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Abstract: In this article, we give explicit formulas for the p-adic valuations of the Fibonomial
coefficients

(
pan
n

)
F

for all primes p and positive integers a and n. This is a continuation from our
previous article extending some results in the literature, which deal only with p = 2, 3, 5, 7 and a = 1.
Then we use these formulas to characterize the positive integers n such that

(
pn
n

)
F

is divisible by p,
where p is any prime which is congruent to ±2 (mod 5).
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1. Introduction

The Fibonacci sequence (Fn)n≥1 is given by the recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 3 with
the initial values F1 = F2 = 1. For each m ≥ 1 and 1 ≤ k ≤ m, the Fibonomial coefficients

(
m
k

)
F

is
defined by (

m
k

)
F

=
F1F2F3 · · · Fm

(F1F2F3 · · · Fk)(F1F2F3 · · · Fm−k)
=

Fm−k+1Fm−k+2 · · · Fm

F1F2F3 · · · Fk
.

Similar to the binomial coefficients, we define
(

m
k

)
F

= 1 if k = 0 and
(

m
k

)
F

= 0 if k > m, and it is

well-known that
(

m
k

)
F

is always an integer for every m ≥ 1 and k ≥ 0.
Recently, there has been an increasing interest in the study of Fibonomial coefficients. Marques

and Trojovský [25, 26] start the investigation on the divisibility of Fibonomial coefficients by
determining the integers n ≥ 1 such that

(
pn
n

)
F

is divisible by p for p = 2, 3. Marques, Sellers, and

Trojovský [24] show that p divides
(

pa+1

pa

)
F

for p ≡ ±2 (mod 5) and a ≥ 1. Marques and
Trojovsk´ [27] and Trojovský [42] extend their results further and obtained the p-adic valuation of(

pa+1

pa

)
F

in [42]. Then Ballot [2, Theorem 2] generalizes the Kummer-like theorem of Knuth and

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020364


5686

Wilf [22] and uses it to give a generalization of Marques and Trojovský’s results. In particular,
Ballot [2, Theorems 3.6, 5.2, and 5.3] finds all integers n such that p |

(
pn
n

)
U

for any nondegenerate
fundamental Lucas sequence U and p = 2, 3 and for p = 5, 7 in the case U = F. Phunphayap and
Pongsriiam [31] provide the most general formula for the p-adic valuation of Fibonomial coefficients
in the most general form

(
m
n

)
F
. For other recent results on the divisibility properties of the Fibonacci

numbers, the Fibonomial coefficients, and other combinatorial numbers, see for
example [3–5, 11–13, 16, 17, 28, 30, 32–34, 37, 38, 41, 43]. For some identities involving Fibonomial
coefficients and generalizations, we refer the reader to the work of Kilic and his
coauthors [7, 8, 18–21]. For the p-adic valuations of Eulerian, Bernoulli, and Stirling numbers,
see [6, 9, 14, 23, 40]. Hence the relation p |

(
pan
n

)
F

has been studied only in the case p = 2, 3, 5, 7 and
a = 1.

In this article, we extend the investigation on
(

pan
n

)
F

to the case of any prime p and any positive
integer a. Replacing n by pa and pa by p, this becomes Marques and Trojovský’s results [27, 42].
Substituting a = 1, p ∈ {2, 3, 5, 7}, and letting n be arbitrary, this reduces to Ballot’s theorems [2]. So
our results are indeed an extension of those previously mentioned. To obtain such the general result for
all p and a, the calculation is inevitably long but we try to make it as simple as possible. As a reward,
we can easily show in Corollaries 9 and 10 that

(
4n
n

)
F

is odd if and only if n is a nonnegative power of

2, and
(

8n
n

)
F

is odd if and only if n = (1 + 3 · 2k)/7 for some k ≡ 1 (mod 3).
We organize this article as follows. In Section 2, we give some preliminaries and results which are

needed in the proof of the main theorems. In Section 3, we calculate the p-adic valuation of
(

pan
n

)
F

for

all a, p, and n, and use it to give a characterization of the positive integers n such that
(

pan
n

)
F

is divisible
by p where p is any prime which is congruent to ±2 (mod 5). Remark that there also is an interesting
pattern in the p-adic representation of the integers n such that

(
pn
n

)
F

is divisible by p. The proof is being
prepared but it is a bit too long to include in this paper. We are trying to make it simpler and shorter
and will publish it in the future. For more information and some recent articles related to the Fibonacci
numbers, we refer the readers to [15, 35, 36, 39] and references therein.

2. Preliminaries and lemmas

Throughout this article, unless stated otherwise, x is a real number, p is a prime, a, b, k,m, n, q are
integers, m, n ≥ 1, and q ≥ 2. The p-adic valuation (or p-adic order) of n, denoted by νp(n), is the
exponent of p in the prime factorization of n. In addition, the order (or the rank) of appearance of n in
the Fibonacci sequence, denoted by z(n), is the smallest positive integer m such that n | Fm, bxc is the
largest integer less than or equal to x, {x} is the fractional part of x given by {x} = x − bxc, dxe is the
smallest integer larger than or equal to x, and a mod m is the least nonnegative residue of a modulo m.
Furthermore, for a mathematical statement P, the Iverson notation [P] is defined by

[P] =

1, if P holds;
0, otherwise.

