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1. Introduction

The interest for studying the theory of infinite systems of integral equations is based on the fact
that the theory of infinite systems of integral equations is a branch of nonlinear analysis which has
been applied in various fields of science and numerous applications. In fact, most physical and
engineering problems are formed by infinite systems of integral equations, see for example [1–4]. The
problem of the existence of solutions for infinite systems of integral equations plays a significant role
in the investigation of these types of equations and it is important to apply original studies in our
investigations (cf. [5–7]). In some papers, integral equations of Volterra type have been converted in
the form of integral equations of Volterra-Stieltjes type and numerous results have been obtained on
the existence of solutions of nonlinear integral equations (cf. [8, 9]). The aim of this paper is to
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present some results on the existence of solutions for an infinite system of integral equations of
Volterra-Stieltjes type of the form

un(t, x) = Fn

(
t, s, f1(t, u(t, x))

∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds

)
;

u(t, x) =

{
ui(t, x)

}∞
i=1
, ui(t, x) ∈ BC(R+ × R+,R),

(1.1)

where BC(R+ ×R+,R) is the space of all real functions u(t, x) = u : R+ ×R+ −→ R, which are defined,

continuous and bounded on the set R+ × R+ with a supremum norm ‖u‖ = sup
{
|u(t, x)| : (t, x) ∈

R+×R+

}
. The obtained results extend and generalize the results of [6,8,9] in the Banach spaces c0 and

`p. In our approach, this is done by applying the measure of noncompactness and Darbo fixed point
theorem.

2. Preliminaries

In future, we apply some notations, definitions and preliminary facts to obtain our main results.
For a bounded subset S of a metric space X, Kuratowski [10] defined the function α(S ) by the formula

α(S ) = inf
{
δ > 0 : S =

n⋃
i=1

S i, diam(S i) ≤ δ f or 1 ≤ i ≤ n < ∞
}
,

known as the Kuratowski measure of noncompactness. Another measure of noncompactness is the
Hausdorff measure of noncompactness given by:

χ(S ) = inf
{
ε > 0 : S has f inite net in X

}
.

Let E be a real Banach space with norm ‖.‖ and zero element θ. Besides, we suppose X and Conv(X)
denote the closure and convex hull of X, respectively. Moreover, let us denote by ME the family of all
nonempty and bounded subsets of E and by NE its subfamily consisting of all relatively compact sets.

Definition 1. [11] A mapping µ : ME −→ [0,∞) is called a measure of noncompactness if it satisfies
the following conditions:

(1) The set Kerµ = {X ∈ ME : µ(X) = 0} is nonempty and Kerµ ⊆ NE.
(2) X ⊆ Y =⇒ µ(X) ≤ µ(Y).
(3) µ(X) = µ(X).
(4) µ(Conv(X)) = µ(X).
(5) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].
(6) If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊆ Xn for n = 1, 2, . . . and lim

n→∞
µ(Xn) =

0, then
⋂∞

n=1 Xn is nonempty.

We will apply the following theorem as the main tool in our investigations.
Theorem 1.(Darbo [12]) Let C be a nonempty, bounded, closed and convex subset of a Banach space
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E and T : C → C be a continuous mapping. Assume that there exists a constant K ∈ [0, 1) such that
µ(T X) ≤ Kµ(X) for any nonempty subset X of C, where µ is a measure of noncompactness defined in
E. Then T has at least a fixed point in C.

Samadi [13] extended Darbo’s fixed point theorem as follows.
Theorem 2. Let C be a nonempty bounded, closed and convex subset of a Banach space E. Assume
T : C −→ C be a continuous operator satisfying

θ(µ(X)) + f (µ(T (X))) ≤ f (µ(X)) (2.1)

for all nonempty subsets X of C, where µ is an arbitrary measure of noncompactness defined in E and
(θ, f ) ∈ ∆ = . Then T has a fixed point in C.

In Theorem 2, ∆ is the set of all pairs (θ, f ) satisfying the following:

(∆1) θ(tn)9 0 for each strictly increasing sequence {tn};
(∆2) f is strictly increasing function;
(∆3) for each sequence {αn} of positive numbers, limn→∞ αn = 0 if and only if limn→∞ f (αn) = −∞.

(∆4) If {tn} is a decreasing sequence such that tn → 0 and θ(tn) < f (tn)− f (tn+1), then we have
∑∞

n=1 tn <

∞.

We know that the Hausdorff measure of noncompactness χ in the Banach space `p can be defined
as follows:

χ(B) = lim
n−→∞

{
sup
x∈B

{
Σk≥n | xk |

p
} 1

p
}
, (2.2)

where B ∈ M`p and x = (xk) ∈ `p. For the Banach space (c0 , ‖.‖c0), the Hausdorff measure of
noncompactnes χ is given by (cf. Definition 1):

χ(B) = lim
n−→∞

{
sup
u∈B

{
max
k≥n
| uk |

}}
, (2.3)

where B ∈ Mc0 and u = (uk) ∈ c0.
Now, we recall some basic facts concerning the concept of the variation of a function (cf. [14, 15]).
Assume that f is a real function defined on the interval [a, b]. The variation of the function f will
be denoted by

∨b
a f . If

∨b
a f is finite, the function f has bounded variation on the interval [a, b].

