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1. Introduction and preliminaries

The Coulomb wave functions F,(p, 1) and H(p, 1) are functions belonging to the kernel of the
Coulomb differential operator (see, e.g., [18, Chapter 33])
pie & % oo+l
da? A A2
where 4 € R*, p € R (Sommerfeld parameter), and oo € Ny (angular momentum quantum number).
Here and throughout, we denote C, R, R*, Z, and N by the sets of complex numbers, real numbers,
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positive real numbers, integers, and positive integers, respectively, and let Ny := N U {0}, Z; := Z \ N,
The functions F,(p, 1) and H;(p, A) satisfy the following formulas (see [6]):

Fo(p, ) = 277 N (0)F) ™' M.

+ip,0+

%(J_rZi/l) (1.1)

and
. o Vi . e
H (p, 1) = (¥1)7 exp (—; + m,,(p)) W¢ip,(,+%(+21/l), (1.2)

where i = V-1, M,,,(z) and W,,(z) are Whittaker functions of the first kind and the second kind (see,
e.g., [1, Sections 4.3 and 4.4]), respectively, and the normalizing constant (Gamow factor) N, (o) and
Coulomb phase shift n,(p) are given as follows:

No(p) = 27 exp (—’%) [TQo +2)]"' [T(e + 1 +ip)| (1.3)

and
ny(p) = argl'(c + 1 +ip),

where ' is the familiar Gamma function (see, e.g., [27, Section 1.1]). The functions F.(p, A1) and
H(p, 1) may also be continued analytically to 2 € C \ {0}, and p, o € C (see, e.g., [5,8]; see also [18,
Entry 33.13]).

Recall the generalized hypergeometric series ,F, (p, g € Ny) defined by (see, e.g., [22, p. 73]):

@y, ..., @ l_ o (@) (@) 2

z| = -
ﬁla "-9ﬁq; n=0 (ﬁl)n"'(ﬁq)n n!
:[JFq(a/l"~'9a/p;,815"'$ﬁq; Z)a

qul

where (1), denotes the Pochhammer symbol which is defined (for 4, v € C), in terms of the familiar
Gamma function I', by

_F(/l+v)_{1 (v=0; 1eC\ {0}

)y = (1) - AA+1D)---(A+n-1) (v=neN; 1€0),

it being understood conventionally that (0)y := 1.

Since the two Whittaker functions are determined by the confluent hypergeometric function | F
(see, e.g., [7, Entries 6.5(7), 6.9(1) and 6.9(2)]) which satisfies the following Kummer’s transformation
formula (e.g., [7, Entry 6.3(7)])

1Fi(a;b;2) = e F(b - a; b; —2),

the choice of ambiguous signs in (1.1) and (1.2) is immaterial, provided that either all upper signs are
taken or all lower signs are taken (see, e.g., the comment after [18, Entry 33.2.5]).

Also recall (see, e.g., [18, Entry 33.2(iii)])) that H (p, A4) and H_(p, 1) are complex conjugates, and
their real and imaginary parts are given by

H(p, ) = Go(p, D) £i Fo(p, A). (1.4)
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Here F,(p, ) is the regular solution of the Coulomb wave equation d[y] = 0 while G,(p, 1) and
HZ(p, A) are its irregular solutions.

Since the dimension of the space Ker d is 2, the linearly independent functions F,(p, 1) and G(p, )
form a basis in Ker d. Another basis consists of H(p, 1) and H_(p, A). Curtis [4] considered two other
bases in Ker d consisting of functions which are still named Coulomb functions (see also [11, 14]).

Recall another differential operator (see [12]):

d? d
b:=1— 1)— + 1.
L +(c+1) 1 +
The so-called Bessel-Clifford function of the first kind

(9]

(_l)k /lk

H=S "2
Co (D L k\T(o +k+1)

is one of the functions belonging to Kerb. The function C,(A) in (1) is related to the Bessel function
J, as follows:
Cor(1) = A% 1, (2V2). (1.5)

Likewise the modified Bessel-Clifford function of the second kind (1) can be expressed via the
Macdonald function K,:
K1) = A2 K, (2V). (1.6)

We also need the following integral transformations:
The first Hankel-Clifford integral transform (see [16, Eq. (2.7)])

HY 1) = A7 fo DDA (LeR):

The second Hankel-Clifford integral transform (see [13]; see also [16, Eq. (2.9)])
HP[f1(4) = fo T C,aNfDdl (LeRY):

The Macdonald-Clifford transform
K, [f1(A) = fow ATK,(AD) fFD)dA1 (1 eRY).