We define sq(n) to be the sum of digits of n when n is written in base q, that is, if n = (akak−1 . . . a0)q =

akqk + ak−1qk−1 + · · ·+ a0 where 0 ≤ ai < q for every i, then sq(n) = ak + ak−1 + · · ·+ a0. Next, we recall
some well-known and useful results for the reader’s convenience.
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Lemma 1. Let p , 5 be a prime. Then the following statements hold.

(i) n | Fm if and only if z(n) | m
(ii) z(p) | p + 1 if and only if p ≡ ±2 (mod 5) and z(p) | p − 1, otherwise.

(iii) gcd(z(p), p) = 1.

Proof. These are well-known. See, for example, in [31, Lemma 1] for more details. �

Lemma 2. (Legendre’s formula) Let n be a positive integer and let p be a prime. Then

νp(n!) =

∞∑
k=1

⌊
n
pk

⌋
=

n − sp(n)
p − 1

.

We will deal with a lot of calculations involving the floor function. So we recall the following
results, which will be used throughout this article, sometimes without reference.

Lemma 3. For k ∈ Z and x ∈ R, the following holds

(i) bk + xc = k + bxc,
(ii) {k + x} = {x},

(iii) bxc + b−xc =

−1, if x < Z;

0, if x ∈ Z,
(iv) 0 ≤ {x} < 1 and {x} = 0 if and only if x ∈ Z.

(v) bx + yc =

bxc + byc, if {x} + {y} < 1;

bxc + byc + 1, if {x} + {y} ≥ 1,

(vi)
⌊
bxc
k

⌋
=

⌊
x
k

⌋
for k ≥ 1.

Proof. These are well-known and can be proved easily. For more details, see in [10, Chapter 3]. We
also refer the reader to [1, 29] for a nice application of these properties. �

The next three theorems given by Phunphayap and Pongsriiam [31] are important tools for obtaining
the main results of this article.

Theorem 4. [31, Theorem 7] Let p be a prime, a ≥ 0, ` ≥ 0, and m ≥ 1. Assume that p ≡ ±1
(mod m) and δ = [` . 0 (mod m)] is the Iverson notation. Then

νp

(⌊
`pa

m

⌋
!
)

=


`(pa−1)
m(p−1) − a

{
`
m

}
+ νp

(⌊
`
m

⌋
!
)
, if p ≡ 1 (mod m);

`(pa−1)
m(p−1) −

a
2δ + νp

(⌊
`
m

⌋
!
)
, if p ≡ −1 (mod m) and a is even;

`(pa−1)
m(p−1) −

a−1
2 δ −

{
`
m

}
+ νp

(⌊
`
m

⌋
!
)
, if p ≡ −1 (mod m) and a is odd.

Theorem 5. [31, Theorem 11 and Corollary 12] Let 0 ≤ k ≤ m be integers. Then the following
statements hold.
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(i) Let A2 = ν2

(⌊
m
6

⌋
!
)
− ν2

(⌊
k
6

⌋
!
)
− ν2

(⌊
m−k

6

⌋
!
)
. If r = m mod 6 and s = k mod 6, then

ν2

((
m
k

)
F

)
=



A2, if r ≥ s and (r, s) , (3, 1), (3, 2), (4, 2);
A2 + 1, if (r, s) = (3, 1), (3, 2), (4, 2);
A2 + 3, if r < s and (r, s) , (0, 3), (1, 3), (2, 3),

(1, 4), (2, 4), (2, 5);
A2 + 2, if (r, s) = (0, 3), (1, 3), (2, 3), (1, 4), (2, 4),

(2, 5).

(ii) ν5

((
m
k

)
F

)
= ν5

((
m
k

))
.

(iii) Suppose that p is a prime, p , 2, and p , 5. If m′ =
⌊

m
z(p)

⌋
, k′ =

⌊
k

z(p)

⌋
, r = m mod z(p), and

s = k mod z(p), then

νp

((
m
k

)
F

)
= νp

((
m′

k′

))
+ [r < s]

(
νp

(⌊
m − k + z(p)

z(p)

⌋)
+ νp(Fz(p))

)
.

Theorem 6. [31, Theorem 13] Let a, b, `1, and `2 be positive integers and b ≥ a. For each p , 5,
assume that `1 pb > `2 pa and let mp =

⌊
`1 pb−a

z(p)

⌋
and kp =

⌊
`2

z(p)

⌋
. Then the following statements hold.

(i) If a ≡ b (mod 2), then ν2

((
`12b

`22a

)
F

)
is equal to


ν2

((
m2
k2

))
, if `1 ≡ `2 (mod 3) or `2 ≡ 0 (mod 3);

a + 2 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 0 (mod 3) and `2 . 0 (mod 3);⌈

a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 1 (mod 3) and `2 ≡ 2 (mod 3);⌈

a+1
2

⌉
+ ν2

((
m2
k2

))
, if `1 ≡ 2 (mod 3) and `2 ≡ 1 (mod 3),

and if a . b (mod 2), then ν2

((
`12b

`22a

)
F

)
is equal to


ν2

((
m2
k2

))
, if `1 ≡ −`2 (mod 3) or `2 ≡ 0 (mod 3);

a + 2 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 0 (mod 3) and `2 . 0 (mod 3);⌈

a+1
2

⌉
+ ν2

((
m2
k2

))
, if `1 ≡ 1 (mod 3) and `2 ≡ 1 (mod 3);⌈

a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 2 (mod 3) and `2 ≡ 2 (mod 3).