Similarly, if g : [a, b] × [c, d] −→ R is a real function of two variables, then the variation of the
function t −→ g(t, s) on the interval [p, q] ⊆ [a, b] will be denoted by

∨q
s=p g(t, s). Analogously,

we can define
∨q

t=p g(t, s). Assume that f and g are two real functions defined on the interval [a, b],

then under appropriate conditions we can define the Steiltjes integral
∫ b

a
f (t)dg(t) of the function f

with respect to the function g. If the integral
∫ b

a
f (t)dg(t) is finite, then f is Stieltjes integrable on the

interval [a, b].
The following lemmas will be applied in our investigations.
Lemma 1. If f is Stieltjes integrable on the interval [a, b] with respect to a function g of bounded
variation, then

|

∫ b

a
f (t)dg(t)| ≤

∫ b

a
| f (t)|d(

t∨
a

g).
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Lemma 2. Let f1 and f2 be Stieltjes integrable functions on the interval [a, b] with respect to a
nondecreasing function g such that f1(t) ≤ f2(t) for t ∈ [a, b]. Then,∫ b

a
f1(t)dg(t) ≤

∫ b

a
f2(t)dg(t).

3. Existence of solutions for infinite systems of integral equations

In this section, as an application of Theorem 2, the existence of solutions for the infinite system
(1.1) is studied in the spaces `p and c0. First, we show that infinite system (1.1) has a solution that
belongs to the space `p.
We consider the following conditions:

(H1) Fn : R+ × R+ × R × R −→ R is continuous and there exist positive real numbers τ > 0 such that

|Fn(t, s, x1, y1) − Fn(t, s, x2, y2)|p ≤ e−τ(|x1 − x2|
p + |y1 − y2|

p),

for all t, s ∈ R+ and x1, x2, y1, y2 ∈ R. Moreover, we have

lim
i−→∞

Σ∞i=1|Fi(t, s, 0, 0)|p = 0, N1 = Σ∞i=1|Fi(t, s, 0, 0)|p.

(H2) f1 : R+ × R
∞ −→ R is continuos with f0 = supt∈R+

| f (t, 0)| and there exist positive real numbers
τ > 0 such that

| f1(t, u(t, x)) − f1(t, v(t, x))|p ≤ e−τ‖u(t, x) − v(t, x)‖`p ,

| f1(t, u(t, x))|p ≤ e−τ‖u(t, x)‖`p .

for all t, x ∈ R+ and u(t, x) =

{
ui(t, x)

}∞
i=1
, v(t, x) =

{
vi(t, x)

}∞
i=1
∈ `p.

(H3) T : BC(R+ × R+, `p) −→ BC(R+ × R+,R) is a continuos operator such that

|(Tu)(t, x) − (Tv)(t, x)| ≤ ‖u(t, x) − v(t, x)‖`p ,

|(Tu)(t, x)| ≤ 1.

for all u, v ∈ BC(R+ × R+, `p) and t, x ∈ R+.
(H4) For any fixed t > 0 the function s −→ gi(t, s) has a bounded variation on the interval [0, t] and the

function t −→
∨t

s=0 gi(t, s) is bounded over R+.
(H5) gn : R+ × R+ × R+ × R+ × R

∞ −→ R is continuous and there exist continuous functions an :
R+ × R+ −→ R+ such that

|gn(t, s, x, y, u(t, x))| ≤ an(t, s),

lim
t−→∞

Σn≥1

∫ t

0
|gn(t, s, x, y, u(t, x)) − gn(t, s, x, y, v(t, x))|ds

t∨
q=0

g1(t, q) = 0,

ϕk = sup
{
Σn≥k

[
|

∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s)|

]
;
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t, s, x, y ∈ R+, u(t, x) ∈ R∞
}
.

Moreover, assume that

A = sup
{
Σ∞n=1

∫ t

0
an(t, s)ds

s∨
p=0

g1(t, p), t ∈ R+

}
,

G = sup
{ x∨

y=0

g2(x, y); x ∈ R+

}
, lim

k−→∞
ϕk = 0.

(H6) Vn : R+ × R+ × R
∞ −→ R is a continuous function and there exists continuous function k :

R+ × R+ −→ R+ such that the function s −→ k(t, s) is integrable over R+ and the following
conditions hold:

|Vn(t, s, u(t, x))| ≤ k(t, s)|un(t, x)|p,
|Vn(t, s, u(t, x)) − Vn(t, s, v(t, x)| ≤ |un(t, x) − vn(t, x)|pk(t, s).

for all t, s, x ∈ R+ and u, v ∈ `p. Moreover, assume that

M = sup
t∈R+

∫ ∞

0
k(t, s)ds.