In this paper, we aim to present new formulas which involve Coulomb functions and are related to
a representation of the three-dimensional proper Lorentz group in one appropriate carrier functional
space (called here the representation space). The paper is organized as follows: In Section 2 we
describe the representation space and two bases in it. In Section 3 we express the connection between
above bases in terms of Coulomb functions (basically, in terms of F,(p,1)). In Sections 4-8 we
consider some restrictions of our representation to some subgroups or their separate elements and,
using the connections between bases, obtain some integral formulas. In particular, for diag(—1, 1, —1)
and the (circle) rotations through 7 and 7 in the plane Ox;x3; we obtain the Bessel-Clifford and Mellin
transforms or Coulomb functions, respectively, which are expressed in terms of Coulomb functions
and Gaussian hypergeometric functions. Considering the product of the maximal nilpotent subgroup
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and the subgroup of hyperbolic rotations in the plane Ox,x;, we express one integral involving product
of Coulomb functions in terms of Appell hypergeometric function.

The same problem for two different pairs of bases in the similar representation space for the four-
dimensional analogue of our group has been considered in the papers [25] and [26], in which the related
theorems have been formulated in terms of 4F; and Macdonald functions, respectively.

2. Representation space, its bases, and functionals F, and F,

We recall that the three-dimensional Lorentz group is the subgroup of matrices (g;;) in GL(3,R)
satisfying the equalities
gi—gn—gn =DM (el 2,3,

where E(u) denotes the integer part of u € R, and g;1g;1 — 828> — 8383 = 0 for different 7, j € {1,2, 3}.
In this paper, we consider the intersection G of this group with S L(3, R), calling G the proper Lorentz
group. Let o € R and T be the representation of G in the linear space D consisting of o-homogeneous
and infinitely differentiable functions defined on the cone

A= {(Xl,xz,x3) eR3 x% — x% —x% — 0}

acting according to rule T(g)[ f(x)] = f(g"'x) (see [30]). The similar realization of the G-representation
can be considered on hyperboloid x7 — x5 — x3 = r* (see [32]).

We recall that the functions ¥, on R, which generate the generalized functions (X}, f), are defined as
follows (see [9]): For u € C, x4 is equal to |x|* for x € R* and coincides with zero function otherwise.
Here we deal with the bases (see [31])

Pl
B, = {ff(x) = (X1 + x2)7 exp B ae R}
X1+ X2

and
By = .0 = )" (n + x) | peR).

In the following, we use two bilinear functionals defined on pairs of representation spaces in the
same way as in [24]. In order to introduce them, we define the following subsets on A: parabola
v1 : X1 + x, = 1 and hyperbola y, = y,, U y,_, where y,. : x, = 1. Let H; be a subgroup of G,
which acts transitively on ;. We define F and F, as

Fﬂmmeam@Hfﬂmmm

Yi

where dy; is a H;-invariant measure on ;. Let y; and y, . be parameterized as follows:

X = %(1 +a%), x; = cosha,,
1 2 —
71 - xz_z(l a,])’ ’)/Zi_ x2:i1$
X3 = aq, X3 = SiIthZz,
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where @y, @, € R. Since the subgroups H; and H, consist of matrices, respectively,

1[2+9§ 6 291}

h1(91) = 2 —9% 2—9% —291

26, 26, 2

and
coshf, 0O sinh 92]

hy(0,) = ( 0 1 0
sinhd O cosh6b,

where 6,6, € R, and

T (@) fala)] = falay —6)),
T (hy (0 fp,e(a2)] = fos(ar = 6,),

we have dy; = da;. Also these identities mean that f, is an eigenfunction of the operator 7'(h,(6,)) and
Jo.+ 1s an eigenfunction of T'(h,(6,)) with eigenvalues exp(—6;1) and exp(—6,p), respectively. It was
shown in [24] that F; and F, coincide on pairs (D, D*) such that degree of homogeneity of D° is equal

to —o — 1.

