = 2π �
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!

∞

n,r=0

〈δ(s + n − 𝜆r),ℱ[℘(s)]〉 = 〈Γ𝑏𝜆(s; a),ℱ[℘(s)]〉. 

Next result (xi–xii) are proved as follows 

〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 〈Γ𝑏𝜆(s; a),ℱ�ℱ[℘(s)]�〉 = 2π〈Γ𝑏𝜆(s; a),℘(−s)〉, 

〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π 〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π〈ℱ�Γ𝑏𝜆(s; a)�,℘(−s)〉

= 2π〈Γ𝑏𝜆(s; a),℘𝑇(s)〉, 

whereas the transpose of ℘ is denoted by ℘𝑇. Proof of the results (xiii)-(xiv) are 

〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π〈Γ𝑏𝜆(s; a),℘(−s)〉 = 2π〈Γ𝑏𝜆(s; a),℘𝑇(s)〉 

〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π 〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉 = 2π〈ℱ�Γ𝑏𝜆(s; a)�,ℱ[℘(s)]〉, 

whereas the last line follows in view of Parseval’s formula of Fourier transform. The proof of (xv) is 
as follows  

〈Γ𝑏𝜆
(1)(s; a),℘(s)〉 = 〈ℱ�Γ𝑏𝜆(s; a)�,℘(1)(s)〉 = 〈ℱ �Γ𝑏𝜆

(1)(s; a)� ,℘(s)〉 = 〈Γ𝑏𝜆(s; a),ℱ�℘(1)(𝑠)�〉 

〈ℱ �Γ𝑏𝜆
(1)(s; a)� ,℘(s)〉 = 〈Γ𝑏𝜆(s; a), (−it)℘(s)e−ist〉 

〈ℱ �Γ𝑏𝜆
(1)(s; a)� ,℘(s)〉 = 〈(−it)ℱ�Γ𝑏𝜆(s; a)�,℘(s)〉 

                〈ℱ �Γ𝑏𝜆
(1)(s; a)� ,℘(s)〉 = 〈(−it)ℱ�Γ𝑏𝜆(s; a)�,℘(s)〉. 

and so on, we get 

 〈ℱ �Γ𝑏𝜆
(m)(s; a)� ,℘(s)〉 = 〈(−it)mℱ�Γ𝑏𝜆(s; a)�,℘(s)〉,  

as the requirement of (xv). The last result (xvi) is true in view of the statement mentioned in [38, 
p. 201], “Suppose 𝑓 ∈ Ζ′ and ∆ is a complex constant then the translation of the function 𝑓 by the 
quantity −∆ is represented by 𝑓(z + ∆) = ∑ (∆)n

n!
𝑓(n)(z)∞

n=0 .” Consequently, we get 

〈Γ𝑏𝜆(s + c1; a),℘(s)〉 = 〈Γ𝑏𝜆(s; a),℘(s − c1)〉= lim
𝜈→∞

〈Γ𝑏𝜆(s; a),�
(−c1)n

n!
℘(n)(s)

ν

n=0

〉  

 

= lim
𝜈→∞

〈�
(c1)n

n!
Γ𝑏𝜆

(n)(s; a)
ν

n=0

,℘(s)〉 , 

as required. □ 
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Remark 4. Space of generalized functions denoted by 𝐷′ is mapped onto 𝑍′ with the help of 
Fourier transformation and similarly this mapping can be inverted from 𝑍′ onto 𝐷′ [38, p. 203]. 
Both ways, it is a continuous linear mapping. Therefore, (54) explores that 2πe−νξex p�−aeξ −
be−𝜆ξ∈𝐷′. In the same way if one considers (55) and invert it by Fourier transform then 
ℱ�Γ𝑏𝜆(s; a)� ∈ 𝐷′. 

3.5. Further Discussion of the class of validity of new representation  

Being a singular generalized function, the delta function is a linear mapping that maps every 
function to its value at zero. Due to this property, this new representation has the power to calculate 
the integrals, which are divergent in the classical sense. 

Let us consider (28) and restrict the variable 𝑧 = 𝑡, to real numbers then we have 

Γ𝑏𝜆(t; a) = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

 δ(p)(t) 
(62) 

that can be defined over 𝑆, that means it is a distribution in 𝑆′ because it is convergent for rapidly 
decreasing and infinitely differentiable functions at 0, such that 

〈Γ𝑏𝜆(t; a),℘(t)〉 =  2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

〈δ(p)(t),℘(t)〉

                                 = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

 (−1)p℘(p)(0).