(ii) Let p , 5 be an odd prime and let r = `1 pb mod z(p) and s = `2 pa mod z(p). If p ≡ ±1
(mod 5), then

νp

((
`1 pb

`2 pa

)
F

)
= [r < s]

(
a + νp

(
mp − kp

)
+ νp(Fz(p))

)
+ νp

((
mp

kp

))
,
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and if p ≡ ±2 (mod 5), then νp

((
`1 pb

`2 pa

)
F

)
is equal to



νp

((
mp
kp

))
, if r = s or `2 ≡ 0 (mod z(p));

a + νp(Fz(p)) + νp

(
mp − kp

)
+ νp

((
mp
kp

))
, if `1 ≡ 0 (mod z(p)) and

`2 . 0 (mod z(p));
a
2 + νp

((
mp
kp

))
, if r > s, `1, `2 . 0 (mod z(p)),

and a is even;
a
2 + νp(Fz(p)) + νp

(
mp − kp

)
+ νp

((
mp
kp

))
, if r < s, `1, `2 . 0 (mod z(p)),

and a is even;
a+1

2 + νp

(
mp − kp

)
+ νp

((
mp
kp

))
, if r > s, `1, `2 . 0 (mod z(p)),

and a is odd;
a−1

2 + νp(Fz(p)) + νp

((
mp
kp

))
, if r < s, `1, `2 . 0 (mod z(p)),

and a is odd.

In fact, Phunphayap and Pongsriiam [31] obtain other results analogous to Theorems 5 and 6 too
but we do not need them in this article.

3. Main results

We begin with the calculation of the 2-adic valuation of
(

2an
n

)
F

and then use it to determine the

integers n such that
(

2n
n

)
F
,
(

4n
n

)
F
,
(

8n
n

)
F

are even. Then we calculate the p-adic valuation of
(

pan
n

)
F

for all

odd primes p. For binomial coefficients, we know that ν2

((
2n
n

))
= s2(n). For Fibonomial coefficients,

we have the following result.

Theorem 7. Let a and n be positive integers, ε = [n . 0 (mod 3)], and A =
⌊

(2a−1)n
3·2ν2(n)

⌋
. Then the

following statements hold.

(i) If a is even, then

ν2

((
2an
n

)
F

)
= δ + A −

a
2
ε − ν2(A!) = δ + s2(A) −

a
2
ε, (3.1)

where δ = [n mod 6 = 3, 5]. In other words, δ = 1 if n ≡ 3, 5 (mod 6) and δ = 0 otherwise.
(ii) If a is odd, then

ν2

((
2an
n

)
F

)
= δ + A −

a − 1
2

ε − ν2(A!) = δ + s2(A) −
a − 1

2
ε, (3.2)

where δ =
(n mod 6)−1

2 [2 - n] +
⌈
ν2(n)+3−n mod 3

2

⌉
[n mod 6 = 2, 4]. In other words, δ =

(n mod 6)−1
2 if n is

odd, δ = 0 if n ≡ 0 (mod 6), δ =
⌈
ν2(n)

2

⌉
+ 1 if n ≡ 4 (mod 6), and δ =

⌈
ν2(n)+1

2

⌉
if n ≡ 2 (mod 6).
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Proof. The second equalities in (3.1) and (3.2) follow from Legendre’s formula. So it remains to prove
the first equalities in (3.1) and (3.2). To prove (i), we suppose that a is even and divide the consideration
into two cases.
Case 1. 2 - n. Let r = 2an mod 6 and s = n mod 6. Then s ∈ {1, 3, 5}, r ≡ 2an ≡ 4n ≡ 4s
(mod 6), and therefore (r, s) = (4, 1), (0, 3), (2, 5). In addition, A =

⌊
(2a−1)n

3

⌋
=

(2a−1)n
3 and δ = [s =

3, 5]. By Theorem 5(i), the left–hand side of (3.1) is A2 if s = 1 and A2 + 2 if s = 3, 5, where
A2 = ν2

(⌊
2an
6

⌋
!
)
− ν2

(⌊
n
6

⌋
!
)
− ν2

(⌊
(2a−1)n

6

⌋
!
)
. We obtain by Theorem 4 that

ν2

(⌊
2an
6

⌋
!
)

= ν2

(⌊
2a−1n

3

⌋
!
)

=
(2a−1 − 1)n

3
−

a − 2
2

ε −
{n

3

}
+ ν2

(⌊n
3

⌋
!
)
.