3. Matrix elements of B, 2 B, and B} 2 B; transformations in terms of Coulomb functions

Express a function f; € B} as a linear combination of vectors belonging to B:

Frx) = fR [, [0 )+ S (0] dp.

Since
John. = \f;i|72,i =expipey) and  fo.ly,. = p.,i|72,¢ =0,

we have

00

Fi(f/l.7 ﬁ3,i) = f C/.l,p,i FZ(f;,ia f,}),i) dp

—00

3.1)

(3.2)

= f Crp+ do f exp(i(p + p)a,) day = 27 f Clp 0 +p)dp =21¢) ;s

(o) —00

where 6(p + p) is the p-delayed Dirac delta function. Therefore,

e = 5= FillT F )
Likewise, if .
= [ i
then . )
Coad = ﬂFi(‘f;’i’f—ﬂ) = Coj—pt-

Considering that o is the third argument (after p and 2) of ¢}

,+,4°

Cpea(0) = cppa(—0—1).

we derive from (3.4) that

(3.3)

(3.4)

(3.5)

AIMS Mathematics Volume 5, Issue 6, 5664-5682.



5669

Theorem 3.1. The ¢} o 111 (3.3) is expressed in terms of the Coulomb wave function in (1.1) as follows:

. (o +1+ip) by
¢ = Tﬂp exp(jp) Fop, ) (1#0,0>—1). (3.6)

Proof. Recall a known formula (see, e.g., [10, Entry 3.383-1] and [19, Entry 2.3.6-1])
f X Na—-xyte P dx = B(u,v)d™ ' [ Fi(v; u+ v; —ap) (3.7
0
(a € Ry, min{R(u), R(v)} > 0),

where B(a, §) is the familiar Beta function given by (see, e.g., [27, Section 1.1])

1
f A= dr (min{R(a), R(B)} > 0)
0

(@) T(B)
I'(a+pB)

B(a, p) = (3.8)

(o, BEC\Zy).

Then 1
C/.l,p,+ = ZFl(f/;’f—p&)

e 1—af THp 1+a/f
)\ 2 2

2—0—1 1 . .
f (1 - a/l)o-ﬂp(l + al)(’_'p exp(i/lal)dal
T -1

“ip
+ al) exp(ida;) da;

+

—-o—1

2 2 .
= exp(—id) f 177" (2 = )7 exp(idr) dt
t 0

o

2
= — exp(-i)B(oc+ 1 +ip,0 + 1 —ip) 1 Fi(0 + 1 —ip; 20 + 2;2iA),
n

where (3.7) is applied for the fifth equality. For the | F; of the last expression, using the following
known relation (see, e.g., [1, Eq. (4.3.2)], [17, p. 290])):

| 1
M, ,(z) =2""7 exp (—%) 1Fy (v—u+ 5;21/+ l;z), (3.9)
we find
. iyt . . .
Chor = B(o + 1 +ip,0 + 1 —1ip) M, . 1(2i4),

which, in view of (3.8), is equivalent to

. (D)™ ' T+ 1+ip)T(c+1—ip)
C =
Apt o Qo +2)

M, 1 (2i1). (3.10)

Since I'(z) is analytic in the half plane R(z) > 0 whose domain is symmetric with respect to the real
axis x = R(z) e R* alﬂ" (x) € R on the real axis x = R(z) € R*, by reflection principle (see, e.g., [3, p.
571), we have I'(Z) = I'(z) for each z in the half plane R(z) > 0. Therefore (3.10) is rewritten as follows:

. ) T + 1 +ip))?
C =
Aot 27 I'Qo +2)

M, .1 (2i0). (3.11)
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From (1.1) and (1.3),

2(-i)"" exp(2) F(20 +2)
L(21) = o100 Fo(p, A). (3.12)

lp o+3

Finally, using (3.12) in (3.11), we obtain the desired result (3.6).

