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Abstract: The derivation of integrals in the table of Gradshteyn and Ryzhik in terms of closed
form solutions is always of interest. We evaluate several of these definite integrals of the form
fooo In*(ay) In(R(y))dy in terms of a special function, where R(y) is a general function and k and a
are arbitrary complex numbers.
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1. Introduction

We will prove one of the formula in Gradshteyn and Ryzhik not previously done and derive other

interesting integral formula similar to those in Gradshteyn and Ryzhik. We will evaluate the integrals

),2

b @ +2by+y? k dy b (z+ m) k ay? . . .
fo ln(—az_Zby+y2)ln (ay) S and fo Y In N dy each in terms of a special function. The

parameters k, @, a, m and b are arbitrary complex numbers subject to the restrictions given. These
derivations are accomplished by the method used by us in [8].

2. Integrals involving the product of logarithmic functions

2.1. Definite integral of the contour integral

We use the method in [8] but because there are limits on w we have to define the contour C somewhat
differently. We take the cut along the negative real axis a distance € and then vertically to positive co.
The path of the contour C is to the right of the cut from (—¢, o) to the negative real axis, along the axis
and around the origin with zero radius, along the negative real axis to the cut and along the left of the
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cut to (—¢, 00). Then we take the limit as € — 0.

In Cauchy’s integral formula we replace y by In(ay) and multiply both sides by i In (2;32’ :’ ) to get
In*(ay) In a® + 2by + y? _ L f ylav In a* + 2by + y? 2.1
yk! —2by+y?) 2nmi wh+l —2by + y?

the logarithmic function is defined in equation (4.1.2) in [1]. We then take the definite integral over
y € [0, 00) of both sides and factor the quadratic terms into their two roots to get

1 ® In*(ay) In a’ + 2by +y* f f a® a2 +2by + y? dwdy
k! Jo y a? — 2by + y? = 2ni wh+l a? — 2by + y?
f""ywll a* + 2by + y? dy a"dw
27rz —2by +y? wh+1
= —— b* — az)w csc (mw) w2dw

i (2.2)

a"” (b - Vb? - az)w csc (mw) w2dw

+ Z .
1 W

=5 a"” (—b + Vb2 - az) csc (rw) w2 dw
lJc

2 a (b+ Vb2 —az) csc (rw) w2 dw
LJc

from Eq (4.293.10) in [6] and the integral is valid for @, b and a complex, —1 < Re(w) < 0, |arg(+b +
Vb? — a?)| < m and « is not real and negative. The condition on « prevents a singularity in the range of
integration.

2.2. Infinite sum of the contour integral

Again, using the method in [8], replacing y with 7i(2p + 1) + In(@) + In(—b — Vb? — a?), we multiply
both sides by 27i to yield

(7Ti(2p + 1)+ In(@) + In (—b - Vb? - a2))k f M@p+D+in(@)+in(~b- Vb2 -d?))
] = 2mi
c

27l T dw 2.3)

Wk+1

followed by taking the infinite sum of both sides of Eq (2.3) with respect to p over [0, co) and replace
k with k + 1 to get

w(mi2p+1)+In(@)+In(-b- Vb?-a?))

—k-1,= - dw

(k+ 1)! 2

Wk+2

ew(ni(2p+ 1)+In(@)+In(-b- Vb?-a?))

:27rifcz i dw

1 w
=—— [ " (—b - Vb? - az) csc (rw) w2 dw

(2.4)

(271'i)k+2 1 l(ln(Q’) + In (—b - Vb? - az))] o i
2n pr

5
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from (1.232.3) in [6] where csch(ix) = —icsc(x) from (4.5.10) in [1] and Im(w) > O for the convergence
of the sum and if the Re(k) < O then the argument of the sum over p cannot be zero for some value of
p. We use (9.521.1) in [6] where (s, u) is the Hurwitz Zeta function. Combining the log terms is not
valid in general.

