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Abstract: In this paper, we investigate the existence of W1,1
0 (Ω) solutions to the following elliptic

equation with principal part having noncoercivity and singular quadratic term −div
(
∇u

(1+|u|)γ

)
+ |∇u|2

uθ = f , x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN(N ≥ 3), γ > 0, N
N−1 ≤ θ < 2, f ∈ Lm(Ω)(m ≥ 1) is a

nonnegative function.
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1. Introduction

Let Ω be a bounded domain of RN(N ≥ 3) with smooth boundary ∂Ω. In this paper, we consider the
existence of W1,1

0 (Ω)solutions to the following elliptic problem{
−div (M(x, u)∇u) + |∇u|2

uθ = f , x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where N
N−1 ≤ θ < 2, M : Ω × R → RN2

is a symmetric Carathéodory matrix function, which satisfies
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the following assumptions: for some real constants γ > 0, α > 0, β > 0,

|M(x, s)| ≤ β, M(x, s)ξ · ξ ≥
α

(a(x) + |s|)γ
|ξ|2, (1.2)

for almost every x ∈ Ω, (s, ξ) ∈ R × RN , where a(x) is a measurable function, such that

0 < ζ ≤ a(x) ≤ ρ, (1.3)

for some positive constants ζ, ρ.
We note that there are two difficulties in dealing with (1.1), the first one is the fact that, due to

hypothesis (1.2), the differential operator A(u) = −div (M(x, u)∇u) is well defined in H1
0(Ω), but it

not coercive on H1
0(Ω) when u is large enough. Therefore, the classical Leray-Lions theorem cannot

be applied even if f is sufficiently regular. The second difficulty is dealing with lower order term
which singular natural growth with respect to the gradient. In order to overcome these difficulties, we
approximate problem (1.1) by means of truncations in M(x, s) to get a coercive differential operator on
H1

0(Ω).
The existence of W1,1

0 (Ω) solution to elliptic problem has been studied by many authors. Boccardo
and Croce [4] proved the existence of W1,1

0 (Ω) solutions to problem −div
(

a(x)∇u
(1+|u|)γ

)
= f , x ∈ Ω,

u = 0, x ∈ ∂Ω,

where a : Ω→ R is a measurable function which satisfies (1.3), f ∈ Lm(Ω) with

m =
N

N + 1 − γ(N − 1)
,

1
N − 1

< γ < 1.

In the literature [6], the authors considered the existence and regularity of solutions to the following
elliptic equation with noncoercivity{

−div (a(x, u)∇u) = f , x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

where Ω is an open bounded subset of RN(N ≥ 3), f ∈ Lm(Ω) and a(x, s) : Ω×R→ R is a Carathéodory
function which satisfies

α

(1 + |s|)γ
≤ a(x, s) ≤ β,

where 0 ≤ γ < 1.The existence results of solutions to problem (1.4)are as following:

• There exists a weak solution u ∈ H1
0(Ω) ∩ L∞(Ω) to (1.4) if m > N

2 .
• There exists a weak solution u ∈ H1

0(Ω) ∩ Lr(Ω) to (1.4) with r =
Nm(1−γ)

N−2m if

2N
N + 2 − γ(N − 2)

≤ m <
N
2
.

• There exists a distributional solution u ∈ W1,q
0 (Ω) to (1.4) with q =

Nm(1−γ)
N−m(1+γ) < 2 if

N
N + 1 − γ(N − 1)

< m <
2N

N + 2 − γ(N − 2)
.
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In [15], the under the assumption (1.2)-(1.3), Souilah proved the existence results of solutions to
problem {

−div (M(x, u)∇u) + |∇u|2

uθ = f + λur, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.5)

where 0 < θ < 1, 0 < r < 2 − θ, λ > 0, f ∈ Lm(Ω)(m ≥ 1). There exists at least a solution to problem
(1.5):

• If 2N
2N−θ(N−2) ≤ m < N

2 , then u ∈ H1
0(Ω) ∩ L∞(Ω).

• If 1 < m < 2N
2N−θ(N−2) , then u ∈ W1,q

0 (Ω) with q =
Nm(2−θ)

N−mθ .
• If m ≥ N

2 , then u ∈ H1
0(Ω) ∩ L∞(Ω).