(H7) There exists a positive solution r0 such that

22pe−2τrp
0 (GA)p + 22pe−τ f p

0 (GA)p + 2pe−τrp
0 Mp + 2pN1 ≤ rp

0 ,

Moreover, assume that 2pM < 1.

Theorem 3. Under the assumptions (H1)− (H7), Eq (1.1) has at least one solution u(t, x) =

{
ui(t, x)

}∞
i=1

in the space `p.

Proof. Let us define the operator G on BC
(
R+ × R+, `p

)
by

(Gu)(t, x) =

{
Fn

(
t, s, f1(t, u(t, x))

∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds

)}
.
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In view of our assumptions, for all t, x ∈ R+, we get

‖(Gu)(t, x)‖p
`p

= Σ∞i=1|Fi

(
t, s, f1(t, u(t, x))

∫ t

0

∫ x

0
gi

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Tu)(t, x)
∫ ∞

0
Vi(t, s, u(t, x))ds

)
|p

≤ 2pΣ∞i=1|Fi

(
t, s, f1(t, u(t, x))

∫ t

0

∫ x

0
gi

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Tu)(t, x)
∫ ∞

0
Vi(t, s, u(t, x))ds

)
− Fi

(
t, s, 0, 0

)
|p + 2pΣ∞i=1|Fi

(
t, s, 0, 0

)
|p

≤ 2pΣ∞i=1

[
e−τ| f1(t, u(t, x))

∫ t

0

∫ x

0
gi

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s)|p

+e−τ|(Tu)(t, x)
∫ ∞

0
Vi(t, s, u(t, x))ds|p

]
+ 2pΣ∞i=1|Fi

(
t, s, 0, 0

)
|p

≤ 22pe−τΣ∞i=1

(
| f1(t, u(t, x)) − f1(t, 0)|p

)
×( ∫ t

0

∫ x

0
|gi(t, s, x, y, u(t, x))|dy

∨y
q=0 g2(x, q)

∨s
p=0 dsg1(t, p)

)p

+22pe−τΣ∞i=1| f1(t, 0)|p
( ∫ t

0

∫ x

0
|gi(t, s, x, y, u(t, x))|dy

∨y
q=0 g2(x, q)

∨s
p=0 dsg1(t, p)

)p

+2pe−τ(
∫ ∞

0
k(t, s)ds)pΣ∞i=1|ui(t, x)|p + 2pΣ∞i=1|Fi

(
t, s, 0, 0

)
|p

≤ 22pe−2τ‖u(t, x)‖p
`p

(GA)p + 22pe−τ( f0)p(GA)p + 2pe−τMp‖u(t, x)‖p
`p

+2pN1.

(3.1)

Thus, by applying the last estimates and assumption (H7) one can easily seen that G maps Br0 into
itself, where

Br0 =

{
u ∈ BC(R+ × R+, `p); ‖u‖BC(R+×R+,`p) ≤ r0

}
.

Next, we prove that the operator G is a continuous operator on the Ball Br0 . For this, take ε > 0

arbitrarily and u(t, x) =

{
ui(t, x)

}∞
i=1
, v(t, x) =

{
vi(t, x)

}∞
i=1
∈ Br0 with ‖u − v‖BC(R+×R+,`p) < ε. Acordingly,

taking into account our assumptions, for (t, x) ∈ R+ × R+ we have

‖(Gu)(t, x) − (Gv)(t, x)‖p
`p

≤ Σ∞i=1e−τ| f1(t, u(t, x))
∫ t

0

∫ x

0
gi

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s)

− f1(t, v(t, x))
∫ t

0

∫ x

0
gi

(
t, s, x, y, v(t, x)

)
dyg2(x, y)dsg1(t, s)|p

+Σ∞i=1e−τ|(Tu)(t, x)
∫ ∞

0
Vi(t, s, u(t, x))ds − (Tv)(t, x)

∫ ∞
0

Vi(t, s, v(t, x))ds|p.

(3.2)
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On the other hand, we have

| f1(t, u(t, x))
∫ t

0

∫ x

0
gi

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s)

− f1(t, v(t, x))
∫ t

0

∫ x

0
gi

(
t, s, x, y, v(t, x)

)
dyg2(x, y)dsg1(t, s)|p

≤ 2p| f1(t, u(t, x)) − f1(t, v(t, x))|p

×

( ∫ t

0

∫ x

0
|gn

(
t, s, x, y, u(t, x)

)
|dy

∨y
p=0 g2(x, p)ds

∨t
q=0 g1(t, q)

)p

+2p| f1(t, v(t, x))|p(
∫ t

0

∫ x

0
|gn

(
t, s, x, y, u(t, x)

)
−

gn

(
t, s, x, y, v(t, x)