Similarly, by replacing y in turn by 7i(2p + 1) + In(e) + In (b — Vb2 — @), i(2p + 1) + In(a) +

In (—b + Vb? — az) and 7i(2p + 1) +In(@) +1n (b + Vb? — az) and following the steps in (4) and (5) and
simplifying the infinite sum on the left-hand side we get

0o 1.k 2 2 N k+2 (1 In(-b - Vb2 - a2
f In (a/y)ln(a +2by +y )d _ (2ni) {[—k—l 1 i(In(a) +In( vV a)))
0

y a? — 2by +y? y_(k+1) ) .
_Q@ufe (1 i (In(@) +In (b - M))]
(k+1) 2 o
(2.5)
Qa2 (1 _i(In@+In(-b+ Vb'- )
(k + 1) g IR E B o
rif (1 i@ +infb+ VB2 - a))
B (k + 1) { IR 5 B o

3. Special cases of the definite integral of the product of the logarithmic function

We will now use Eq (2.5) with a variety for values of the parameters to yield known integral forms.
In the following sections we will make use of the Hurwitz Zeta function.

The Hurwitz zeta function {(s, @) is a generalization of the Riemann zeta function {(s) that is also
known as the generalized zeta function. It is classically defined by the formula

o1
{(s,a) = ;
kzz(; (k + a)

for Re(s) > 1, where any term with k + a = 0 is excluded and analytically continued by

1 o 51 "
(50 =55 fo (i —e?)

for Re(s) > 1, Re(a) >0 and s # 1.

The Hurwitz Zeta function {(n, a) for n negative integers reduces to the Bernoulli polynomial given
by {(-n,a) = =219 for n > 0, from Eq (12.11.17) in [2] and (23.1) in [1], specifically we will use
@ and @ polynomials from Table 5.2 in [9]. The table lists the Bernoulli polynomials up ton = 6
and gives the general formula for arbitrary integer n.
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3.1. Whenk=0anda =1

I

AIMS Mathematics

a* + 2by + y?

a? - 2by + y?

|

1 iln(=b— VB2 =&
d_y:(zni)%(—l,——’n( b- Vb a)
y 2 2n

1 il - VB2 — @

~ @niye|-1, & - HnC ?

2 2n

1 iln(=b+ VB2 — &

+(27ri)2§ _1’__zn(b+ b*—a

2 2r

1 il + VB2 — &

~ @ripe|-1, L -+ a
2 2n

+ O+
N = N = N = 1o —
——~~

+

=miln(=b + Vb2 — a?) — niln(b + Vb2 — a?)

:niln(

—_

—(ri+n(b+ M))Z)
(i +In (~b + m»z)
—(in(-p+ \/ﬂ))z)
In((b+ V&2 - @)) )

-b+ Vbz—a2)
b+ Vb - a?

[ 2
= 2miln (zé + 4/1 = b—2)
a a

b
= 27sin”! (—)
a

(3.1)
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from Eq (12.11.17) in [2] where a > |b|. Note we multiplied the In-term in the third to last equation by

b—Vb2—-a?
b—Vb%-a

= and simplified.

3.2. Whenk=1anda =1

*In(y) . (a*+2by + y?
In dy =
o Y a’> —2by + y?

@miy' ()1 iln(=b- V2 - a?

— ¢ (‘ i o ]

@uiy (1 _ilnp- Vo -a
B 2 )

(2ri)? 1 iln(-b+ Vo> - a?
] i o )

@) (1 _ilnb+ VB>~
B 21 )
= < (-2 (-b - NF=@)~ (in(-b - ViF-)))
+ 2 (@i~ m)+(m( Vi =a)))
+é(—7r21 (<b+ V=) + (In(-b+ M)))
+ (@i m)+(ln(b r-a)))

- VbZ—a2)+”—21n(b— b - @)
+2721n( b V=) + 2 (in(-b + V7= )
+%1n(b+ m)_g(m(m V= @)

-b + \/b2 —(12)

L R o

= 2rIn(a) [—iln [zl—) +
a

(3.2)

= 27 In(a) sin~! (9)
a
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from Eq (12.11.17) in [2] where a > |b|. Note in the fourth to last equation we employed the difference
of two squares and the addition of logs to simplify. This result is equivalent to Eq (4.313.5) in [6].