 

(63) 

Next, we take a wider space of infinitely differentiable functions whose derivatives of all order 
at 0 exist and release the condition of rapidly decreasing. Here we consider some examples 
Example 1. Let ℘(t) = ect then ℘(p)(0) = 𝑐𝑝; 𝑝 = 0,1,2,3 … 

〈Γ𝑏𝜆(t; a), ect〉 = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

 (−1)p𝑐𝑝 

= 2π �
(−𝑎)𝑛(−𝑏)𝑟

n! r!
𝑒−cn+𝜆rc

∞

n,r=0

  

= 2πex p�−e−𝑎𝑐 − e−𝜆bc�                 

(64) 

Example 2. Let ℘(t) = 𝑠𝑖𝑛𝑐𝑡 then ℘(𝑝)(0) = (−𝑐)2𝑝+1;℘(𝑝)(0) = 0;𝑝 = 0,2,4, … 

〈Γ𝑏𝜆(t; a),℘(t)〉 = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)2p+1

n! r! (2p + 1)!

∞

n,r,p=0

 (−c)2p+1 

= 2π �
(−𝑎)𝑛(−𝑏)𝑟𝑠𝑖𝑛𝑐(𝜆r − n)

n! r!

∞

n,r=0
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= IMG�2π �
(−𝑎)𝑛(−𝑏)𝑟𝑒𝑖(𝑐(𝜆r−n))

n! r!

∞

n,r=0

� 

= IMG�2π �
�−𝑎𝑒−𝑖𝑐�𝑛�−𝑒𝑖𝑐𝜆𝑏𝜆�𝑟

n! r!

∞

n,r=0

� 

= IMG �2πexp�−𝑎𝑒−𝑖𝑐 − 𝑏𝜆𝑒𝑖𝑐𝜆�� (65) 

Similarly, ℘(t) = 𝑐𝑜𝑠𝑐𝑡 then 

℘(𝑝)(0) = (−𝑐)2𝑝;℘(𝑝)(0) = 0;𝑝 = 1,3,5, … 

〈Γ𝑏𝜆(t; a),℘(t)〉 = Re �2πexp�−𝑎𝑒−𝑖𝑐 − 𝑏𝜆𝑒𝑖𝑐𝜆�� (66) 

Example 3. Let ℘(t) = 1
1−𝑡

 then ℘(p)(0) = p!  𝑝 = 0,1,2, … 

〈Γ𝑏𝜆(t; a),
1

1 − 𝑡
〉 = 2π �

(−𝑎)𝑛(−𝑏)𝑟(−1)𝑝(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

 p!

= 2π �
(−𝑎)𝑛(−𝑏)𝑟

n! r! (1 + n − 𝜆r)

∞

n,r=0

  

(67) 

Example 4. Let ℘(t) = 𝑙𝑛(1 + 𝑡) then ℘(p)(0) = (−1)𝑝+1(𝑝 − 1)!𝑝 = 0,1,2, … 

〈Γ𝑏𝜆(t; a), ln(1 + 𝑡)〉 = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

(−1)2𝑝+1(𝑝 − 1)!  

                                         = 2π � (−𝑎)𝑛(−𝑏)𝑟𝑙𝑛(1 − n + 𝜆r) 
n! r!

∞

n,r=0

 
(68) 

Example 5. Let ℘(t) = 𝑎𝑟𝑐𝑡𝑎𝑛𝑡 then ℘(2p+1)(0) = −(2𝑝)! ℘(2p)(0) = 0; 

〈Γ𝑏𝜆(t; a),𝑎𝑟𝑐𝑡𝑎𝑛𝑡〉 = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)2p+1(−1)2𝑝+1

n! r! (2p + 1)!

∞

n,r,p=0

 − (2𝑝)! 

= 2π �
(−𝑎)𝑛(−𝑏)𝑟𝑎𝑟𝑐𝑡𝑎𝑛(𝜆r − n)

n! r!

∞

n,r=0

                 

 (69) 

 

These examples show that new representation of the λ-generalized gamma function is 
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meaningful for all those functions who have derivatives of all orders at 0. This statement can also be 
generalized as “The new representation of the λ-generalized gamma functions is valid for complex 
analytic functions at 𝑧 = 0”. It is also convergent for all complex analytic functions (who have 
derivatives of all orders at 0) that also means that example 1–5 are consistent if we consider complex 
𝑧 instead of real 𝑡. Similar results hold for the special cases of the λ-generalized gamma functions 
i.e, extended gamma, and gamma functions given by Eqs (28), (32) and (36). 

