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1. Introduction

In this paper, we use G = (V(G), E(G)) to denote a graph with the vertex set V(G) = {vi,va, - - -, v}
and the edge set E(G). Let e(G) = m = |E(G)| be the number of edges of the graph G. For any
vi € V(G), d; = d,, = dg(v;) represents the degree of v;. Let (d;, d», - - -, d,) be the degree sequence of G,
where d; < d, < --- < d,. Let ¢ or 6(G) be the minimum degree of G, and Ng(v) be the set of neighbors
of a vertex v in G. The complete graph of order n is denoted by K, and the complete bipartite graph
with the partite sets X and Y with |X| = m and |Y| = n is denoted by K, ,. The disjoint union of G and
H, denoted by G + H, is the graph with vertex set V(G) U V(H) and edge set E(G) U (H). In particular,
if Gy = G, = -+ = Gy, then let kG, = G| + G, + - - - + Gy. Similarly, we use G vV H to denote the
join of G and H. The complete graph on n — 1 vertices together with an isolated vertex v is denoted by
K, +v.

Let A(G) = [a;;] be the adjacency matrix of G, where a;; = 1 if v; is adjacent to v;, a;; = 0 otherwise.
We use u(G) to denote the maximum eigenvalue of A(G), which is called the spectral radius of G. Let
D(G) be the diagonal degree matrix of G, and Q(G) = D(G) + A(G) be the signless Laplacian matrix
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of G. Let g(G) be the maximum eigenvalue of Q(G), which is called the signless Laplacian spectral
radius.

We call the cycle (path) containing all vertices of G the Hamilton cycle (path) of G. If graph G
contains a Hamiltonian cycle (path), then G is a Hamiltonian traceable graph. If for any positive
integer k(3 < k < n), G contains a cycle of length &, then G is called a pancyclic graph. Obviously, a
bipartite graph is not a pancyclic graph. In addition, a Hamilton cycle graph is certainly Hamiltonian,
but the converse is incorrect. Determining whether a given graph is a Hamilton graph or not is one of
the most difficult classical problems in graph theory. In fact, it is an N P—complete problem.

In recent years, more and more worldwide researchers use the spectral theory of graphs to solve
this problem. First, Fiedler and Nikiforov [1] established a sufficient condition on spectral radius for
the existence of a graph with Hamilton paths and Hamilton cycles. Yu and Fan [2] used the spectral
radius of the adjacency matrix or signless Laplacian matrix of the graph or its complement to give a
sufficient condition for the graph to be Hamilton-connected. Lu et al. [3] gave the spectral sufficient
conditions for a bipartite graph to be a Hamilton graph. Many scholars have studied similar problems
under different spectral conditions since that time, see [4—10]. Recently, Yu et al. [11] has discussed
for the first time the spectral sufficient conditions for a graph with a minimum degree 6(G) > 2 to be
a pancyclic graph. In this paper, a new edge sufficient condition for a graph with a minimum degree
6(G) > 3 to be a pancyclic graph is established by using a similar method. Then, a sufficient condition
on (signless Laplacian) spectral radius of a graph to be a pancyclic graph is given based on the edge
sufficient condition.

2. Preliminary

Given a graph G with order n, a vector X € R", is called to be defined on G, if there is a 1-1 mapping
¢ from V(G) to vector, simply written X,, = ¢(u).

X is defined on G if X is the eigenvector of A(G)(Q(G)). Let X, denote the term of X corresponding
to vertex u. One can find that when A is an eigenvalue of G corresponding to the eigenvector, X if and
only if X # 0,

X, = Z X,, for eachv € V(G). 2.1)

ueNg(v)

The equation above is the eigen-equation of G. One can find when ¢ is an signless Laplacian
eigenvalue of G corresponding to the eigenvector X if and only if X # 0,

lg — de(v)|AX, = Z X,, for eachv € V(G). (2.2)

UENG(v)