]
Theorem 3.2. Let —1 <0 <0and A # 0. Then
. I'(o+ 1 +1p)| _
¢y = e H(p, D) - Hi(p, D). (3.13)
21 A7+ 20+ exp (7/?)
Or, equivalently,
D70 + 1 +1i
o, =D e ¥ N E o). (3.14)
mA7*! exp (7’3)
Proof. We have
L] 1 o
C/l,p,— = ZTFl(f/l?f—p,—)
1o (1= (142 ¥ Covd
=5 ) > + exp(ida) da;
—o-1 00
= [exp(—i/l) f 177 (t + 2)7 exp(—idr) dt
0
+ exp(id) f 1770 (¢ + 2)77 exp(idf) dt].
0
Recalling an integral formula (see, e.g., [19, Entry 2.3.2.(3)])
f 7 (x+y)! exp(—sx)dx
’ (3.15)

:y,u+v—lB(lJ’l —u—=v)1Fi(u;u +v;sy)
+S1_H_Vr(/l+v_ 1) Fi(1 —V;Z—/J_V;sy)

(R(u) >0, |argy| <7, R(s)>0; R(s) =0, Ru+v)<2)
and using (3.9) and (1.1), we obtain

. 1
Cip- = E(U-'— +U.),
where
B(o+ 1 +ip,-200 - 1) My, o+ (F2i) +I'2o + 1) My, o1 (F2i1)
U, : =
- (Fid)o+!

I'oc+1=+ip) F(—20'—1) I'Qo+1) .

R AL = Moy (F2) + —————— M, 1(32id)

(Fid) I'lp — o) I'(zip+0+1)

I'c+1=+ ip)

= W Wi, ot (F2i1)
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(see also [10, Entry 9.220.(4)]). Using (1.2), we derive (3.13). Using (3.13) and (1.4), we obtain
(3.14). O

4. Formulae related to the matrix diag(—-1,1,-1)

For any f} and any g € G, let us express 7°(g)[f}] as the integral operator

00

r@wm:f‘axmwi @.1)

where 7%, are the matrix elements of the representation 7°*. Then

R = [ G@F U

—00

Choosing here i = 1, in view of

00

Fi(fy. /) = f exp (i[/A1+/~l]C¥1)dCY1 =6(4 + A),

—00

where 6(A + 1) is the (—1)-delayed Dirac delta function, we have

(v}

ﬁ@@wnm=f £9,(9) 61+ D d = 21 15_(o).

o0

Thus {
14(8) = 5 FUT @1 S, 4.2)

From (3.1) and (4.1), for any g € G, we have
@it = [ (eger ) d
where

T, = f ta(g) c/fl’p’i da.
On the other hand,

00

QU = [ (e T@U e, T 1) do

—00

Since f;, is an eigenfunction of the linear operator 7*(diag(~1, 1, —1)) with eigenvalue (- 1)¥, we have
f t(diag(-1,1,-1)) cip’i di = (=1 Chps- 4.3)

We express the matrix elements #,;(diag(—1, 1,—1)) in terms of Bessel-Clifford functions as in the
following theorem.

AIMS Mathematics Volume 5, Issue 6, 5664-5682.



5672

Theorem 4.1. Let —1 < 0 < 0. Then

2 227+ gin(orr)

a(diag(l, -1, -1)) = —— Kor1(-A1) (A1 <0) (4.4)
and 1y
ta(diag(l,-1,-1)) = 2 cos(on) [/Alzml Cars1(A) — 72! C—ZU—I(/l;l)] 4.5)
(/lfl > 0).

Proof. Since
£l (diag(1,-1,-1)) = (=)™ a2 % exp (- ida;")

and
Joaly = exp(=iday),
we find from (4.2) that

1
t(diag(l, -1, -1)) = e Fy (T°(diag(l, =1, =D)[f71. f-2)
B 1
- (- x

o0 (4.6)
f afz"_z cos(/lcxf1 + Aay) day.
0

Using known integral formulas (see [19, Entry 2.5.24.4]), we obtain the following integral formulas:
Forab > 0 and |R(a)| < 1,

fw 7! cos (ax + é) dx=2 (12)2 ! [J_a(Z Vab) - 1,2 ‘/a_b)] 4.7)
0 X 2 \a) sin (%)
and o
f x*7! cos (ax - é) dx=2 (é) cos (@) K,(2 \/cE). 4.8)
0 X a 2

Using (4.7) and (4.8) to evaluate the integral (4.6), with the aid of the relations (1.5) and (1.6), we
derive the expressions (4.4) and (4.5). O

Using (4.3) and Theorems 3.1 and 3.2, we obtain the following identity

(1) 2sin(on) (0 4, 5 v oA
o Folp. ) =27 [ 3 g (-0 Folp. D
+—"C°SZ((’") f A7 Cayr (A1) Folp, 1) d1 (4.9)
0

mcos(onm) [ 5 R A
- 2 Q20+1 0 A : C—Za’—l(/l/l) Fg(p, /l) dAa

(1eRY, -1<0<0).