By Legendre’s formula and Lemma 3, we have

ν2

(⌊n
6

⌋
!
)

= ν2

(⌊n
3

⌋
!
)
−

⌊n
6

⌋
,

ν2

(⌊
(2a − 1)n

6

⌋
!
)

= ν2

(⌊
(2a − 1)n

3

⌋
!
)
−

⌊
(2a − 1)n

6

⌋
= ν2(A!) −

⌊
(2a − 1)n

6

⌋
,

⌊n
6

⌋
+

⌊
(2a − 1)n

6

⌋
=

n − s
6

+
2an − r

6
−

n − s
6

+

⌊r − s
6

⌋
=

2an − r
6

− [s ∈ {3, 5}].

From the above observation, we obtain

A2 =
(2a−1 − 1)n

3
−

a − 2
2

ε −
{n

3

}
+

2an − r
6

− [s ∈ {3, 5}] − ν2(A!)

= A −
a − 2

2
ε −

{n
3

}
−

r
6
− [s ∈ {3, 5}] − ν2(A!)

=


A − a

2 − ν2(A!), if s = 1;
A − ν2(A!) − 1, if s = 3;
A − a

2 − ν2(A!) − 1, if s = 5.

It is now easy to check that A2 (if s = 1), A2 + 2 (if s = 3, 5) are the same as δ + A − a
2ε − ν2(A!) in

(3.1). So (3.1) is verified.
Case 2. 2 | n. We write n = 2b` where 2 - ` and let m =

⌊
2a`
3

⌋
, k =

⌊
`
3

⌋
, r = 2a` mod 3, and s = ` mod 3.

Since a is even, r = s. Then we apply Theorem 6(i) to obtain

ν2

((
2an
n

)
F

)
= ν2

((
`2a+b

`2b

)
F

)
= ν2

((
m
k

))
= ν2(m!) − ν2(k!) − ν2((m − k)!). (3.3)

We see that ` . 0 (mod 3) if and only if n . 0 (mod 3). In addition, A =
(2a−1)`

3 and δ = 0. By
Theorem 4, we have

ν2(m!) = A −
a
2
ε + ν2(k!).

In addition,

m − k =

⌊
2a`

3

⌋
−

⌊
`

3

⌋
=

2a` − r
3

−
` − s

3
=

2a` − `

3
= A.
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So ν2((m − k)!) = ν2(A!). Substituting these in (3.3), we obtain (3.1). This completes the proof of (i).
To prove (ii), we suppose that a is odd and divide the proof into two cases.

Case 1. 2 - n. This case is similar to Case 1 of the previous part. So we let r = 2an mod 6 and
s = n mod 6. Then s ∈ {1, 3, 5}, r ≡ 2an ≡ 2n ≡ 2s (mod 6), (r, s) = (2, 1), (0, 3), (4, 5), δ = s−1

2 ,
and the left–hand side of (3.2) is A2 if s = 1, A2 + 2 if s = 3, and A2 + 3 if s = 5, where A2 =

ν2

(⌊
2an
6

⌋
!
)
− ν2

(⌊
n
6

⌋
!
)
− ν2

(⌊
(2a−1)n

6

⌋
!
)
. In addition, we have

ν2

(⌊
2an
6

⌋
!
)

=
(2a−1 − 1)n

3
−

a − 1
2

ε + ν2

(⌊n
3

⌋
!
)
,

ν2

(⌊n
6

⌋
!
)

= ν2

(⌊n
3

⌋
!
)
−

⌊n
6

⌋
,

ν2

(⌊
(2a − 1)n

6

⌋
!
)

= ν2(A!) −
⌊
(2a − 1)n

6

⌋
,

⌊n
6

⌋
+

⌊
(2a − 1)n

6

⌋
=

2an − r
6

− [s ∈ {3, 5}].

Therefore

A2 =
(2a−1 − 1)n

3
−

a − 1
2

ε +
2an − r

6
− [s ∈ {3, 5}] − ν2(A!).

Furthermore,

A =

⌊
(2a − 1)n

3

⌋
=

2an − r
3

−
n − s

3
+

⌊r − s
3

⌋
=


(2a−1)n

3 − 1
3 , if s = 1;

(2a−1)n
3 , if s = 3;

(2a−1)n
3 − 2

3 , if s = 5,

which implies that A =
(2a−1)n

3 − r
6 . Then

A2 = A −
a − 1

2
ε − [s ∈ {3, 5}] − ν2(A!).

It is now easy to check that A2 (if s = 1), A2 + 2 (if s = 3), and A2 + 3 (if s = 5), are the same as
δ + A − a−1

2 ε − ν2(A!) in (3.2). So (3.2) is verified.
Case 2. 2 | n. This case is similar to Case 2 of the previous part. So we write n = 2b` where 2 - ` and
let m =

⌊
2a`
3

⌋
, k =

⌊
`
3

⌋
, r = 2a` mod 3, and s = ` mod 3. We obtain by Theorem 6 that ν2

((
2an
n

)
F

)
is

equal to

ν2

((
`2a+b

`2b

)
F

)
=


ν2

((
m
k

))
, if ` ≡ 0 (mod 3);⌈

b+1
2

⌉
+ ν2

((
m
k

))
, if ` ≡ 1 (mod 3);⌈

b
2

⌉
+ 1 + ν2(m − k) + ν2

((
m
k

))
, if ` ≡ 2 (mod 3).