The equation above is the signless Laplacian eigen-equation of G.
Lemma 2.1"'?! Let G be a graph with n vertices, and its degree sequence isd; < d, < --- < d,. G
is a pancyclic graph or bipartite graph if for all positive integers k there is always d,—, > n — k and
dy <k <n/2.
Lemma 2.2!'3 Let G be a graph with n vertices and m edges, then

uG) < V2m—-n+1,
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and the equality holds if and only it G = K,, or G = K ,,_;.
Lemma 2.3!!'* Let G be a graph with n vertices and m edges, then

4(G) < ml +n-2,

n—
and the equal sign is true if and only if G = K,, or G = K;,_; when G is connected. If G is not
connected, the equal sign is true if and only if G = K,,_; + v.
Lemma 2.4/ Let G be a Hamiltonian graph and satisfy e(G) > n?/4, then G is either a complete
bipartite graph Kz 2 (where n is even), or a pancyclic graph.
Lemma 2.5!'% If a Hamiltonian graph G of order n satisfies

(n—1y
4
then G is a pancyclic graph or G is a bipartite graph.

e(G) >

+1,

3. Main results

Theorem 3.1 Let G be a connected graph with n(n > 5) vertices and m edges, and its minimum degree
0(G) > 3. If
m2 (") +9, 3.1)

then G is a pancyclic graph or a bipartite graph or G € NP; = {(3K,+K,—¢)V K3,(4K; + K3) V K4,(6K; +
Kz) \Y K6,9K1 Vv Kg,gKl VK7,(K1 + K1’7) VKG,Kz’g Vv K5,K6 \Y (2K1 +K1’6),K4 \/2K1 Vv (K2 +K1’6),K5 Vv (Kl +
Ki6), (K2 +Ki5)VKs,2Ki VKy)VTIK (K1 + K, + K1 4)VKs,(2K 1+ K, 5)V Ks,(Ki + K> VOK )V Ky (K 5+
Kz)VZK]VK3,7K1 VK6,K5V(2K]+K1,3+K2),K4V[K]+K1V(K1,4+K2)],K4V(K] +2K1V6K1),K3VK3’7,K5V
(3K1 +K1’4),K3 V2K1 V(Kl +K1,4+K2),K4 \Y [K1 V (Kl +K1’5)+K1],K3 V2K1 V(2K1 +K1’5),(5K1 +K2) V
K5,K4V(K1V(4K1+K2)+K1),7K1VKS,(SKI+K2)V2K1\/K3,6K1VK5,K4V(K1’4+K2),K4V(K1+K1,5),K3V
K6, Ks V(K1 +K13+K7),Ks V(2K 1+ K 4), K3 V(Ko VSK)D)+ K LKy V2K V(K 14+ K), Ky V(K + K o+
2K1),K3V(K1 +K2,5),K2VK3’6,K4V(K1’3+3K1),K2V2K1 V(K] +K1’3 +K2),[K] V(K1’4+K1)+K]]VK3,K2V
2K1V(2K1+K1’4),(4K1+K2)VK4,K3V[K1 +K1V(3K1 +K2)],6K1\/K4,(4K1+K2)\/2K1 VK2,5K1 VK4,(K1,3+
Kz) \Y4 K3,(K1 + K1’4) \Y4 K3,5K1 \Y4 2K1 \Y4 Kz,(Kl + KI,Z + Kz) \Y4 K3,(2K1 + K1,3) \Y4 K3,(K1’3 + Kz) Vv 2K1 Vv Kl}
Proof: Suppose that G is neither a pancyclic graph nor a bipartite graph. According to Lemma 2.1,
there is a positive integer k makes 3 < d, < k <n/2 and d,_; < n—k — 1 hold at the same time. Then
we have
2m =T d; + T di + B d;

<kKE+m-2k(n—k-=1)+k(n-1)

=n*—n+3k+(1-2n)k

=2("7) + 18 = (k = 3)(2n - 3k - 10),

thus
(3.2)

n_3) Lo- (k - 3)(2n2— 3k - 10)'

Since
B (k-3)2n -3k -10)

2 ) (3.3)
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thus (k — 3)(2n — 3k — 10) < 0. Next, the following two cases are discussed.