The identity (4.9) can be rewritten in the following theorem.
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Theorem 4.2. Let A > 0and -1 < o < 0. Then

(=1)7+e ncos(om)

o Folo, D) =————Hy | |17 Folp, )| ()
ST ) [ Foto, D] )
¥ 2(_1)0:“("”) Kot [0 Fop, =D)] (.

Considering the case A < 0 in (4.3), we obtain the following similar result.

Theorem 4.3. Let A < 0and -1 < o0 < 0. Then

(=¥ n cos(om) Ao n
i Felo. ) =——— H, [T Folp, =D)| (=)
T cos(om)

s HO L [ Folo. D] (-0
N 2(=1)? sin(on)

T

Kag ot [ 177 Folp, =D (=),

5. Formulae related to the rotation through r in the plane Ox;x;

Let U,, be the multiplicative group of all complex roots of the equation 7" = 1 (n € N). Then, for
any € € U,, we have diag(1, &,&) € G and

T*(diag(1, &, &)L, = (£)77% (cosh a, + esinh y)¥ = Jopsehy-
Therefore,
f t(diag(1, &, €)) c}p . di = Clepre
The trivial case & = 1 gives #,;(id) = (1 — A). The case & = —1 yields the following theorem.
Theorem S.1. Let A > 0 and -1 < o < 0. Then

(=1)7 exp(mp) _2(=1)7*sin(zor)

e Fol=p. ) Koot [1777 Folp, = )| (1)
+ —COS;‘T”) HY | [77 Foo. 0| (5.1)
B cos(om)

> HY [2—‘7—‘ F,(p, /l)] ).

Proof. The proof of (5.1) would run parallel to that of Theorems 4.1 and 4.2. We omit the details. O

Another result corresponding to (5.1) for the case 4 < 0 is left to the interested reader.
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6. One formula related to the rotation through 7 in the plane Ox;,x;
In this section we use the subgroup H° consisting of (circle) rotations
1 0 0
h°E) =] 0 cosé —siné |.
0 siné cosé

Note that the subgroup H° is isomorphic to the group S O(2).
For any g € G, let us express the function 7°(g)[f,.] as linear combinations of functions belonging
to the basis B3:

T*(9)Lf7.1(x) = f (5@ ) + 10 _(8) £ ()] dp. 6.1)

The equation (6.1) gives that, for any k € Z,

FAT*(OLf5.]: fracrp)
B f (15204 Fi s o) + 812 s O F (5 )] .

Choosing here j = 1 and considering (3.2), we have

2r0(0 +p) (even k)

Fz(fa,i’fﬁ,i(—l)k) = {0 (odd k).

Therefore,
FAT* QL) fracnt) = 2000, L 1(8).

Or, equivalently,
[ ] 1 [ ] (]
s p-y(8) = 5 FT (@OUfp i) fopiaeip)-

Theorem 6.1. Let —1 < 0 < 0. Then

2271 exp(Z) B(1 + 0+ ip, —0 +ip)
i+ (1 + o —ip) [T(ip — o)
X o Fi(—o+ip,—o —ip; 1 +i(p + p); —1).

f AP i(=p,—A)da =

Proof. We find

[ ] o 7[ 1 [ ] o ﬂ { ]
oo (F3)) = 37 P (R(3)) 2.0 500
27 * —o—1+i, i o—ip ip
== f @); 7" (1= )7 (1 + @)™ day (6.2)
20 _T