As already stated as a distribution, the Dirac delta function is a linear functional that maps every 
function to its value at zero. Due to this property, our new representation has the power to calculate 
the integrals, which cannot be calculated by using classical method. For example, let ℘(t) = 𝑒𝑐𝑡𝑘 
then, 

〈Γ0𝜆(t; a),℘(t)〉 =  2π�
(−a)n

n!

∞

n=0

〈δ(t + n),℘(t)〉 =  2π�
(−a)n

n!

∞

n=0

℘(−n) 

  

〈Γ0𝜆(t; a), 𝑒𝑐𝑡𝑁〉 =  2π�
(−a)n

n!

∞

n=0

〈δ(t + n),℘(t)〉 =  2π�
(−a)n

n!

∞

n=0

exp(−c(n)𝑁)   

(70) 

It is to be remarked that our new representation is convergent for rapidly increasing functions. 
The integral of rapidly increasing functions is always a challenge nevertheless; this generalized 
extension of the function has the capacity to do so and it can be defined over the space of rapidly 
increasing functions. The integral of gamma function is finite so multiplying it with rapidly 
decreasing function is always convergent. That is trivial to prove. Next, we discuss some further 
special cases by considering [38, p. 55, problem 10] 

t𝑁δ(r)(t) = �

0 𝑟 < 𝑁
(−1)𝑛𝑁! δ(t) 𝑟 = 𝑁

(−1)𝑛
𝑁!

(𝑟 − 𝑁)!
δ(r−N)(t) 𝑟 > 𝑁

� 
(71) 

Therefore, 

t𝑁Γ(t) = 2π �
(−1)n

n!

∞

n,r=0

nr

r!
t𝑁δ(r)(t)

= 0 + 2π�
(−1)n

n!

∞

n

nN

N!
(−1)𝑛𝑁! δ(t)

+ 2π �
(−1)n

n!

∞

n,r=N+1

nN

N!
(−1)𝑛

𝑁!
(𝑟 − 𝑁)!

δ(r−N)(t) 

(72) 
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〈t𝑁Γ(t),℘(t)〉 = 2π�
(−1)n

n!

∞

n

nN

N!
(−1)𝑛𝑁! 〈δ(t),℘(t)〉

+ 2π �
(−1)n

n!

∞

n,r=N+1

nN

N!
(−1)𝑛

𝑁!
(𝑟 − 𝑁)!

〈δ(r−N)(t),℘(t)〉 

= 2π�
(−1)n

n!

∞

n

nN

N!
(−1)𝑛𝑁!℘(0) + 2π �

(−1)n

n!

∞

n,r=N+1

nN

N!
(−1)𝑛

𝑁!
(𝑟 − 𝑁)!

℘(𝑟−𝑁)(0)  

It is meaningful for a class of functions that have derivatives of all orders at point 𝑡 = 0. By using 
our new representations obtained for the family of gamma functions, it can be observed that all the 
results that hold for the Laplace transform of delta function, similarly hold for the family of gamma 
functions, for example 

𝐿�δ(r)(s)� = 𝑠𝑟 (73) 

Therefore, 

𝐿 �Γ𝑏𝜆(s; a)� = L�2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

 δ(p)(s)� 

𝐿 �Γ𝑏𝜆(t; a)� = 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

 𝐿 �δ(p)(s)�

= 2π �
(−𝑎)𝑛(−𝑏)𝑟(n − 𝜆r)p

n! r! p!

∞

n,r,p=0

 𝑠𝑝 = 2πex p�−aes − 𝑏e−𝜆s�.     

 

(74) 

This gives 

�𝐿�𝛤𝑏(𝑠)� = 2𝜋𝑒𝑥 𝑝�−es − 𝑏e−𝜆s�
𝐿{𝛤(𝑠)} = 2𝜋𝑒𝑥𝑝(−𝑒𝑠)

� (75) 

That yields further, 

�𝐿�𝛤𝑏(𝑠 − 𝑐)� = 2𝜋𝑒−𝑠𝑐𝑒𝑥 𝑝(−𝑒𝑠 − 𝑏𝑒−𝑠)
𝐿{𝛤(𝑠 − 𝑐)} = 2𝜋𝑒−𝑠𝑐𝑒𝑥𝑝(−𝑒𝑠)

� (76) 

It can be remarked that all the results that hold for delta functions can be applied to the family of 
gamma functions by using this generalized functions. It is due to the reason that the sum over the 
coefficients of the new representation is finite and well defined as given in (51). 