Case 1 Assume that (k—3)(2n—-3k—-10) = 0, i.e., k = 3 or 2n—3k— 10 = 0. All the above inequalities
are equal and m = (”;3) +9.

Case 1.1Ifk =3,then Gisagraph withd, =d, =ds =3, dy =ds =---=d,.3=n—-4,d,.r =d,. =
d, = n— 1. Three vertices with degree n — 1 must be connected to other vertices, then a K3 is obtained.
The three vertices with degree 3 are not connected with other vertices, and a 3K, is obtained. The
remaining n — 6 vertices with degree n — 4 must be connected to each other to ensure that the degree is
n — 4, so they induce a K,,_¢. According to the above analysis, the graph G is 3K + K,,_¢) V K.

Case 1.2 If 2n — 3k — 10 = 0O, then we get n < 19 because 2”3;10 = k <
5, and hence n = 11k = 4, or n = 14k = 6, or n = 17k =
8. The corresponding permissible graphic sequences are (4,4,4,4,6,6,6,10,10,10,10),
(6,6,6,6,6,6,7,7,13,13,13,13,13,13),(8,8,8,8,8,8,8,8,8,16, 16, 16, 16, 16,

16, 16, 16). Analysis shows that the graphs G are (4K; + K3) V K4, (6K; + K;) V K¢ and 9K, V Kg
respectively.

Case 2 Assume that (k—3)(2n—3k—10) < 0, 1.e., k > 3 and 2n—3k—10 < 0. Because 2n—10 < 3k < %n
then,n =15,k=70orn=13,k=6orn=12,k=5orn=11,k=5orn=10,k=40rn =9,k = 4.
Case 2.1 If n = 15, k = 7. According to equation (3.3), we have 150 < X1 d; < 154. All possible
degree sequences and their corresponding graphs are shown in T'able 1.

Table 1. The degree sequences and corresponding graphs of Case 2.1.

Degree sum No. The degree sequence The graph

154 1 (7,7,7,7,7,7,1,7,14,14,14,14,14,14,14) G =8K, V K;

152 2 (7,7,7,7,7,7,1,7,12,14,14,14,14,14,14) G=KsV(Kr+Kip)
3 (6,7,7,7,7,7,7,7,13,14,14,14,14,14,14) G=(K +Ki7)VKs
4  (7,7,7,7,7,7,1,71,13,13,14,14,14,14,14) G =K,3VKs

150 5 (1,7,7,7,7,7,7,7,10,14,14,14,14,14,14) G=K¢V (2K, + Ky4)
6 (6,7,7,7,7,7,1,7,11,14,14,14,14,14,14) G =(K, +K 5+ K;) V K¢
7 (6,6,7,7,7,7,1,7,12,14,14,14,14,14,14) G =KV (2K, + Ky 6)
8 (7,7,7,1,1,7,7,7,12,13,13,14,14,14,14) G = K4V 2K, V (K + K )

Case 2.2 If n = 13, k = 6. According to equation (3.3), we have 108 < X% d; < 114. All possible
degree sequences and their corresponding graphs are shown in T'able 2.
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Table 2. The degree sequences and corresponding graphs of Case 2.2.