Moreover, the existence of solutions u ∈ H1
0(Ω) to problem (1.5) with λ = 0 have been obtained

in [9]. Some other related results see [1, 3, 5, 7, 10–12, 14, 16].
Based on the above research results, the aim of this article is to study the existence of W1,1

0 (Ω)
solution to problem (1.1).

In order to state the main results of this paper, the following definition need to be introduced. We
use the following notion of distributional solution to problem (1.1).

Definition 1.1. We say that u ∈ W1,1
0 (Ω) is a distributional solution to problem (1.1) if u > 0 in Ω,

|∇u|2

uθ ∈ L1(Ω) and ∫
Ω

M(x, u)∇u · ∇ϕ +

∫
Ω

|∇u|2

uθ
ϕ =

∫
Ω

fϕ,

for every ϕ ∈ C∞0 (Ω).

Our main results are following:

Theorem 1.2. Assume that (1.2)-(1.3) hold, f ∈ Lm(Ω) is a nonnegative function with

m =
N

2N − θ(N − 1)
,

N
N − 1

< θ < 2. (1.6)

Then there exists a distributional solution u ∈ W1,1
0 (Ω) to problem (1.1).

Remark 1.3. Notice that the result of previous theorem do not depend on γ.

Remark 1.4. Observe that, m > 1 if and only if θ > N
N−1 .

For f ∈ L1(Ω), we have the following theorem.

Theorem 1.5. Assume (1.2)-(1.3) hold, f ∈ L1(Ω) is a nonnegative function and θ = N
N−1 . Then there

exists a distributional solution u ∈ W1,1
0 (Ω) to problem (1.1).

The paper is organized as follows. In section 2, we collect some definitions and useful tools. The
proof of Theorem 1.2 and 1.5 be given in section 3.
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2. Preliminaries

In order to prove our main results, we need to introduce a basic definition and some lemmas.

Definition 2.1. For all k ≥ 0, the truncation function defined by

Tk(s) = max{−k,min{k, s}}, Gk(s) = s − Tk(s).

Let 0 < ε < 1, we approximate problem (1.1) by the following non-singular problem −div(M(x,T 1
ε
(uε))∇uε) + uε |∇uε |2

(|uε |+ε)θ+1 = fε, x ∈ Ω,

uε = 0, x ∈ ∂Ω,
(2.1)

where fε = T 1
ε
( f ). Problem (2.1) admits at least a solution uε ∈ H1

0(Ω) ∩ L∞(Ω) by Theorem 2 of [8].
Due to the fact that fε ≥ 0 and quadratic lower order term has the same sign of the solution, it is easy
to prove that uε ≥ 0 by taking u−ε as a test function in (2.1).

Lemma 2.2. Let uε be the solutions to problem (2.1). Then∫
Ω

uε|∇uε|2

(uε + ε)θ+1 ≤

∫
Ω

f . (2.2)

Proof. For fixed h > 0, taking Th(uε)
h as a test function in (2.1). Dropping the first term, we obtain∫

Ω

uε|∇uε|2

(uε + ε)θ+1

Th(uε)
h
≤

∫
Ω

fε
Th(uε)

h
.

Using the fact that fε ≤ f and Th(uε)
h ≤ 1, then∫

Ω

uε|∇uε|2

(uε + ε)θ+1

Th(uε)
h
≤

∫
Ω

f .

Letting h→ 0, we deduce (2.2) by the Fatou Lemma. �

Lemma 2.3. Let δ > 0 and 0 < ε < 1. Then there exists C > 0, such that

αδ(t + ε)θ−2

(ρ + t)γ
+

t
t + ε

≥ C.

for every t ≥ 0.

Proof. Clearly, if t ≥ ε, we have t
t+ε ≥

1
2 , while if t < ε, we have

αδ(t + ε)θ−2

(ρ + t)γ
≥

αδ

(ρ + t)γ(2ε)2−θ ≥
αδ

22−θ(ρ + 1)γ
,

since ε < 1. Therefore, Lemma 2.3 is proved. �
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3. Proof of main results

In this section, C denotes a generic constant whose value might change from line to line. We prove
the existence results of Theorems 1.2 and 1.5 by considering the following approximate problem −div(M(x,T 1

ε
(uε))∇uε) + uε |∇uε |2

(uε+ε)θ+1 = fε, x ∈ Ω,

uε = 0, x ∈ ∂Ω.
(3.1)

Proof of Theorem 1.2. Step 1: Let δ = θ − N
N−1 , then δ > 0 by (1.6). Choosing (uε + ε)δ − (uε + ε)δ−1 as

a test function in the approximate problem (3.1), we find∫
Ω

M(x,T 1
ε
(uε))∇uε · ∇uε

[
δ(uε + ε)δ−1 + (1 − δ)(uε + ε)δ−2

]
+

∫
Ω

uε(uε + ε)δ|∇uε|2

(uε + ε)θ+1

=

∫
Ω

uε|∇uε|2

(uε + ε)θ+1 (uε + ε)δ−1 +

∫
Ω

fε
[
(uε + ε)δ − (uε + ε)δ−1

]
.