)
|dy

∨y
p=0 g2(x, p)ds

∨t
q=0 g1(t, q))p

≤ e−τ2p‖u(t, x) − v(t, x)‖`p

(∨x
y=0 g2(x, y)|

∫ t

0
an(t, s)ds

∨t
q=0 g1(t, q)

)p

+2p| f1(t, v(t, x))|p
(∨x

y=0 g2(x, y)
∫ t

0
|gn

(
t, s, x, y, u(t, x)

)
−gn

(
t, s, x, y, v(t, x)

)
|ds

∨t
q=0 g1(t, q)

)p

≤ e−τ2p‖u(t, x) − v(t, x)‖`p(GAi)p

+2pGp| f1(t, v(t, x))
( ∫ t

0
|gi

(
t, s, x, y, u(t, x)

)
−gi

(
t, s, x, y, v(t, x)

)
|ds

∨t
q=0 g1(t, q)

)p

.

(3.3)

Further, by applying our assumptions, we arrive that

|(Tu)(t, x)
∫ ∞

0
Vi(t, s, u(t, x))ds − (Tv)(t, x)

∫ ∞
0

Vi(t, s, v(t, x))ds|p

≤ 2p|(Tu)(t, x)
∫ ∞

0
Vi(t, s, u(t, x))ds − (Tv)(t, x)

∫ ∞
0

Vi(t, s, u(t, x))ds|p

+2p|(Tv)(t, x)
∫ ∞

0
Vi(t, s, u(t, x))ds − (Tv)(t, x)

∫ ∞
0

Vi(t, s, v(t, x))ds|p

≤ 2p‖u(t, x) − v(t, x)‖p
`p
|ui(t, x)|pMp + Mp|ui(t, x) − vi(t, x)|p.

(3.4)

Combining (3.2), (3.3) and (3.4), we conclude that

‖(Gu)(t, x) − (Gv)(t, x)‖p
`p

≤ Σ∞i=1e−2τ2p‖u(t, x) − v(t, x)‖p
`p

(GAi)p

+2pGpe−τ| f1(t, v(t, x))|p(Σ∞i=1

∫ t

0
|gi

(
t, s, x, y, u(t, x)

)
−gi

(
t, s, x, y, v(t, x)

)
|ds

∨t
q=0 g1(t, q))p

+Σ∞i=1|ui(t, x)|pe−τ2pMp‖u(t, x) − v(t, x)|p`p

+e−τ2pMpΣ∞i=1|ui(t, x) − vi(t, x)|p.

(3.5)

Using (H5), there exists T > 0 such that for t > T , we get

Σ∞i=1

∫ t

0
|gi

(
t, s, x, y, u(t, x)

)
− gi

(
t, s, x, y, v(t, x)

)
|ds

t∨
q=0

g1(t, q) < ε.
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Hence, by (3.5), we conclude that

‖(Gu)(t, x) − (Gv)(t, x)‖p
`p

≤ 2pe−2τ‖u − v‖p
BC(R+×R+,`p)(GA)p + 2pGpεpe−τ‖v(t, x)‖p

`p

+2pMpe−τ‖u − v‖p
BC(R+×R+,`p)‖u(t, x)‖p

`p

+e−τ2pMp‖u − v‖p
BC(R+×R+,`p).

(3.6)

For t ∈ [0,T ] we have

‖(Gu)(t, x) − (Gv)(t, x)‖p
`p

≤ 2pe−2τ‖u − v‖p
BC(R+×R+,`p)(GA)p + ‖v(t, x)‖p

`p
2pGpω(g, ε)pe−τ

+2pMpe−τ‖u − v‖p
BC(R+×R+,`p)‖u(t, x)‖p

`p

+e−τ2pMp‖u − v‖p
BC(R+×R+,`p),

(3.7)

where

ω(g, ε) = sup
{

Σ∞n=1|gn(t, s, x, , y, u) − gn(t, s, x, y, v)|;

(t, s) ∈ ∆1, (x, y) ∈ ∆2, u, v ∈ `p, ‖u − v‖BC(R+,R+,`p) < ε

}
,

∆1 =

{
(t, s) ∈ R2; s ≤ t ≤ T

}
, ∆2 =

{
(x, y) ∈ R2; y ≤ x ≤ T

}
.

and ω(g, ε) −→ 0 as ε −→ 0. Consequently, G is continuous on the ball Br0 . To finish the proof, we
prove that the condition (2.1) of Theorem 2 is fulfilled. Let X be a nonempty and bounded subset of
the ball Br0 . Assume that

(Hn)(u) = f1(t, u(t, x))
∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Dn)(u) = (Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds.