== | 7" -a)"" (1 +a) " da,.
T Jo
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Using a known integral formula (see [19, Entry 2.2.6.(1)])

b
f (x—a) ' (b-x)"(cx+d)¥dx

= (b—a)" " (ac + d)Bu, v) - F, (,u, —Ky 1+ V; cla - b))
ac+d
(minm(u), R} > 0, 'arg ZE : d‘ < n), 6.3)
we obtain
oo (1°(5)) 22777 Bl + 1 +ip,—0 +ip)
X Fi(— o +ip,—o —ip; 1 +i(o + p); —1).
We also find | .
T T
s (F3) = 52 [ ciea P (B ) o
where x x
F (e (PG g ) = Fa (7 (0 5)) 10 )
1 s
= 2'"7 exp(id) f (@+a)? 7 (1 - )™ exp (alzfl) da (6.4)

+00
= 2177 exp(id) f Qu — 1) exp(=2idu) du.
1

Thus, t;’ ipt (h"(g)) can be expressed in terms of Gamma functions (see, e.g., [19, Entry 2.3.4(1)]).

Now, the statement of the theorem follows from (3.5), (6.2), and (6.4). m|

Remark 1. From Theorem 4.2 and throughout, F_,_1(—p,—A1) can be changed by the linear
combination of basis functions in Ker d (see [5])

F_, 1(p,1) =cosO F,(p,A) +sin0G(p, 1),

where

0= (0' + %)Tl’ + c_o_1(p) — co(0).

7. Formulae related to the hyperbolic rotations in the plane Ox; x,

In this section we deal with the subgroup H* of matrices

sinht cosht O
0 0 1

h'(t) =

cosht sinht 0]

in G.
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Theorem 7.1. Let —1 <o <Qandt > 0. Then

f AP F g1 (0, =) M 5y 3( = 24€77)dA

227 exp(|plr — 270) T(=0 —ilp))

il
= h ’
[(—0)[T(=0)|B(o + 1 +ip, 0 + 1 —ip) 0" (coshT)

-1

where Q' (x) is the associated Legendre function of the second kind.

Proof. Computing the matrix elements of the subrepresentation 7° to H*, we obtain

1
t/;,+,,6,+(h*(_7)) = ZTFZ(T.(h*(_T))[fP.*]’fﬁ*)
1 o .
= ﬂ . T (h (_T))[f;),-{-] f‘ﬁ,+) dy72,+ (71)

1 0 .
= — f (cosh T + sinh 7 cosh @)™~
2 J
X (cosh T cosh @, + sinh @, + sinh 7)¥ exp(—ipa,) da,.

Since cosh 7 cosh @, + sinh @; + sinh7 > 0 and o + 1 > 0, using a known integral formula (see [19,
Entry 2.5.48.(6)])

®  cosbxdx eXp(ber) F(V_ %) a ( a )
o (a+coshex)  c(@-1)>T0) "\ ViZ_-1

(beR*, R(ev) >0, a¢[-1,1]),

we have
g7 (-1) = SEETLETZI0 04 cosh)
Also, N
Fopll ) = o [ TGO ) A
Here

F(T* (W (=71 for) = FaT* (W (D)7, Sos)

« Asinh
= exp(To) [ ) (cosha, + 1)™! exp (i LT (cossl}rllcyfir D - ﬁaz])

exp (o + de
= 20’+1

-7 1
) f 17 (1 = )7 exp (- 21e 1) dt,
0
where the last integral is evaluated by using (3.7). Therefore we have

exp2to)B(oc+ 1 +ip, 0+ 1 —ip)
(_ 1)0‘ 220‘+4 T

X f /1_0—_2 C[.),+,/l CXp (3/16_7—) Ml—i,[’),(T-F%( - 2/16_7—) d/l.

t;,+,ﬁ,+ (h*(_T)) =
(7.2)

Finally, considering (7.1) and (7.2), we complete the proof. O
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Remark 2. Cylindrical (ordinary) and spherical Bessel functions can be expressed in terms of
Coulomb function, respectively, by the following formulas (see, e.g., [29, Egs. (2.1a) and (2.1¢)]

1

Jy(A) = (7%)2 FV_%(O, A and j,(1) = %FV(O, A).

8. Formulae related to the product of subgroups H, and H*

In this section we show that the matrix elements of the subrepresentation 7°* to the subgroup H,H*
yield four integral representations of the Appell function F;, which depend on the relations between
parameters 6, and 7 and correspond to Figures 1-4.