Combining (1.2)-(1.3) and dropping the positive term, we obtain∫
Ω

|∇uε|2(uε + ε)δ−θ
[
α(1 − δ)(uε + ε)θ−2

(ρ + uε)γ
+

uε
uε + ε

]
≤

∫
Ω

uε|∇uε|2

(uε + ε)θ+1 (uε + ε)δ−1 +

∫
Ω

fε(uε + ε)δ.

Since 1 − δ > 0, according to Lemma 2.3, we have

C
∫

Ω

|∇uε|2(uε + ε)δ−θ ≤
∫

Ω

uε|∇uε|2

(uε + ε)θ+1 (uε + ε)δ−1 +

∫
Ω

fε(uε + ε)δ.

Using the fact that uε ≥ 0, fε ≤ f and (2.2), we obtain

C
∫

Ω

|∇uε|2(uε + ε)δ−θ ≤ εδ−1
∫

Ω

uε|∇uε|2

(uε + ε)θ+1 +

∫
Ω

f (uε + ε)δ

≤ εδ−1
∫

Ω

f +

∫
Ω

f (uε + ε)δ. (3.2)

Observe that the left hand side of (3.2) can be rewritten as

C
∫

Ω

∣∣∣∣∇ [
(uε + ε)

δ−θ+2
2 − ε

δ−θ+2
2

]∣∣∣∣2 . (3.3)

Then, (3.2) and (3.3) imply

C
∫

Ω

∣∣∣∣∇ [
(uε + ε)

δ−θ+2
2 − ε

δ−θ+2
2

]∣∣∣∣2 ≤ εδ−1
∫

Ω

f +

∫
Ω

f (uε + ε)δ. (3.4)

By the Sobolev inequality, satisfy[∫
Ω

∣∣∣∣(uε + ε)
δ−θ+2

2 − ε
δ−θ+2

2

∣∣∣∣2∗] 2
2∗

≤ C
∫

Ω

∣∣∣∣∇ [
(uε + ε)

δ−θ+2
2 − ε

δ−θ+2
2

]∣∣∣∣2 . (3.5)
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Using the Hölder inequality and (3.4)-(3.5), we get[∫
Ω

∣∣∣∣(uε + ε)
δ−θ+2

2 − ε
δ−θ+2

2

∣∣∣∣2∗] 2
2∗

≤ C‖ f ‖Lm(Ω) + C‖ f ‖Lm(Ω)

[∫
Ω

(uε + ε)δm
′

] 1
m′

.

Since |(t + ε)s − εs|2
∗

≥ C[(t + ε)2∗s − 1] for every t ≥ 0 and for suitable constant C independent on ε,
then we find (∫

Ω

[
(uε + ε)

2∗(δ−θ+2)
2 − 1

]) 2
2∗

≤ C‖ f ‖Lm(Ω) + C‖ f ‖Lm(Ω)

[∫
Ω

(uε + ε)δm
′

] 1
m′

. (3.6)

Thanks to the choice of δ, we have

2∗(δ − θ + 2)
2

= δm′ =
N

N − 1
.

Moreover 2
2∗ >

1
m′ since m < N

2 . Then (3.6) implies that∫
Ω

u
N

N−1
ε ≤ C. (3.7)

Observe that δ − θ = − N
N−1 , then, (3.2), (3.7) follow∫

Ω

|∇uε|2

(ε + uε)
N

N−1

≤ C. (3.8)

Combining (3.7)-(3.8) with the Hölder inequality, we obtain∫
Ω

|∇uε| =
∫

Ω

∇uε
(ε + uε)

N
2N−2

(ε + uε)
N

2N−2 ≤

[∫
Ω

|∇uε|2

(ε + uε)
N

N−1

] 1
2
[∫

Ω

(ε + uε)
N

N−1

] 1
2

≤ C.