Thus, by applying our assumptions, we infer that

χ`p

(
G(X)

)
(t, x) = lim

n−→∞

[
sup

u(t,x)∈X

{
Σk≥n|Fk

(
t, s, (Hk)(u), (Dk)(u)

)
|p
} 1

p
]

= lim
n−→∞

[
sup

u(t,x)∈X

{
Σk≥n|Fk

(
t, s, (Hk)(u), (Dk)(u)

)
− Fk

(
t, s, 0, 0

)
+Fk

(
t, s, 0, 0

)
|p

} 1
p
]
≤ 2pe−τ lim

n−→∞

[
sup

u(t,x)∈X

{
Σk≥n

{
|(Hk)(u)|p

+|(Dk)(u)|p
}} 1

p
]
≤ 2pe−τ lim

n−→∞

[
sup

u(t,x)∈X

{
Σk≥n

{
e−τ‖u(t, x)‖p

`p
ϕn

+Mp|uk(t, x)|p
} 1

p
]

= 2pe−τM lim
n−→∞

[
sup

u(t,x)∈X

{
Σk≥n|uk(t, x)|p

} 1
p
]
.

(3.8)
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Hence,

χ`p(G(X))(t, x)) ≤ 2pe−τM lim
n−→∞

[
sup

u(t,x)∈X

{
Σk≥n|uk(t, x)|p

} 1
p
]
. (3.9)

Consequently,

sup
(t,x)∈R+×R+

χ`p(G(X))(t, x))

= χBC(R+×R+,`p)(GX)

≤ sup
(t,x)∈R+×R+

2pe−τM lim
n−→∞

[
sup

u(t,x)∈X

{
Σk≥n|uk(t, x)|p

} 1
p
]
.

By passing to logarithms, we get

ln
(
χBC(R+×R+,`p))(GX)

)
+ τ ≤ ln

(
χBC(R+×R+,`p)(X)

)
(3.10)

Now applying Theorem 2 with f (t) = ln(t) and θ(t) = τ, we obtain that G has a fixed point and the
proof is completed. �

Example 1. Now, we investigate the following system of integral equations:

un(t, x) =
(e−τ−t−n)

1
p

2 sin
( (e−t−τ)

1
p sin

(
‖u(t,x)‖`p

)
2

×
∫ t

0

∫ x
0 arctan

(
1

2n ×e−3t+s

8+|x|+|y|+|un(t,x)|

)
ex

1+y2e2x
et

1+t2 dyds

+ cos
(

1
1+‖u(t,x)‖lp

) ∫ ∞
0

e−s

1+ t
8

sin
(
|un(t, x)|

)
ds

)
;

(3.11)

Observe that Eq (3.11) is a special case of the infinite system (1.1) if we put

Fn

(
t, s, x, y

)
=

(e−τ−t−n)
1
p

2
sin

(
x + y

)
,

gn(t, s, x, y, u(t, x)) = arctan
( 1

2n × e−3t+s

8 + |x| + |y| + |un(t, x)|

)
,

f1(t, u(t, x)) =

(e−t−τ)
1
p sin

(
‖u(t, x)‖`p

)
2

,

an(t, s) =
1
2n e−3t+s,

g1(t, s) =
set

1 + t2 ,

g2(x, y) = arctan
(
yex

)
,

Vn(t, s, u(t, x)) =
e−s

1 + t
8

sin
(
|un(t, x)|

)
,

k(t, s) =
e−s

1 + t
8

,
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(Tu)(t, x) = cos
( 1
1 + ‖u(t, x)‖lp

)
.

Thus, it is easily seen that Fn and f1 satisfy assumptions (H1) and (H2) with N1 = 0 and f0 = 0.
Further, the operator T satisfies hypothesis (H3). To justify assumption (H5) , let t, sx, y ∈ R+ and
u, u ∈ `p. Then, we have

|gn(t, s, x, y, u(t, x))| ≤
1
2n e−3t+s = an(t, s).

Since ∂g1
∂s = et

1+t2 > 0, then
∨s

q=0 g1(t, q) = g1(t, s) − g1(t, 0) = set

1+t2 . Consequently, we have

lim
t−→∞

∫ t

0
an(t, s)ds

s∨
q=0

g1(t, q) = lim
t−→∞

∫ t

0

1
2n e−3t+s(

et

1 + t2 )ds

= lim
t−→∞

1
2n

e−2t+s

1 + t2 |
t
0 = 0

Inconsequence,

lim
t−→∞

Σn≥1

∫ t

0
|gn(t, s, x, y, u(t, x)) − gn(t, s, x, y, v(t, x))|ds

t∨
q=0

g1(t, q) = 0,

A = sup
{
Σ∞i=1

∫ t

0
an(t, s)ds

s∨
p=0

g1(t, s), t ∈ R+

}
,

ϕk = sup
{
Σn≥k

[ ∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s)

]
;

t, s, x, y ∈ R+, u(t, x) ∈ `p

}
≤ G(

e−2t

1 + t2 −
e−t

1 + t2 )Σn≥k
1
2n .