(3.4)

By Theorem 4, we have

ν2(m!) =
(2a − 1)`

3
−

a − 1
2

ε −

{
`

3

}
+ ν2(k!).
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Since (2a − 1)` ≡ ` (mod 3),
{

(2a−1)`
3

}
=

{
`
3

}
. This implies that ν2(m!) = A − a−1

2 ε + ν2(k!). In addition,
(r, s) = (0, 0), (2, 1), (1, 2), and

m − k =

⌊
2a`

3

⌋
−

⌊
`

3

⌋
=

2a` − r
3

−
` − s

3
=

(2a − 1)` − (r − s)
3

= A + [s = 2].

From the above observation, we obtain

ν2

((
m
k

))
= ν2(m!) − ν2(k!) − ν2((m − k)!) =

A − a−1
2 ε − ν2(A!), if s = 0, 1;

A − a−1
2 ε − ν2((A + 1)!), if s = 2.

Substituting this in (3.4), we see that

ν2

((
2an
n

)
F

)
=


A − ν2(A!), if ` ≡ 0 (mod 3);⌈

b+1
2

⌉
+ A − a−1

2 − ν2(A!), if ` ≡ 1 (mod 3);⌈
b
2

⌉
+ 1 + A − a−1

2 − ν2(A!), if ` ≡ 2 (mod 3).

(3.5)

Recall that n = 2b` ≡ (−1)b` (mod 3). So (3.5) implies that

ν2

((
2an
n

)
F

)
=



A − ν2(A!), if n ≡ 0 (mod 3);
b
2 + 1 + A − a−1

2 − ν2(A!), if n ≡ 1 (mod 3) and b is even;
b+1

2 + 1 + A − a−1
2 − ν2(A!), if n ≡ 1 (mod 3) and b is odd;

b
2 + 1 + A − a−1

2 − ν2(A!), if n ≡ 2 (mod 3) and b is even;
b+1

2 + A − a−1
2 − ν2(A!), if n ≡ 2 (mod 3) and b is odd,

which is the same as (3.2). This completes the proof. �

We can obtain the main result of Maques and Trojovský [25] as a corollary.

Corollary 8. (Marques and Trojovský [25])
(

2n
n

)
F

is even for all n ≥ 2.

Proof. Let n ≥ 2 and apply Theorem 7 with a = 1 to obtain ν2

((
2n
n

)
F

)
= δ+ s2(A). If n . 0, 1 (mod 6),

then δ > 0. If n ≡ 0 (mod 6), then n ≥ 3 · 2ν2(n), and so A ≥ 1 and s2(A) > 0. If n ≡ 1 (mod 6), then
A =

⌊
n
3

⌋
> 1 and so s2(A) > 0. In any case, ν2

((
2n
n

)
F

)
> 0. So

(
2n
n

)
F

is even. �

Corollary 9. Let n ≥ 2. Then
(

4n
n

)
F

is even if and only if n is not a power of 2. In other words, for each

n ∈ N,
(

4n
n

)
F

is odd if and only if n = 2k for some k ≥ 0.

Proof. Let δ, ε, and A be as in Theorem 7. If n = 2k for some k ≥ 1, then we apply Theorem 7 with
a = 2, δ = 0, ε = 1, A = 1 leading to ν2

((
4n
n

)
F

)
= 0, which implies that

(
4n
n

)
F

is odd.

Suppose n is not a power of 2. By Theorem 7, ν2

((
4n
n

)
F

)
= δ + s2(A) − ε ≥ s2(A) − 1. Since n is

not a power of 2, the sum s2(n) ≥ 2. It is easy to see that s2(m) = s2(2cm) for any c,m ∈ N. Therefore
s2(A) = s2

(
n

2ν2(n)

)
= s2

(
2ν2(n) · n

2ν2(n)

)
= s2(n) ≥ 2, which implies ν2

((
4n
n

)
F

)
≥ 1, as required. �

Observe that 2, 22, 23 are congruent to 2, 4, 1 (mod 7), respectively. This implies that if k ≥ 1 and
k ≡ 1 (mod 3), then (1 + 3 · 2k)/7 is an integer. We can determine the integers n such that

(
8n
n

)
F

is odd
as follows.
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Corollary 10.
(

8n
n

)
F

is odd if and only if n = 1+3·2k

7 for some k ≡ 1 (mod 3).

Proof. Let a, δ, A, ε be as in Theorem 7. We first suppose n = (1 + 3 · 2k)/7 where k ≥ 1 and k ≡ 1
(mod 3). Then n ≡ 7n ≡ 1+3 ·2k ≡ 1 (mod 6). Then a = 3, ε = 1, δ = 0, A = 2k, and so ν2

((
8n
n

)
F

)
= 0.