Degree sum No. The degree sequence The graph
114 1 (6,6,6,6,6,6,6,12,12,12,12,12,12) G =7K;, V Kg
112 2 (5,6,6,6,6,6,6,11,12,12,12,12,12) G=KsV (K +Kp)
3 (6,6,6,6,6,6,6,10,12,12,12,12,12) G=(K)+K;5)VKs
4  (6,6,6,6,6,6,6,11,11,12,12,12,12) G = (2K, V Ky) V7K,
110 5 (6,6,6,6,6,6,6,8,12,12,12,12,12) G =Q2K,+K;3)Vks
6  (5,6,6,6,6,6,69,12,12,12,12,12) G=(K +K,+K;4)VKs
7 (5,5,6,6,6,6,6,10,12,12,12,12,12) G=Q2K +K;5)VKs
8 (4,6,6,6,6,6,6,11,11,12,12,12,12) G=(K +K,V6K;|) VK,
9 (6,6,6,6,6,6,6,10,11,11,12,12,12) G=(Kis+Ky) V2K VK;
108 10  (6,6,6,6,6,6,6,6,12,12,12,12,12) G =4K, VvV K5

11 (5,6,6,6,6,6,6,7,12,12,12,12,12)
12 (6,6,6,6,6,6,6,9,9,12,12,12,12)
13 (5,5,6,6,6,6,6,8,12,12,12,12,12)
14 (6,6,6,6,6,6,6,8,11,11,12,12,12)
15 (4,6,6,6,6,6,6,9,11,12,12,12,12)
16 (4,6,6,6,6,6,6,10,10,12,12,12,12)
17 (6,6,6,6,6,6,6,10,10,10,12,12,12)
18  (5,5,5,6,6,6,6,9,12,12,12,12,12)
19  (5,6,6,6,6,6,6,9,11,11,12,12,12)
20 (5,5,6,6,6,6,6,10,10,12,12,12,12)
21  (5,5,6,6,6,6,6,10,10,12,12,12,12)
22 (5,5,6,6,6,6,6,10,10,12,12,12,12)

G = (K1 + K1,2 + 2K2) V Kj;

G =K,V (K, V4K, + K3)
G=KsV Q2K +K 3+ K>)
G=K;V2K,V (K1’3 +2K5)

G=K,VI[Ki+K;V (K1’4 + Kz)]

G =K,V (K| +2K,;V6K))

G = K3 \Y K377
G=Ks5V (SK] + K1’4)
G=K3V 2K1 \% (Kl +K1,4 + Kz)
G=K,V (K, V5K +K,)
G=K,V (K V(K + K175) + K7)
G =K V2K, V2K, + K 5)

Case 2.3If n = 12, k = 5. According to equation (3.3), we have 90 < X2 d; < 92. All possible degree
sequences and their corresponding graphs are shown in T'able 3.

Table 3. The degree sequences and corresponding graphs of Case 2.3.

The degree sequence The graph
(5,5,5,5,5,6,6,11,11,11,11,11) G =K +K;)VKs
2 (455,55,6,6,10,11,11,11,11) G=K,V (K, V (4K, + K>) + K))
3 (5,55,55,55,11,11,11,11,11) G =7K,V K5
4 (5,5,55,5,6,6,10,10,11,11,11) G=(5K, +K;) V2K,V K;

Degree sum No.
92 1
90

Case 2.4 If n = 11, k = 5. According to equation (3.3), we have 74 < X! d; < 80. All possible degree
sequences and their corresponding graphs are shown in T'able 4.
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Table 4. The degree sequences and corresponding graphs of Case 2.4.

Degree sum No. The degree sequence The graph

80 I (5,5,55,5,5,10,10,10,10,10) G =6K; VK;s

78 2 (55,5,5,5,5.8,10,10,10,10) G=K,V(Ki4+K)
3 (4,5,5,5,5,5,9,10,10,10,10) G=(K;+K;5)VKy
4 (5,5,5,5,5,5,9,9,10,10,10) G=K;V Ky

76 5 (5,5,5,5,5,5,6,10,10,10,10) G =K,V (Kiz+2K;)
6 (455,5,55,7,10,10,10,10) G=(K +K;3+K)VK,
7 (44,5,55,5,8,10,10,10,10) G=KsV (2K +K;4)
8 (3,5,5,5,5,5,9,9,10,10,10) G=K;V ((K,V35K))+Ky)
9 (5,5,5,5,5,5,8,9,9,10,10) G=K,V2K,V(K,+K;4)