By considering the classical theory of the family of gamma function, for example Eqs (2)–(6), 
we can note that gamma function has poles at 𝑠 = −𝑛 but λ-generalized gamma functions extends 
the definition because the exponential factor in the integrand involves parameter 𝑏 > 0. Same fact 
holds for our new representation, that can be easily proved by taking 

δ(−n + n − 𝜆r) =  δ(−𝜆r) = δ(𝜆r) = 0; (𝑟, 𝜆 ≠ 0) 



5855 

AIMS Mathematics  Volume 5, Issue 6, 5839–5858. 

That means for 𝑏 > 0, our new representation is meaningful at 𝑠 = −𝑛 

Γ𝑏𝜆(−n; a) = 2π �
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!

∞

𝑛,𝑟=0

 δ(𝜆r)    𝑏 > 0 

  

〈Γ𝑏𝜆(−n; a), ,℘(𝜆𝑟)〉 = 2π�
(−𝑎)𝑛(−𝑏)𝑟

𝑛! 𝑟!
〈δ(𝜆r),℘(𝜆𝑟)〉

∞

𝑟=0

 

                                  = 2π�
(−𝑎)𝑛(−𝑏)𝑟

𝑟!
℘(0)

∞

𝑟=1

;    𝑏 > 0. 

By assuming ℘(0) = 1, the above equation implies that 

〈Γ𝑏𝜆(−n; a),℘(𝜆𝑟)〉 = 2π exp(−𝑎 − 𝑏);     𝑏 > 0. 

(77) 

Nevertheless when 𝑏 = 0 then the terms involving 𝜆 disappear and at 𝑧 = −𝑛, we get 

Γ0𝜆(−n; a) = 2π �
(−𝑎)𝑛(−0)𝑟

𝑛! 𝑟!

∞

𝑛,𝑟=0

 δ(0) = ∞ 

that is undefined similar to as classical representation of gamma functions. For 𝑎 = 1; 𝑏 = 0 we get 
the generalized representation of original gamma function that has singularities at 𝑠 = −𝑛. The 
similar fact holds in classical theory. 

4. Summary and Forthcoming Directions 

The combination of distribution theory with different integral transforms is well explored for 
the analysis of partial differential equations (PDE). Numerous practical questions are impossible to 
be answered by applying the known techniques but became possible by using this combination. In 
this paper, a new form of the λ-generalized gamma function is discussed by using delta function so 
that a new definition of these functions is established for a particular set of test functions. Extensive 
results are obtained by exploring the details of distributional concepts for λ-generalized gamma 
function and enlightening their applications for the solution of new problems. As an illustration, we 
consider the famous Riemann zeta function for the interval 0 < ℜ(𝑠) < 1, as follows 

〈Γ𝑏𝜆(s; a), ζ(s)〉 = 2π∑ (−𝑎)𝑛(−𝑏)𝑟

𝑛!𝑟!
∞
𝑛,𝑟=0 〈δ(s + n − 𝜆r), ζ(s)〉= 2π∑ (−𝑎)𝑛(−𝑏)𝑟

𝑛!𝑟!
∞
𝑛,𝑟=0 ζ(−n + 𝜆r), 

and for 𝜆 = 2, we have an integral of extended Gaussian function 

〈Γ𝑏2(s; a), ζ(s)〉 = 2π∑ (−𝑎)𝑛(−𝑏)𝑟

𝑛!𝑟!
∞
𝑛,𝑟=0 〈δ(s + n − 2r), ζ(z)〉= 2π∑ (−𝑎)𝑛(−𝑏)𝑟

𝑛!𝑟!
∞
𝑛,𝑟=0 ζ(−n + 2r) 

and for 𝑎 = 1; 𝑏 = 0, it yields the following 

〈Γ(s), ζ(s)〉 = 2π�
(−1)n

n!

∞

n=0

 ζ(−n) =
2𝜋
𝑒 − 1

− 2π.          
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λ-generalized gamma function precisely specifies the original gamma function and therefore led 
to novel outcomes involving different special cases of gamma function. The λ-generalized gamma 
functions and its different special cases are fundamental in different disciplines such as engineering, 
astronomy and related sciences. Method of computing the new identities involves the desired 
simplicity. Here we presented only a small number of examples. Further, it is expected that the 
results obtained in this study will prove significant for further development of λ-generalized gamma 
function in future work. 
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