Then we get that {uε} is bounded in W1,1
0 (Ω). Hence, there exists a subsequence {uε}, which converges

to a measurable function u a.e. in Lr(Ω) with 1 ≤ r < N
N−1 .

Step 2: First, we are going to estimate
∫
{uε≥k}

|∇uε|. Choosing [(uε + ε)δ − (k + ε)δ]+ as a test function
in (3.1). By (1.2)-(1.3) and Lemma 2.3, we have∫

{uε≥k}

|∇uε|2

(ε + uε)
N

N−1

≤

(∫
{uε≥k}

| f |m
) 1

m
(∫
{uε≥k}

(ε + uε)
N

N−1

) 1
m′

≤ C
(∫
{uε≥k}

| f |m
) 1

m

.

Using the Hölder inequality and (3.7), we find∫
{uε≥k}

|∇uε| =
∫
{uε≥k}

∇uε
(ε + uε)

N
2N−2

(ε + uε)
N

2N−2 ≤ C
(∫
{uε≥k}

| f |m
) 1

2m

. (3.9)
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Choosing Tk(uε) as a test function in (3.1). Dropping the nonnegative lower order term, by (1.2)-
(1.3) and the boundedness of uε in L

N
N−1 (Ω), we get∫

Ω

|∇Tk(uε)|2 ≤
k(ρ + k)γ

α
‖ f ‖L1(Ω). (3.10)

This implies that Tk(uε) ⇀ Tk(u) weakly in W1,2
0 (Ω).

Let E be a measurable subset of Ω, and i = 1, · · · ,N. By the Hölder inequality and (3.9)-(3.10), we
obtain ∫

E

∣∣∣∣∣∂uε
∂xi

∣∣∣∣∣ ≤ ∫
E
|∇uε| ≤

∫
E
|∇Tk(uε)| +

∫
{uε≥k}

|∇uε|

≤ meas(E)
1
2

(∫
E
|∇Tk(uε)|2

) 1
2

+ C
(∫
{uε≥k}

| f |m
) 1

2m

. (3.11)

The estimates (3.7) and (3.11) shows that the sequence {∂uε
∂xi
} is equi-integrable. Thus, by the Dunford–

Pettis theorem, there exists a subsequence {uε} and Vi in L1(Ω), such that ∂un
∂xi

⇀ Vi in L1(Ω). Since ∂uε
∂xi

is the distributional partial derivative of uε, then we have∫
Ω

∂uε
∂xi

ϕ = −

∫
Ω

uε
∂ϕ

∂xi
, ∀ϕ ∈ C∞0 (Ω),

for every ε > 0.
Since ∂uε

∂xi
⇀ Vi in L1(Ω) and uε → u in L1(Ω), we find∫

Ω

Viϕ = −

∫
Ω

u
∂ϕ

∂xi
, ∀ϕ ∈ C∞0 (Ω).

This implies that Vi = ∂u
∂xi

for every i.

Step 3: We prove that uε |∇uε |2

(uε+ε)θ+1 is equi-integrable. Let E ⊂⊂ Ω, then∫
E

uε|∇uε|2

(uε + ε)θ+1 ≤

∫
E∩{uε≤k}

uε|∇uε|2

(uε + ε)θ+1 +

∫
E∩{uε≥k}

uε|∇uε|2

(uε + ε)θ+1 .

For every subset E ⊂⊂ Ω,∫
E∩{uε≤k}

uε|∇uε|2

(uε + ε)θ+1 ≤

∫
E∩{uε≤k}

1
uθε
|∇Tk(uε)|2 ≤ C

∫
E∩{uε≤k}

|∇Tk(uε)|2,

since uε ≥ C > 0 in E by Proposition 2 of [9]. Moreover, since Tk(uε) ⇀ Tk(u) weakly in W1,2
0 (Ω),

then there exists εn, δ > 0, such that∫
E∩{uε≤k}

|∇Tk(uε)|dx ≤
ε

2
, ∀ε ≥ εn, (3.12)

for every ε > 0 if µ(E) < δ.
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Choosing T1(uε − Tk−1(uε)) as a test function in the approximate problem (3.1), dropping the non-
negative term, we have ∫

{uε≥k}

uε|∇uε|2

(uε + ε)θ+1 ≤

∫
{uε≥k−1}

f . (3.13)