Therefore
(

8n
n

)
F

is odd. Next, assume that
(

8n
n

)
F

is odd. Observe that A ≥ 2 and s2(A) > 0. If n ≡ 0

(mod 3), then ε = 0 and ν2

((
8n
n

)
F

)
= δ + s2(A) > 0, which is not the case. Therefore n ≡ 1, 2 (mod 3),

and so ε = 1. If n ≡ 0 (mod 2), then δ =
⌈
ν2(n)+3−n mod 3

2

⌉
≥ 1, and so

((
8n
n

))
F
≥ s2(A) > 0, which is a

contradiction. So n ≡ 1 (mod 2). This implies n ≡ 1, 5 (mod 6). But if n ≡ 5 (mod 6), then δ ≥ 2 and
ν2

((
8n
n

)
F

)
> 0, a contradiction. Hence n ≡ 1 (mod 6). Then δ = 0. Since s2(A)− 1 = ν2

((
8n
n

)
F

)
= 0, we

see that A = 2k for some k ≥ 1. Then 7n−1
3 =

⌊
7n
3

⌋
= A = 2k, which implies n = 1+3·2k

7 , as required. �

Theorem 11. For each a, n ∈ N, ν5

((
5an
n

)
F

)
= ν5

((
5an
n

))
=

s5((5a−1)n)
4 . In particular,

(
5an
n

)
F

is divisible by
5 for every a, n ∈ N.

Proof. The first equality follows immediately from Theorem 5(ii). By Legendre’s formula, ν5

((
n
k

))
=

s5(k)+s5(n−k)−s5(n)
4 for all n ≥ k ≥ 1. So ν5

((
5an
n

)
F

)
is

s5(n) + s5(5an − n) − s5(5an)
4

=
s5((5a − 1)n)

4
. �

Theorem 12. Let p , 2, 5, a, n ∈ N, r = pan mod z(p), s = n mod z(p), and A =
⌊

n(pa−1)
pνp(n)z(p)

⌋
. Then the

following statements hold.

(i) If p ≡ ±1 (mod 5), then νp

((
pan
n

)
F

)
is equal to

A
p − 1

− a
{

n
pνp(n)z(p)

}
− νp(A!) =

sp(A)
p − 1

− a
{

n
pνp(n)z(p)

}
. (3.6)

(ii) If p ≡ ±2 (mod 5) and a is even, then νp

((
pan
n

)
F

)
is equal to

A
p − 1

−
a
2

[s , 0] − νp(A!) =
sp(A)
p − 1

−
a
2

[s , 0]. (3.7)

(iii) If p ≡ ±2 (mod 5) and a is odd, then νp

((
pan
n

)
F

)
is equal to⌊

A
p − 1

⌋
−

a − 1
2

[s , 0] − νp(A!) + δ, (3.8)

where δ =
(⌊

νp(n)
2

⌋
+ [2 - νp(n)][r > s] + [r < s]νp(Fz(p))

)
[r , s], or equivalently, δ = 0 if r = s,

δ =
⌊
νp(n)

2

⌋
+ νp(Fz(p)) if r < s, and δ =

⌈
νp(n)

2

⌉
if r > s.

Proof. We first prove (i) and (ii). So we suppose that the hypothesis of (i) or (ii) is true. By writing
νp(A!) =

A−sp(A)
p−1 , we obtain the equalities in (3.6) and (3.7). By Lemma 1(ii), pa ≡ 1 (mod z(p)). Then

r = s.
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Case 1. p - n. Let m =
⌊

pan
z(p)

⌋
and k =

⌊
n

z(p)

⌋
. Then we obtain by Theorem 5(iii) that

νp

((
pan
n

)
F

)
= νp

((
m
k

))
= νp(m!) − νp(k!) − νp((m − k)!). (3.9)

By Lemma 1(ii) and Theorem 4, we see that if p ≡ ±1 (mod 5), then p ≡ 1 (mod z(p)) and

νp(m!) = νp

(⌊
npa

z(p)

⌋
!
)

=
n(pa − 1)

z(p)(p − 1)
− a

{
n

z(p)

}
+ νp (k!) , (3.10)

and if p ≡ ±2 (mod 5) and a is even, then p ≡ −1 (mod z(p)) and

νp(m!) =
n(pa − 1)

z(p)(p − 1)
−

a
2

[s , 0] + νp (k!) . (3.11)

Since z(p) | pa − 1 and p - n, A =
n(pa−1)

z(p) . Therefore

m − k =

⌊
pan
z(p)

⌋
−

⌊
n

z(p)

⌋
=

pan − r
z(p)

−
n − s
z(p)

=
n(pa − 1)

z(p)
= A. (3.12)

Substituting (3.10), (3.11), and (3.12) in (3.9), we obtain (3.6) and (3.7).
Case 2. p | n. Let n = pb` where p - `, m =

⌊
`pa

z(p)

⌋
, and k =

⌊
`

z(p)

⌋
. Since r = s, we obtain by Theorem

6 that νp

((
pan
n

)
F

)
is equal to

νp

((
`pa+b

`pb

)
F

)
= νp

((
m
k

))
= νp(m!) − νp(k!) − νp((m − k)!). (3.13)

Since gcd(p, z(p)) = 1, we see that ` ≡ 0 (mod z(p)) ⇔ n ≡ 0 (mod z(p)) ⇔ s = 0. Similar to Case
1, we have νp(m!) =

`(pa−1)
z(p)(p−1) − a

{
`

z(p)

}
+ νp(k!) if p ≡ ±1 (mod 5), νp(m!) =

`(pa−1)
z(p)(p−1) −

a
2 [s , 0] + νp (k!)

if p ≡ ±2 (mod 5) and a is even, `pa ≡ ` (mod z(p)), A =
`(pa−1)

z(p) , and m − k = A. So (3.13) leads to
(3.6) and (3.7). This proves (i) and (ii).