74 10 (4,5,5,5,5,5,5,10,10,10,10) G =(K;+3K;) VK,

11 (4,4,5,5,5,5,6,10,10,10,10) G = K4 \Y (Kz + K1,2 + 2K1)
12 (5,5,5,5,5,5,6,9,9,10,10) G = (K1,2 + 2K2) V2K,V K,

13 (3,5,5,5,5,5,8,8,10,10,10) G=K;V (K +K,5)
14 (5,5,5,5,5,5,8,8,8,10,10) G=K,V K¢
15 (4,4,4,5,5,5,7,10,10,10,10) G = K4 \Y (K1,3 + 3K1)

16 (4,5,5,5,5,5,7,9,9,10,10) G=K,V2K, V(K +Ki3+K)
17 (3,4,5,5,5,5,8,9,10,10,10) G=(K;V(Ki4a+K)+K))VK;
18 (4,4,5,5,5,5,8,9,9,10,10) G=K,V 2K1 \Y (2K1 + K1,4)

Case 2.5 If n = 10, k = 4. According to equation (3.3), we have 60 < £° d; < 62. All possible degree
sequences and their corresponding graphs are shown in T'able 5.

Table 5. The degree sequences and corresponding graphs of Case 2.5.

Degree sum No. The degree sequence The graph
62 1 (4,4,4,4,5,5,9,9,9,9) G=0@K +K,) VK,
60 2 (4444557999 G=K;V (K VQRK +K)+K>)
3 (3444558999 G=K;V(K +K V(3K +K))
4  (4444,449999) G =6K, VK,
5 (4,4,4,4,5,5,8,8,9,9) G = (4K1 + Kz) \Y 2K1 VvV K,

Case 2.6 If n = 9, k = 4. According to equation (3.3), we have 48 < Z?zld,- < 52. All possible degree
sequences and their corresponding graphs are shown in T'able 6.
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Table 6. The degree sequences and corresponding graphs of Case 2.6.

Degree sum No. The degree sequence The graph

52 1 (4,4,4,4,4,8,8,8,8) G =5K, VK,

50 2 (4,4,4,4,4,6,8,8,8) G=(K3+K)VK;s
3 (3,4,4,4,4,7,8,8,8) G=(K +Ki4)VK;s
4 (4,4,4,4,4,7,7,8,8) G =5K,; V2K, VK,

48 5 (4,4,4,4,4,4,8,8,8) G =3K,V K;
6 (3,4,4,4,4,5,8,8,8) G = (K1 + K1,2 + Kz) \Y K3
7 (3,3,4,4,4,6,8,8,8) G=2K +K;3)VK;
8 (4,44,44,6,7771,8) G=(K;3+K)V2K,VK,

Next, we consider the pancyclicity of these graphs. For convenience, we put the maximum length
cycle L(G) of G in the appendix. In the following description, when it comes to the description of the
graphs, we will use the sequence number of the graphs in the appendix.

As can be seen from the appendix, according to Lemma 2.5, all the graphs of No.5-18 in the
appendix are pancyclic. Others belong to NP; and they are neither pancyclic nor bipartite.

The proof is complete.o
Theorem 3.2 Let G be a connected graph with n(n > 5) vertices and m edges, and its minimum degree
0(G)=3. If

w(G) > Vn? - 8n + 31,

then G is a pancyclic graph or a bipartite graph.

Proof: Suppose that G is neither a pancyclic graph nor a bipartite graph. Because a complete graph is
a pancyclic graph and 6(K; ,-;) = 1, then G cannot be a complete graph or K, ,,_;. In such a situation,
the equation in Lemma 2.2 is invalid. By Lemma 2.2, Vn> - 8n+31 < u(G) < V2m—n+1, ie.,
m> (";3) +0.