So, ϕk −→ 0. On the other hand the function Vn(t, s, u(t, x)) = e−s

1+ t
8

sin
(
|un(t, x)|

)
verifies assumption

(H6) with k(t, s) = e−s

1+ t
8

and M = 1. To show that the functions g1 and g2 satisfy assumption (H4),
let first note that the functions g1 and g2 are increasing on every interval of the form [0, t] and g2 is
bounded on the triangle 42. Consequently, the function y −→ g2(x, y) has bounded variation on the
interval [0, x] and we have

x∨
y=0

g2(x, y) = g2(x, y) − g2(x, 0) = g2(x, y) ≤
π

4
.

So, G ≤ π
4 . We can take G = π

4 . Consequently, all conditions of Theorem 3 are satisfied and Theorem
3 implies that the infinite system (3.11) has at least one solution which belongs to the space `p.

4. c0-solvability of the infinite system (1.1)

Now the existence of solutions of the system (1.1) is studied in the space c0. In this case, we need
the following assumptions.
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(D1) Fn : R+ × R+ × R × R −→ R is continuous and there exist positive real numbers τ > 0 such that

|Fn(t, s, x1, y1) − Fn(t, s, x2, y2)| ≤ e−τ(|x1 − x2| + |y1 − y2|),

for all t, s ∈ R+ and x1, x2, y1, y2 ∈ R. Moreover, assume that

lim
i−→∞
|Fi(t, s, 0, 0)| = 0, M1 = sup

{
|Fi(t, s, 0, 0)|; t, s ∈ R+, i ≥ 1

}
.

(D2) f1 : R+ × R
∞ −→ R is continuous with f0 = supt∈R+

| f (t, 0)| and there exist positive real numbers
τ > 0 such that

| f1(t, u(t, x)) − f1(t, v(t, x))| ≤ e−τ sup
n≥1

{
|ui(t, x) − vi(t, x)|; i ≥ n

}
,

| f1(t, u(t, x))| ≤ e−τ sup
n≥1

{
|ui(t, x)|; i ≥ n

}
for all t, x ∈ R+ and u(t, x) =

{
ui(t, x)

}
, v(t, x) =

{
vi(t, x)

}
∈ c0

(D3) T : BC(R+ × R+, c0) −→ BC(R+ × R+,R) is a continuous operator such that

|(Tu)(t, x) − (Tv)(t, x)| ≤ sup
n≥1

{
|ui(t, x) − vi(t, x)|; i ≥ n

}
,

|(Tu)(t, x)| ≤ 1.

for all u, v ∈ BC(R+ × R+, c0) and t, x ∈ R+.
(D4) For any fixed t > 0 the function s −→ gi(t, s) has a bounded variation on the interval [0, t] and the

functions t −→
∨t

s=0 gi(t, s) are bounded on R+. Moreover, for arbitrarily fixed T > 0 the function
w −→

∨w
z=0 gi(w, z) is continuous on the interval [0,T ] for i = 1, 2.

(D5) gn : R+ × R+ × R+ × R+ × R
∞ −→ R is continuous and there exist continuous functions an :

R+ × R+ −→ R+ such that

|gn(t, s, x, y, u(t, x))| ≤ an(t, s),

lim
t−→∞

∫ t

0
|gn(t, s, x, y, u(t, x)) − gn(t, s, x, y, v(t, x))|ds

t∨
q=0

g1(t, q) = 0,

for all t, s, x, y ∈ R+ and u, v ∈ R∞. Moreover, assume that

lim
n−→∞

∫ t

0
an(t, s)ds

s∨
p=0

g1(t, p) = 0, A = sup
{ ∫ t

0
an(t, s)ds

s∨
p=0

g1(t, p); n ∈ N
}
,

G = sup
{ x∨

y=0

g2(x, y); x ∈ R+

}
, G1 = sup

{ w∨
z=0

g1(w, z); w ∈ [0,T ]
}
.

where T > 0 is arbitrarily fixed.
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(D6) Vn : R+ × R+ × R
∞ −→ R is a continuous function and there exists continuous function k :

R+ × R+ −→ R+ such that the function s −→ k(t, s) is integrable over R+ and the following
conditions hold:

|Vn(t, s, u(t, x))| ≤ k(t, s) sup
n≥1

{
|ui(t, x)|; i ≥ n

}
,

|Vn(t, s, u(t, x)) − Vn(t, s, v(t, x)| ≤ sup
n≥1

{
|ui(t, x) − vi(t, x); i ≥ n

}
k(t, s).

for all t, s, x ∈ R+ and u, v ∈ c0. Moreover, assume that

M = sup
t∈R+

∫ ∞

0
k(t, s)ds < 1, e−2τGA + f0GAe−τ + Me−τ + Me−τ < 1.

Theorem 4. Under assumptions (D1) − (D6), the infinite system (1.1) has at least one solution u(t) ={
ui(t, x)

}∞
i=1

belonging to the space c0.

Proof. Define the operator G on the space BC
(
R+ × R+, c0

)
as

(Gu)(t, x)

=

{
Fn

(
t, s, f1(t, u(t, x))

∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds

)}
where t, x ∈ R+. We show that

Br0 =

{
u ∈ BC

(
R+ × R+, c0

)
; ‖u‖

BC

(
R+×R+,c0

) ≤ r0

}
is G-invariant where i = 1, 2, ... and t, x ∈ R+. Assume that

(Hn)(u) =

∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Dn)(u) = (Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds.