To prove (iii), suppose that p ≡ ±2 (mod 5) and a is odd. By Lemma 1(ii), p ≡ −1 (mod z(p)). In
addition, pa−1

p−1 = pa−1 + pa−2 + . . . + 1 ≡ 1 (mod z(p)). We divide the consideration into two cases.
Case 1. p - n. This case is similar to Case 1 of the previous part. So we apply Theorems 4 and 5(iii).
Let m =

⌊
pan
z(p)

⌋
and k =

⌊
n

z(p)

⌋
. Then

νp(m!) =
n(pa − 1)

z(p)(p − 1)
−

a − 1
2

[s , 0] −
{

n
z(p)

}
+ νp(k!),

m − k =
pan − r

z(p)
−

n − s
z(p)

=
n(pa − 1) − (r − s)

z(p)
,

A =

⌊
npa − r

z(p)
−

n − s
z(p)

+
r − s
z(p)

⌋
= m − k +

⌊
r − s
z(p)

⌋
.

Since pa−1
p−1 ≡ 1 (mod z(p)), n(pa−1)

p−1 ≡ n (mod z(p)). This implies that
{

n(pa−1)
z(p)(p−1)

}
=

{
n

z(p)

}
. Therefore

νp(m!) =

⌊
n(pa − 1)

z(p)(p − 1)

⌋
−

a − 1
2

[s , 0] + νp(k!) =

⌊
A

p − 1

⌋
−

a − 1
2

[s , 0] + νp(k!).
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From the above observation, if r ≥ s, then A = m − k and

νp

((
pan
n

)
F

)
= νp

((
m
k

))
=

⌊
A

p − 1

⌋
−

a − 1
2

[s , 0] − νp(A!),

which leads to (3.8). If r < s, then A = m − k − 1,
⌊

pan−n+z(p)
z(p)

⌋
= A + 1, and νp

((
pan
n

)
F

)
is equal to⌊

A
p − 1

⌋
−

a − 1
2

[s , 0] − νp((A + 1)!) + νp(A + 1) + νp(Fz(p))

=

⌊
A

p − 1

⌋
−

a − 1
2

[s , 0] − νp(A!) + νp(Fz(p)),

which is the same as (3.8).
Case 2. p | n. Let n = pb` where p - `, m =

⌊
`pa

z(p)

⌋
, and k =

⌊
`

z(p)

⌋
. Similar to Case 1, s = 0 ⇔ ` ≡ 0

(mod z(p)). In addition, `(pa−1)
p−1 ≡ ` (mod z(p)), and so we obtain by Theorem 4 that νp(m!) =

⌊
A

p−1

⌋
−

a−1
2 [s , 0] + νp(k!). The calculation of νp

((
pan
n

)
F

)
= νp

((
`pa+b

`pb

)
F

)
is done by the applications of Theorem

6 and is divided into several cases. Suppose r = s. Then pa+b` ≡ pan ≡ r ≡ s ≡ n ≡ pb` (mod z(p)).
Since (p, z(p)) = 1, this implies `pa ≡ ` (mod z(p)). Therefore A =

⌊
`pa−`

z(p)

⌋
=

`pa−`

z(p) = m − k and

νp

((
pan
n

)
F

)
= νp

((
m
k

))
= νp(m!) − νp(k!) − νp((m − k)!),

which is (3.8). Obviously, if ` ≡ 0 (mod z(p)), then r = s, which is already done. So from this point
on, we assume that r , s and ` . 0 (mod z(p)). Recall that p ≡ −1 (mod z(p)) and a is odd. So if b
is odd, then

r ≡ npa ≡ −n ≡ −pb` ≡ ` (mod z(p)), s ≡ n ≡ pb` ≡ −` ≡ `pa (mod z(p)), and

A =

⌊
`pa − s

z(p)
−
` − r
z(p)

+
s − r
z(p)

⌋
=
`pa − s

z(p)
−
` − r
z(p)

+

⌊
s − r
z(p)

⌋
= m − k +

⌊
s − r
z(p)

⌋
.

Similarly, if b is even, then r = `pa mod z(p), s = ` mod z(p), and A = m − k +
⌊

r−s
z(p)

⌋
. Let R =⌊

A
p−1

⌋
− a−1

2 [s , 0]− νp(A!) + δ be the quantity in (3.8). From the above observation and the application

of Theorem 6, we obtain νp

((
pan
n

)
F

)
as follows. If r > s and b is even, then A = m − k and

νp

((
pan
n

)
F

)
=

b
2

+ νp

((
m
k

))
=

b
2

+

⌊
A

p − 1

⌋
−

a − 1
2

[s , 0] − νp(A!) = R.