Observe there exists a constant C > 0, such that µ(uε ≥ k − 1) ≤ C
k−1 . As uε are uniformly bounded in

L
N

N−1 (Ω). This implies the right hand side of (3.13) converges to 0 as k → ∞. Thus, we deduce there
exists k0 > 1, such that ∫

{uε≥k}

uε|∇uε|2

(uε + ε)θ+1 ≤
ε

2
, ∀k > k0, (3.14)

for every ε > 0. The (3.12), (3.14) imply that uε |∇uε |2

(uε+ε)θ+1 is equi-integrable and converges a.e. to |∇u|2

uθ .
Let u the weak limit of the sequence of approximated solutions uε. Thanks to (2.2), we have∫

Ω

uε|∇uε|2

(uε + ε)θ+1 ≤

∫
Ω

f .

Using the Fatou lemma, that uε convergence to u a.e, ∇uε convergence to ∇u a.e and the strict positivity
of uε imply ∫

Ω

|∇u|2

uθ
≤

∫
Ω

f ≤ C.

This show that |∇u|2

uθ ∈ L1(Ω).
Since uε is bounded and ∇uε → ∇u a.e, it follow M(x,T 1

ε
(uε)∇uε → M(x, u)∇u a.e. Hence, we can

pass to the limit in (3.1). Thus prove that u ∈ W1,1
0 (Ω) is a distributional solution of (1.1) and yields

the conclusion of the proof of Theorem 1.1. �

Proof of Theorem 1.5. Step 1: For 0 < ε < 1, according to Lemma 2.2, we have

1
2θ+1

∫
{uε≥1}

|∇uε|2

uθε
≤

∫
{uε≥1}

uε|∇uε|2

(uε + ε)θ+1 ≤ ‖ f ‖L1(Ω). (3.15)

By the Sobolev inequality, (3.15) lead to[∫
Ω

∣∣∣∣u 2−θ
2
ε − 1

∣∣∣∣2∗] 2
2∗

≤ C‖ f ‖L1(Ω), (3.16)

which implies that [∫
Ω

u
(2−θ)2∗

2
ε

] 2
2∗

≤ C + C‖ f ‖L1(Ω). (3.17)

Observe that θ =
(2−θ)2∗

2 = N
N−1 . Then (3.17) shows that∫

Ω

u
N

N−1
ε ≤ C. (3.18)
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Using the Hölder inequality and (3.15), (3.18), we obtain∫
Ω

|∇G1(uε)| =
∫
{uε≥1}

|∇G1(uε)|

u
θ
2
ε

u
θ
2
ε ≤

[∫
{uε≥1}

|∇uε|2

uθε

] 1
2
[∫
{uε≥1}

uθε

] 1
2

≤ C‖ f ‖L1(Ω).

This fact show that G1(uε) is bounded in W1,1
0 (Ω).

Choosing T1(uε) as a test function in (3.1), it is easy to prove that T1(uε) is bounded in H1
0(Ω)),

hence in W1,1
0 (Ω). Since uε = G1(uε) + T1(uε), we deduce that uε is bounded in W1,1

0 (Ω).
Moreover, due to (3.15) and the Hölder inequality, we have∫

{uε≥k}
|∇uε| =

∫
{uε≥k}

|∇uε|

u
θ
2
ε

u
θ
2
ε ≤ C‖ f ‖

1
2
L1(Ω). (3.19)

That (3.10), (3.19) implies, for every measurable subset E, we have∫
E

∣∣∣∣∣∂uε
∂xi

∣∣∣∣∣ ≤∫
E
|∇uε| ≤

∫
E
|∇Tk(uε)| +

∫
{uε≥k}

|∇uε|

≤meas(E)
1
2

[
k(ρ + k)γ

α
‖ f ‖L1(Ω)

] 1
2

+ C‖ f ‖
1
2
L1(Ω).

Thus, we prove that uε ⇀ u in W1,1
0 (Ω). Then pass to the limit in problem (3.1), as in the proof of

Theorem 1.2, it is sufficient to observe that u ∈ W1,1
0 (Ω) is a distributional solution of (1.1). This

concludes the proof the Theorem 1.5. �

4. Conclusions

In this paper, we main consider the existence of W1,1
0 (Ω) solutions to a elliptic equation with princi-

pal part having noncoercivity. The main results show that the singular quadratic term has an important
impact on this existence.
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