3.3. Expressing integrals in terms of the log-gamma function when a = €'

We take the first partial derivative of Eq (2.5) with respect to k and set k = —1, rationalize the
denominator on the left-hand side, combine the logarithmic and log-gamma functions on the right-
hand side then simplify to get

2r 2n

o ln (a2+2by+y2) r (a—iln(b— Vb2—a? +7r) r (af—iln(b+ Vbz—a2)+rr)

U S N PR
0 y In (ei“y) Y= r ((l—iln(—h— th—a2)+rr) r (a—iln( th—a2—h)+ﬂ)
2r 2r

- %i(ﬂ — 2iIn(27)) (1n (— Vp2 — a2 - b) —In (b — Vb2 - a2))
- %i(n — 2i1n(27)) (1n ( Vb2 — a2 - b) —In ( Vb2 — a2 + b))
(3.3)

34. Whena=1,a=nandb =1/2

Using Eq (3.3) and comparing the real and imaginary parts of the left-hand side we get

1+y+y? )

00

f In ( 1=y+y?
0

— "~ dy=1
Y2+ 1)

)re(s) 4
where the integral

oo I (22 In(y)
f In (75 1) dy = 0. (3.5)
0

y(r2 + In*(y))

3.5. Whena=1,a=n/2and b =-1/2

Using Eq (3.3) and comparing the real and imaginary parts of the left-hand side we get

. 1-y+y? (L) (L
f li(1+y+;2) dy =In F4 (152) - (é)} (3.6)
0 y(; +In (Y)) I (E)r (E)
where the integral

0 y(%+10)) T
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4. Integrals involving the logarithm of the square root of a function

4.1. Definite integral of the contour integral

y2 "
Using the method in [8] we replace y by ln( 2 ) and multiply both sides by (+— ’2”2) to get
7+ \24+y? y\V2+y?

the Cauchy equation

w+m
(sz
7+ \22+)?

y Z2 +y2Wk+l

dw 4.1)

y2 m lnk ayz
7+ 2 +y? 7+ \22+)? _ 1 f
Y2+ y2(k!) 2ni Je

the logarithmic function is defined in section (4.1) in [1], where k, a, z and m are general complex
numbers. We then take the definite integral over y € [0, o) of both sides to get

m w+m
P lnk a? P
2+ V242 T+ V2 +y? 1 ® V2?2
| dy=gm [ | [ A aw|ay
0 Y2 + y2(k!) 27 Jy C y 22 + 2wk

w+m
ay’ 4.2)
1 foo T+ V2 +y? dw
= i . ; y Z2 +y2 Wk+1
1
= — aw2—1+m+wz—l+m+w CSC(?T(m + W))dW
2l C

from 2.2.11.11 in [7] where Re(z) > 0,0 < Re(w + m) < 1.

4.2. Infinite sum of the contour integral

We once again use the method in [8], replacing y with 7i(2p + 1) + In(@) + In(z) + In(2). Then we
multiply both sides by —2"ziz"~ '™ 2P+ D to yield

2"iz"! (ni2p + 1) + In(@) + In(z) + In(2)* _ 2"mig"! [ @GP D@ @)
_ pErTEY X! - e—mmi(2p+1) c whtl

dw (4.3)

We now take the infinite sum of both sides of Eq (4.3) with respect to p over [0, o) to get

(o)

oM *© i(2 1 1 +1 +1n(2 k Mpi w(mi(2p+1)+In(@)+In(z)+In(2))
i Z (mi2p + 1) + In(a@) + In(z) + In(2)) _ i Z(f e )dw
C

—mmi2p+1) ) R
py e k! Z py

m: ©_ _w(@i(2p+1)+In(a)+In(z)+In(2))
_ 2 mf Z e . dw (4.4)
Zl—m c e—mm(2p+1) Wk+l

p=0

Z] —-m e—mﬂi(2p+l)wk+l

1

=5 )
from (1.232.3) in [6] where csch(ix) = —icsc(x) from (4.5.10) in [1] and Im(w) > O for the sum to
converge and if the Re(k) < O then the argument of the sum over p cannot be zero for some value of p.
The log terms cannot be combined in general.