By Theorem 3.1, G is a pancyclic graph or a bipartite graph or G € NP,. It can be calculated
that (3K + K,—¢) V K3.(4K; + K3) V K4.(6K, + K) V K6,9K, V K satisfy m = (";°) + 9, which is
contradiction. Next, we will study whether the graphs of No.19-69 satisfy the spectral radius condition
in the Theorem 3.2. Note that G € NP, and NP, is the set of graphs of No.19-69 in the appendix.

Take (2K, V K4) V 7K, as an example:

Let X = (X1, X5, enno.. .. ,X13)T be the eigenvector corresponding to u(G), where X;(1 < i < 2)
corresponds to the vertex of degree 11, X;(3 < i < 6) corresponds to the vertex of degree 12 and
X;(7 <i < 13) corresponds to the vertex of degree 6. By eigen-equation (2.1), then we have

X1 =X0, X3 =X4 = X5 = X6, X7 = Xg = Xo = Xj0 = X11 = X12 = Xi3
WGX, = 4X; + X,

uG)X; =2X, +3X3 +7X7

(W(G)Xs = 2X, + 4X;

AIMS Mathematics Volume 5, Issue 6, 5389-5401.
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Transform the above equations into the matrix equation (A (G) — u(G)NX = 0, where X =
(X],X3,X7)T and
0 4 7
2 3 7].

2 40

Let f(x) = |xI — A'(G)| = x* = 3x% = 50x — 70, then the maximum root of f(x) = 0is u(G) = 9.235.
It can be calculated that u(G) < V132 — 8 x 13 + 31, which is contradiction. The remaining graphs are
studied in the same way, and the results are shown in T'able 7.

From Table 7, all graphs in NP, satisfy u(G) < Vn? —8n + 31, a contradiction. The proof is
complete. ¢

AG) =

Theorem 3.3 Let G be a connected graph with n(n > 5) vertices and minimum degree 6(G) > 3. If

q(G) =

+ (2n - 8), (3.4)
n—1

then G is a pancyclic graph or a bipartite graph or 7K; V K¢ or 6K; V Ks or 5K, V Kj.

Proof: Suppose that G is neither a pancyclic graph nor a bipartite graph. Because a complete graph is
a pancyclic graph and 6(K; ,-1) = 1, then G cannot be a complete graph or K, ,—;. In such a situation,
the equation in Lemma 2.3 is invalid. By Lemma 2.3, 2£+2n-8 < ¢(G) < 2%+n-2,i.e.,m > (";’)+9.

By Theorem 3.1, G is a pancyclic graph or a bipartite graph or G € NP;. It can be calculated that
the graphs of 3K, + K, ¢) V K3,(4K; + K3) V K4,(6K,| + K>) V K,9K, V K satisfy m = (”;3) + 9, which
is contradiction. Next, we will study whether the graphs of No.19-69 satisfy the signless Laplacian
spectral radius condition in the Theorem 3.3. Note that G € NP,.

Take (2K, V K4) V 7K, as an example:

Let X = (X1, X5, evvo.... ,X13)T be the eigenvector corresponding to u(G), where X;(1 < i < 2)
corresponds to the vertex of degree 11, X;(3 < i < 6) corresponds to the vertex of degree 12 and
X;(7 <i <13) corresponds to the vertex of degree 6. By eigen-equation (2.2), then we have

X1 =X0, X5 =X4 = X5 = X6, X7 = Xg = Xo = Xj0 = X11 = X12 = X3
(G)-1DH)X, =4X5+7X;

(q(G) = 12)X5 =2X, +3X5 +7X;

(9(G) —6)X; =2X; +4X;

Transform the above equations into the matrix equation (Q(G) — ¢(G))X = 0, where X =
(X],X3,X7)T and
11 4 7
2 15 7].

2 4 6

Let f(x) = |xI — Q(G)| = x> = 32x> + 271x — 536, then the maximum root of g(x) = 0 is

q(G) = 19.528. It can be calculated that ¢(G) < 3 + 2 X 13 — 8, which is contradiction. The

Q' (G) =

AIMS Mathematics Volume 5, Issue 6, 5389-5401.
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remaining graphs are studied in the same way, and the results are shown in T'able 7.