—e 0, -1 0, -1 e’
6, -1 e’ —e " 6, +1
Figure 1. Theorem 8.1. Figure 2. Theorem 8.2.
—e" e’ 0, -1 0, +1
6, —1 6, +1 —e " e’
Figure 3. Theorem 8.3. Figure 4. Theorem 8.4.

Theorem 8.1. Let -1 <o <0and e ™ < |0; £1|. Then

f %7 exp(i0, ) F_g_1 (D, =) F_g_1(p, e 7 1) dA
T exp (20“[‘ -7- —"(p;ﬁ))

- 2202 |I(=0 +ip) [(—o + ip))

X(1+6,+e" W B(~0 +ip, —0 — ip)

( - 01 -’ o-ip

X F +1i +1ip ip; -2 2e” 2e”
-0 , —O » —O0 —10; —240, ’ :
! P P P eT+60, -1 e"+6,+1

Proof. We show that both functionals F; and F, are invariant with respect to the pair (T°*(h*), T (h*)) of
representation operators. Indeed, in view of homogeneity of u and v,

Fo(T*(h* () [ul, T(R"(0)v]) = Fi(T* (W ()lul, T(h* (1) [v])

f‘x’ (e‘T +e'a; eT—ea]
u s »
oo 2 2

e+l et -l
X v 5 , 5 ,ar | dag

0 1 + ¥ a/% 1 —e* a/% .
u , ,etay
o 2 2

1 +€ZTQ% 1 —EZTCZ%
XV ,
2 2
= Fl(ua V) = FZ(ua V).

, eTaq) e’ da;
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Since T° is a homomorphism (of G to the group GL(D*®) of linear operators of ©° with trivial
kernels) and H, is an one-parameter subgroup (that is, hl‘l(él) = h1(-6,)), we have

15+ (1O (7)) = %T FiT* (@R ()., fop+)
(=@ -0 (e a)?
T Ioo (e 2 - a/%)i”mp (1+a;-6)"
1+ -6 (1 —a +6,)7

= ap,

T o (e_T + a,])0'+l—ip (e_T _ a1)0'+1+ip

8.1)

where Q is the intersection of the segments || < e and [6; — 1,60, + 1]. Under the assumption
e " < |6, = 1]| (Figure 1), this integral can be evaluated by using a known integral formula (see [10, Entry

3.211]): For min{R (1), R(v)} > 0,

1
f ¥ =) = ux)™ (1 = vx) @ dx = B(u, v) Fi(u, k, w; it + v; u, v).
0

Also, 1
v (MODR' (@) = = F(T* (00K (O30 f5.0)
1
= FA(T*(h*()Lf5 1 T(hy (0L f-p.]
= ox ) Cha Fi(T*(h*()Lf, ) T(hi (0D f2]) dA.
We thus have o .
fapalin@i (o) = ST [

X f (e =) 7" (e + 1) exp(—ida;)da

_exp(id-to-1) (7
- 2-o-1 T .

c_p+ €xp(ile™™)dA

2e7 T .
X f OO (26T — 1) exp(—idr) dr.
0
Using (1.1), (3.7) and (3.9), we get

2 exp (i@l/l + %)

l;ﬂ_ﬁﬁ_(hl(gl )h*(T)) = f Cp+.1 F_U_l(p, /le_T) dAa.

7 [C(ip — o)™
Using (3.5), we have

3 * — T + A) . * A
tp,+ﬁ,+(h1(91)h () =2n 2 exp( ('02 P ) I'(—0 +ip) (-0 + ip)|
- (8.2)
X f %7 exp(i61A) F_g_1(p, =) F_g_1(p, €7 2) dA.
Considering (8.1) and (8.2), we complete the proof. O
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Employing the same proof as in Theorem 8.1 for the cases corresponding to Figures 2—4, we obtain
the following results, without their proofs, which are given in Theorems 8.2, 8.3 and 8.4.