If r > s and b is odd, then A = m − k − 1 and

νp

((
pan
n

)
F

)
=

b + 1
2

+ νp(A + 1) + νp

((
m
k

))
=

b + 1
2

+

⌊
A

p − 1

⌋
−

a − 1
2

[s , 0] − νp(A!) = R.
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If r < s and b is even, then A = m − k − 1 and

νp

((
pan
n

)
F

)
=

b
2

+ νp

(
Fz(p)

)
+ νp(A + 1) + νp

((
m
k

))
=

b
2

+ νp(Fz(p)) +

⌊
A

p − 1

⌋
−

a − 1
2

[s , 0] − νp(A!) = R.

If r < s and b is odd, then A = m − k and

νp

((
pan
n

)
F

)
=

b − 1
2

+ νp

(
Fz(p)

)
+ νp

((
m
k

))
=

b − 1
2

+ νp(Fz(p)) +

⌊
A

p − 1

⌋
−

a − 1
2

[s , 0] − νp(A!) = R.

This completes the proof. �

In the next two corollaries, we give some characterizations of the integers n such that
(

pan
n

)
F

is
divisible by p.

Corollary 13. Let p be a prime and let a and n be positive integers. If n ≡ 0 (mod z(p)), then p |
(

pan
n

)
F
.

Proof. We first consider the case p , 2, 5. Assume that n ≡ 0 (mod z(p)) and r, s, A, and δ are as
in Theorem 12. Then n

pνp(n)z(p)
, A

p−1 ∈ Z, r = s = 0, and δ = 0. Every case in Theorem 12 leads to

νp

((
pan
n

)
F

)
=

sp(A)
p−1 > 0, which implies p |

(
pan
n

)
F
. If p = 5, then the result follows immediately from

Theorem 11. If p = 2, then every case of Theorem 7 leads to ν2

((
2an
n

)
F

)
≥ s2(A) > 0, which implies the

desired result. �

Corollary 14. Let p , 2, 5 be a prime and let a, n, r, s, and A be as in Theorem 12. Assume that
p ≡ ±2 (mod 5) and n . 0 (mod z(p)). Then the following statements hold.

(i) Assume that a is even. Then p |
(

pan
n

)
F

if and only if sp(A) > a
2 (p − 1).

(ii) Assume that a is odd and p - n. If r < s, then p |
(

pan
n

)
F
. If r ≥ s, then p |

(
pan
n

)
F

if and only if
sp(A) ≥ a+1

2 (p − 1).
(iii) Assume that a is odd and p | n. If r , s, then p |

(
pan
n

)
F
. If r = s, then p |

(
pan
n

)
F

if and only if
sp(A) ≥ a+1

2 (p − 1).

Proof. We use Lemmas 2 and 3 repeatedly without reference. For (i), we obtain by (3.7) that

νp

((
pan
n

)
F

)
=

sp(A)
p − 1

−
a
2
, which is positive if and only if sp(A) >

a
2

(p − 1).

This proves (i). To prove (ii) and (iii), we let δ be as in Theorem 12 and divide the consideration into
two cases.
Case 1. p - n. If r < s, then we obtain by Theorem 5(iii) that νp

((
pan
n

)
F

)
≥ νp(Fz(p)) ≥ 1. Suppose

r ≥ s. Then δ = 0 and (3.8) is⌊
A

p − 1

⌋
−

a − 1
2
− νp(A!) =

⌊
A

p − 1

⌋
−

a − 1
2
−

A − sp(A)
p − 1

=
sp(A)
p − 1

−

{
A

p − 1

}
−

a − 1
2

.
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If sp(A) ≥ a+1
2 (p − 1), then (3.8) implies that

νp

((
pan
n

)
F

)
≥ 1 −

{
A

p − 1

}
> 0.

Similarly, if sp(A) < a+1
2 (p − 1), then νp

((
pan
n

)
F

)
< 1 −

{
A

p−1

}
≤ 1. This proves (ii).

Case 2. p | n. We write n = pb` where p - `. Then b ≥ 1. Recall that νp(Fz(p)) ≥ 1. If r , s,
then Theorem 6 implies that νp

((
pan
n

))
≥ b

2 if b is even and it is ≥ b+1
2 if b is odd. In any case,

νp

((
pan
n

)
F

)
≥ 1. So p |

(
pan
n

)
F
. If r = s, then δ = 0 and we obtain as in Case 1 that p |

(
pan
n

)
F

if and only
if sp(A) ≥ a+1

2 (p − 1). This proves (iii). �

Corollary 15. Let p , 2, 5 be a prime and let A =
n(p−1)

pνp(n)z(p)
. Assume that p ≡ ±1 (mod 5). Then

p |
(

pn
n

)
F

if and only if sp(A) ≥ p − 1.

Proof. We remark that by Lemma 1(ii), A is an integer. Let x = n
pνp(n)z(p)

. We apply Theorem 12(i)

with a = 1. If sp(A) ≥ p − 1, then (3.6) implies that νp

((
pn
n

)
F

)
≥ 1 − {x} > 0. If sp(A) < p − 1, then

νp

((
pn
n

)
F

)
< 1 − {x} ≤ 1. This completes the proof. �

4. Conclusions

We give exact formulas for the p-adic valuations of Fibonomial coefficients of the form
(

pan
n

)
F

for

all primes p and a, n ∈ N. Then we use it to characterize the integers n such that
(

pan
n

)
F

is divisible by
p.
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