Table 7. The spectral radius and the signless Laplacian spectral radius of G.

AIMS Mathematics

G u(G) (n-8n+31) ¢q(G)  Z+2n-38
No.19  11.0623 11.6619 234121 23.71429
No.20  10.9484 11.6619 232009  23.71429
No21 10.8783 11.6619 21.9831  23.71429
No.22 10.8374 11.6619 23.0178 2371429
No.23  10.7164 11.6619 22,6516 23.71429
No.24 93157 9.7980 19.7584 20
No.25  9.2660 9.7980 19.6332 20
No.26  9.2350 9.7980 19.5281 20
No.27  9.1467 9.7980 19.4616 20
No.28  9.1884 9.7980 19.5522 20
No29  9.2049 9.7980 19.5364 20
No.30  9.0474 9.7980 19.1235 20
No.31  9.4462 9.7980 20 20
No.32  9.0325 9.7980 19.3143 20
No.33  9.0301 9.7980 19.2240 20
No.34  9.0047 9.7980 19.1492 20
No.35  8.8422 9.7980 18.7149 20
No.36  9.0652 9.7980 19.3759 20
No.37  8.9237 9.7980 18.9375 20
No.38  9.0735 9.7980 19.3203 20
No.39  8.9678 9.7980 19.0391 20
No.40  8.3530 8.888194 17.8639  18.18182
No.4l 82145 8.888194 17.5985  18.18182
No.42 82450 8.888194 17.7460  18.18182
No43  8.1124 8.888194 17.3128  18.18182
No44  7.8310 8 16.5887 16.4
No.45  7.6196 8 16.1652 16.4
No.46  7.6779 8 16.3062 16.4
No47  7.5826 8 16.0352 16.4
No48  7.4816 8 15.9748 16.4
No.49  7.5284 8 16.0698 16.4
No.50  7.5528 8 16.0487 16.4
No.51  7.3589 8 15.5484 16.4
No.52  7.3507 8 15.8151 16.4
No.53 73171 8 15.6034 16.4
No.54  7.1207 8 15.0772 16.4
No.55  7.3840 8 15.8721 16.4
No.56  7.2137 8 15.3351 16.4
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G u(G) (n*-8n+31) ¢(G) 2 +2n-38
No.57  7.3968 8 15.7967 16.4
No.58  7.2647 8 15.4474 16.4
No.59  6.7573 7.1414 14.4721 14.6667
No.60  6.5955 7.1414 14.1578 14.6667
No.61  6.6235 7.1414 14.3246 14.6667
No.62  6.4681 7.1414 13.8041 14.6667
No.63  6.2170 6.3246 13.1789 13
No.64  5.9612 6.3246 12.6769 13
No.65  6.0322 6.3246 12.8381 13
No.66  5.9150 6.3246 12.5052 13
No.67  5.7980 6.3246 12.4641 13
No.68  5.8503 6.3246 12.5601 13
No.69  5.6362 6.3246 11.8807 13

From Table 7, all graphs in NP, except G = 7K V Kg and G = 6K, V K5 and G = 5K, V K, satisfy
q(G) < % + 2n — 8, a contradiction.
The proof is complete.o
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Appendix

The maximum length cycle L(G) of G.