For arbitrarily fixed (t, x) ∈ R+ × R+, we have

‖(Gu)(t, x)‖c0

= sup
n≥1
|Fn

(
t, s, (Hn)(u), (Dn)(u)

)
|

≤ sup
n≥1

[
|Fn

(
t, s, f1(t, u(t, x))(Hn)(u), (Dn)(u)

)
− Fn

(
t, s, 0, 0

)
| + |Fn(t, s, 0, 0)|

]
≤ sup

n≥1

[
e−τ|( f1(t, u(t, x))Hn)(u)| + e−τ|(Dn)(u)|

]
+ sup

n≥1
|Fn

(
t, s, 0, 0

)
|
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≤ sup
n≥1

[
e−τ

(
| f1(t, u(t, x)) − f1(t, 0)| + | f1(t, 0)|

)
(|Hn)(u)|

+e−τ‖u(t, x)|c0 M
]
≤ sup

n≥1

[
e−2τ

{
|ui(t, x)|; i ≥ n

}
GA

+ f0GAe−τ + e−τ‖u(t, x)‖c0 M

≤ (e−2τGA + e−τ f0GA + Me−τ)‖u(t, x)‖c0 .

Consequently,

‖Gu‖ ≤ ‖u(t, x)‖c0 (4.1)

By applying (4.1) , one can easily seen that G maps the ball Br0 into itself. Next, the continuity
property of the operator G will be proved on the ball Br0 . Let u, v ∈ Br0 and ε > 0 such that ‖u −
v‖

BC

(
R+×R+,c0

) < ε. Thus for all t, x ∈ R+, we have

‖(Gu)(t, x) − (Gv)(t, x)‖c0

= supn≥1 |Fn

(
t, s, f1(t, u(t, x))Hn(u), (Dnu)

)
−Fn

(
t, s, f1(t, v(t, x))Hn)(v), (Dnv)

)
|

≤ supn≥1

{
e−τ| f1(t, u(t, x))Hn)(u) − f1(t, v(t, x))Hn)(v)|

+e−τ|(Dn)(u) − (Dn)(v)|
}
.

(4.2)

Besides, we have

| f1(t, u(t, x))Hn)(u) − f1(t, v(t, x))Hn)(v)|

≤ 2pGAe−τ supn≥1

{
|ui(t, x) − vi(t, x)|; i ≥ n

}
+2pe−τG supn≥1

{
|vi(t, x)|; i ≥ n

}
×

∫ t

0
|gn(t, s, x, y, u(t, x)) − gn(t, s, x, y, v(t, x))ds(

∨t
q=0 g1(t, q).

(4.3)

By assumption (D5), there exists T > 0 such that for t > T , we have∫ t

0
|gn(t, s, x, y, u(t, x)) − gn(t, s, x, y, v(t, x))|ds(

t∨
q=0

g1(t, q) < ε.

Further, the assumptions (D3) and (D6) give us the following eastimates

|(Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds − (Tv)(t, x)

∫ ∞
0

Vn(t, s, v(t, x))ds|
≤ M‖u(t, x) − v(t, x)‖c0‖u(t, x)‖c0

+|(Tv)(t, x)|
∫ ∞

0
|Vn(t, s, u(t, x)) − Vn(t, s, v(t, x))|ds

≤ M‖u(t, x) − v(t, x)‖c0‖u(t, x)‖c0

+M‖u(t, x) − v(t, x)‖c0 .

(4.4)

AIMS Mathematics Volume 5, Issue 4, 3791–3808.



3804

Applying (4.2), (4.3) and (4.4),we have

‖(Gu)(t, x) − (Gv)(t, x)‖c0

≤ 2pe−2τGA supn≥1

{
|ui(t, x) − vi(t, x)|; i ≥ n

}
+2pe−2τG supn≥1

{
|vi(t, x)|; i ≥ n

}
ε + M‖u − v‖

BC

(
R+×R+,c0

)
+M(‖u(t, x)‖c0)‖u − v‖

BC

(
R+×R+,c0

)
≤ 2pe−2τGAε + 2pe−τG‖v(t, x)‖c0ε

+e−τMε + Me−τ‖u(t, x)‖c0)ε.