Theorem 8.2. Letr—1 <o <0and |0, £1| <e™. Then

f A% exp(i61A) F_y_1(p, =) F_y_1(p, €7 1) dA

_ 4m(eT+ 6 - 1) T YBo+ 1 -ip,o + 1 +ip)
(™ + 10" exp(“42) |N(-o +ip) [(~0 + ip)|

2 2
X F +1—-ip,c+1—ip,o0+1+1ip;20 +2; , .
1(‘7 0 0.7 0T T S g — e 1—91+e‘7)

Theorem 8.3. Let —1 < o <0, [6; + ™| < 1, and 16, + 1| < e™". Then

f A% exp(i0; ) F_g_ (P, =) F_y_1(p, €77 2) dA

(l+6+e )P (1 -6, - ) P B(-0 +ip, 0+ 1 +ip)
20240 exp ("2 4+ 7(1 + 0 +ip)) [T(~0 +ip) [(~0 +ip)

eT+60,+1 (6, +1)+ 1)
eT+6, -1’ 2 '

XFl(—0'+ip,—0'+if),0'+1+ip;1+i(p+/3);
Theorem 8.4. Ler —1 < 0 <0, |e‘T - 91| <1l,and |0, — 1| < e ™. Then

f %7 expi0; ) F_g_1(p, =) F_oy_1(p, " A)dA

_ 2Mha(e+6,- 1) B+ 1 -ip,—0 —ip)
(1 + e —6))ie*d exp (@) |F(—o- +ip)I'(—o + lﬁ)l

l+e7™=60, 1+e" -6
xFl(a+1—i,a,a+1—ip,—o-—i,3;1—i(p+,3);1 - 91, 62 1).
_eT_l

Remark 3. In Theorems 8.1-8.4, the Appell function F; can be rewritten in terms of the
hypergeometric function , F'; by using the following relation (see, e.g., [21, Entry 7.2.4.(63)])

Fl(a’b,l;;b_i_l;;w’z) = (1 —Z)_aQF] (a,b,b'i'l;’vlv_z)
—Z

9. Concluding remarks

The group theoretic approach gives a natural (in some sense) technique to obtain formulas for
integral transforms of special functions, since they occur in relations between kernels of integral
operators of representations calculated in different ordinary and mixed bases and matrix elements
of basis transformations. For instance, by evaluating the Mellin-Laplace transform of the Coulomb
Sturmian radial function, Morales [15] used series decomposition and integration term-by-term to show
that the integral

f 2 exp (= (1 + w)x) | Fi(1 +1—n; 20 +2;2x) dx 9.1
0
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is equal up to multiplicative constant to

l+l-n24+2l+j 2
2421 l+w|’

(1 + )22 TQ + 20+ j),F,

where [, j € Ny and w > —1. For investigation of matrix elements of two-body Coulomb interaction in
the lowest Landau level, Bentalha [2, Lemma 1] obtained the following integral formula for product of
associated Laguerre polynomials ([, m,n € Nj) expressed in terms of Appell F, function:

f " exp(—2x) L. (x) L. (x) dx
’ 9.2)

! ! 1
_ (n+l).(lm+l).F(l+ 2) F2(1+ l;—n—m;l+ e 1;1’1 ’
243 nlm! (I1)2 2 2°2
which may be also expressed in terms of ;F, (see, e.g., [20, Entry 2.19.14.(9)] and [28]). Since
L2*!(x) up to multiplicative constant coincides with | Fi(—n;2l + 2; x), we have in (9.1) and (9.2)
Mellin-Laplace integrals for Whittaker functions of the first kind, which are related to regular Coulomb
function F,(p, A). The results in Theorems 8.1-8.4 are concerned with the Mellin-Fourier transform
for Coulomb functions and, in this regard, are closely related to the examples (9.1) and (9.2). It may
be said that, in some sense, Theorems 8.1-8.4 are complexifications of these examples.

Theorems 4.1-8.4 are based on the fact (described in Theorems 3.1 and 3.2) that the matrix elements
Cp+2 and c,, . (kernels of corresponding integral operators) of the transformations B; — B, and
B, — B can be expressed in terms of Coulomb wave function F,(p, 1). In all these theorems (except
Theorem 5.1), we have used only integrals of the following forms

fcp,m...d/l and fc,l,p,Jr...dp.

Analogous integral transforms to those in this paper, containing kernels c¢,_; and c,,_, can yield
similar results. Also these kernels were considered for two dual cases o = —% + ﬁ in [23].
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