No. G Order L(G) e(G) ﬁ +1
1 3Ky + Ky—6) V K3 n Cpoy  2Tned0 ﬁ +1
2 4Ky + K3) v K4 11 Cy 37 26
3 (6K1 + K>) V Ko 14 € 64 43.25
4 9K, V Kg 17 Cis 100 65
5 Ko V (K> + Ki6) 15 Cis 76 50
6 Ko Vv (2K + K14) 15 Cis 75 50
7 (K1 + K15+ Ky)VKg 15 Cis 75 50
8 (2K + K1 3) V Ks 13 Cis 55 37
9 4K> V Ks 13 Ci3 54 37
10 (Ki + K12 +2K>) V Ks 13 Ci 54 37
11 Ky V (K V4K + K3) 13 Cpn 54 37
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No. G Order L(G) eoG) 211
12 K3 V2K V(K3 +2K) 13 Cn; 54 37
13 KiV (K> V 5K, + K) 13 Cn; 54 37
14 KiV (K12 +2K>) 1y 38 26
15 (Ki +3K>) V Ky 1 oy 37 26
16 (Ki2+2K) V2K VK, 1 oy 37 26
17 KVEK VCK +K)+K) 10 Co 30 21.25
18 3Ky V K3 9 Co 24 17
19 8K, V K- 15  Cu 77 50
20 (Ky + K17) V K¢ 15  Cu 76 50
21 K»s V Ks 15  Cu 76 50
2 Ks V 2K, +Kig) 15  Cu 75 50
23 Ks V2K, V (K> + K1 6) 15 Cn 75 50
24 Ks V (K +Ki) 13 Cn 56 37
25 (K> + K15) V Ks 13 Cn 56 37
26 QK vV K3) V7K, 13 Cn 56 37
27 (Ky + K> + K1) V Ks 13 Cn 55 37
28 2K, +Ky5) V K; 13 Cn 55 37
29 (K; + K> V 6K)) V Ky 13 54 37
30 (Kis + K2) V 2K, V Ky 13 Cn 55 37
31 7K, V Ko 13 Cn 57 37
32 KsV 2K, + Ki5 + K») 13 Cn 54 37
33 K VK +K V(K4+K)] 13 Cp 54 37
34 KoV (K; + 2K, V 6K}) 13 Cn. 54 37
35 K3 V K37 13 Cn 54 37
36 KsV GK; +Ki4) 13 Cn 54 37
37 KiV2K V(K +Kiu+K) 13 Cp 54 37
38 K VIK V(K +Ks)+K] 13 Cy 54 37
39 K3 V2K, V(2K +Kys) 13 Cn 54 37
40 (5K; + K») V K 12 Cn 46 31.25
41 K V(K V@K +K)+K) 12 Cy 45 31.25
42 7K, V Ks 12 Cu 45 31.25
43 (5K, + K2) V 2K, V Ks 12 Cn 45 31.25
44 6K, V Ks 11 Cp 40 26
45 KiV (Kis+ K>) 11 Cp 39 26
46 Ky V(K +Ky5) 1 Cp 39 26
47 K3V Kag 11 Cp 39 26
48 KiV (K + K3 + Ko) 11 Cp 38 26
49 KsV 2K; + K1) 1 G 38 26
50 K3V [(Ka V 5K)) + K] 1 Cp 38 26
51 K> V2K V (K14 + K>) 11 Cyp 38 26
52 KiV (K + K5 + 2K}) 11 Cp 37 26
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No. G Order L(G) eoG) 211
53 K3V (K + Kas) 1 Cu 37 26
54 K>V Ksg 11 Cyp 37 26
55 KiV (K3 +3K)) 1 G 37 26
56 K V2K V(K +Kis+Ky) 11 Cyo 37 26
ST [KiV(Kia+K)+KIVEKs 11 G 37 26
S8 Ky V2K V(2K +Ky4) 1 G 37 26
59 (4K, + K> V Ky 10 G 31 21.25
60 K;VIK +K VGK +K)] 10 Co 30 21.25
61 6K, V Kq 10 Gy 30 21.25
62 (4K, + K2) V2K, V K» 10 G 30 21.25
63 5K, V Kq 9 Cs 26 17
64 (K13 + K2) V K; 9 Cs 25 17
65 Ky + Ki0) VK3 9 C; 25 17
66 5K, V2K, V K, 9 Cs 25 17
67 (Ki + K12+ K>) V Ky 9 Cs 24 17
68 K, +K13) V K3 9 C; 24 17
69 (K13 + K2) V2K, V K, 10 Cg 24 17
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