aW2—1+m+WZ—1+m+W CSC(ﬂ(m + W))dW

AIMS Mathematics Volume 5, Issue 6, 5724-5733.
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4.3. Equating the definite integral and infinite sum

Since the right hand side of Eqs (4.2) and (4.4) are equal we can equate the left hand sides of these
equations to yield

[

32 " k ay?
foo ( y) In (m/_zuyz)d ~ ZmHiZ(7ri(2p+1)+ln(a)+ln(z)+ln(2))k
0

y = —— — 4.5)
y Nz + Yk gl o emmiCp+ Dk
We can simplify the infinite sum on the right hand side to get
. ( 7 ) " ( F ) | iin(a) +In(22))
+22+ + 24y : ; +
f VI LrvEy dy — _2k+memm(ﬂ.l~)k+lzm—l® (eme, —k, - in(a n(sz (46)
0 yA/Z? + y? 2 2n

from (9.550) in [6] where ®(r, s, u) is the Lerch function. Note the left-hand side of Eq (4.6) converges
for all finite k. The integral in Eq (4.6) can be used as an alternative method to evaluating the Lerch
function. The Lerch function has a series representation given by

d(z, 5,v) = Z(v + ) 4.7)

n=0

where |z| < 1,v # 0, -1, .. and is continued analytically by its integral representation given by

1 00 ts—le—vt 1 00 ts—le—(v—l)t
() ,V) = —— dt = dt 4.8
@ s,v) I'(s) fo‘ 1 —ze! I'(s) \fo e —z 4.8)

where Re(v) > 0,0r |zl < 1,z # 1,Re(s) > 0,0r z = 1, Re(s) > 1.

5. Special cases of the definite integral of the logarithm of the square root of a function

Using Eq (4.6) with various values of the parameters we will derive interesting integrals in terms of
famous formula.

51. Whenk=-1,a=-1,m=1/2andz=1/2

fm ALk dy = —2—1/2e”"/2(1/2)‘”2c1>(—1, - i(ln(_l))
O yy3 22 (30 - VT+4?) 2 on (5.1)

= —iIn(2)
from (0.232.1) in [6].

AIMS Mathematics Volume 5, Issue 6, 5724-5733.
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52. Whenk=-2,a=-1,m=1/2andz=1/2

°° VVI+42 -1 . 1 i(n(-1
f dy — _2—3/26711/2(7”')—1(1/2)—1/2(1) (_1, 2’ 5 _ l( 112( )
0y 22 (30 - VT+4?) d (5.2)
_ T
24
from (0.234.1) in [6].
53. Whenk=-2,a=-1,m=1/3andz=1/2
w2 ((Trap-1)” s
f dy = @ (e3,2,1)
o yyT+42I* (31 - T+4?)) 2 (5.3)
l'e—m'/3Ll'2(627ri/3)
B 2

from (6) in [5], where Lir(z) = z®(z,2,1) is the Dilogarithm, (1.11.14) in [3] also called Spence’s
function in honour of William Spence, the Scottish mathematician (1777-1815).

6. Discussion

In this article we derived the product of logarithmic functions in terms of the Hurwitz Zeta function.
We also derived the definite integral of the logarithm of the square root of a function in terms of the
Lerch function. Then we used these integral formula to derive known results for a famous integral and
its generalized form. We were able to produce a closed form solution for Eq (25) Table 134 in Bierens
de Haan [4] and Eq (4.313.5) in [6] not previously derived using Eq (2.5). The results presented
were numerically verified for both real and imaginary values of the parameters in the integrals using
Mathematica by Wolfram. In this work we used Mathematica software to numerically evaluate both
the definite integral and associated Special function for complex values of the parameters k, @, a, m
and b. We considered various ranges of these parameters for real, integer, negative and positive values.
We compared the evaluation of the definite integral to the evaluated Special function and ensured
agreement.

7. Conclusion

In this paper, we have derived a method for expressing definite integrals in terms of Special
functions using contour integration. The contour we used was specific to solving integral
representations in terms of the Hurwitz zeta function. We expect that other contours and integrals can

be derived using this method.
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