(4.5)

For t ∈ [0,T ], we have

‖(Gu)(t, x) − (Gv)(t, x)‖c0

≤ 2pe−2τGA supn≥1

{
|ui(t, x) − vi(t, x)|; i ≥ n

}
+2pe−τG supn≥1

{
|ui(t, x); i ≥ n

}
G1ω(gn, ε)

+M‖u − v‖c0 + M‖u‖
BC

(
R+×R+,c0

)‖u − v‖
BC

(
R+×R+,c0

)
≤ e−τGAε + e−τGG1‖v(t, x)‖c0ω(gn, ε) + Mε

+M‖u‖
BC

(
R+×R+,c0

)ε,
(4.6)

where

ω(gn, ε) = sup
{
|gn(t, s, x, y, u(t, x)) − gn(t, s, x, y, v(t, x))|;

(t, s) ∈ ∆1, (x, y) ∈ ∆2, u, v ∈ R∞; ‖u − v‖
BC

(
R+×R+,c0

) < ε}.
Moreover, in light of the continuity of V on 41 ×42 ×R

∞, we have ω(gn, ε) −→ 0. Now, combining
(4.5) and (4.6) implies that G is continuous on the Ball Br0 . In what follows let X be a nonempty subset
of the ball Br0 , In view of the formula (2.3) and our assumptions, we have

χc0(GX)(t, x)

= lim
n−→∞

{
sup
u∈X

(
max

i≥n
|Fi

(
t, s, (Hi)(u), (Di)(u)|

)}
≤ lim

n−→∞

{
sup
u∈X

(
max

i≥n
|Fi

(
t, s, (Hi)(u), (Di)(u)|

)
− Fi

(
t, s, 0, 0

)
|

+|Fi

(
t, s, 0, 0

)
|

}
≤ lim

n−→∞

{
sup
u∈X

(
max

i≥n

(
e−τ|(Hi)(u)| + e−τ|(Di)(u)|

))}
≤ lim

n−→∞

{
sup
u∈X

(
max

i≥n

(
e−τ| f1(t, u(t, x)) − f1(t, 0)|(Hi)(u)|
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+e−τ| f1(t, 0)|(Hi)(u)| + e−τ|(Di)(u)|
))}

≤ lim
n−→∞

{
sup
u∈X

(
max

i≥n

(
e−2τ sup

n≥1

{
|ui(t, x); i ≥ n

}
GA

+ f0GA + e−τ sup
n≥1

{
|ui(t, x); i ≥ n

}
M

)}
.

Consequently,

χ
BC

(
R+×R+,c0

)(GX) ≤ Me−τ sup
(t,x)∈R+×R+

lim
n−→∞

{
sup
u∈X

(
max

i≥n
|ui(t, x)|

)}
.

As, M < 1, by passing to logarithms, we have

τ + ln(χ
BC

(
R+×R+,c0

)(GX)
)
≤ ln

(
χ

BC

(
R+×R+,c0

)(X))
)
.

Thus all conditions of Theorem 2 hold true with f (t) = ln(t) and θ(t) = τ and by Theorem 2 there exists{
ui(t, x)

}∞
i=1
∈ c0 such that

un(t, x) = Fn

(
t, s, f1(t, u(t, x))

∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds

)
.

(4.7)

Hence, the proof is completed. �

Example 2.

Nowweinvestigate

un(t, x)

= e−t−s−τ−n 3

√
5

√
arctan

(
e−τΣk≥n

|uk(t,x)|
1+k2

)
(Hn)(u) +

7√(Dn)(u)
(4.8)

on the space c0. Taking

(Dn)(u) = e−100Σk≥n

sin
(
|uk(t, x)|

)
(1 + k2)

∫ ∞

0
e−t−s−nΣk≥n

|uk(t, x)|
10n(1 + k2)

ds,

(Hn)(u) =

∫ t

0

∫ x

0
arctan

( es+t2−n

8 + |u(t, x)|

) e−2t

1 + t2 ×
ex

1 + y2e2x dyds,

Fn(t, s, x, y) = e−τ−t−s−n 3
√

5√x + 7
√

y,

f1(t, u(t, x)) = arctan
(
e−τΣk≥n

|uk(t, x)|
1 + k2

)
,

gn(t, s, x, y, u(t, x)) = arctan
( es+t2−n

8 + |u(t, x)|

)
,
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g1(t, s) =
se−2t

1 + t2 ,

g2(x, y) = arctan
(
yex

)
,

Vn(t, s, u(t, x)) = e−t−s−nΣk≥n
|uk(t, x)|

10n(1 + k2)
,

k(t, s) = e−t−s,

(Tu)(t, x) = e−100Σk≥n

sin
(
|uk(t, x)|

)
(1 + k2)

n ∈ N,

in the system (1.1) , the system of integral Eq (4.8) is obtained. Note that the functions Fn and f1

satisfy conditions (D1) and (D2). Indeed, we have

|Fn(t, x1, y1) − Fn(t, x2, y2)| = e−τ−n−t

[
|

3
√

5
√

x1 + 7
√

y1 −
3
√

5
√

x1 + 7
√

y1|

]
≤ e−τ

[
3
√
| 5
√

x1 + 7
√

y1 −
5
√

x2 −
7
√

y2 |

]
≤ e−τ

[
3
√

5
√
| x1 − x2 | +

7
√
| y1 − y2|

]
≤ e−τ

[
|x1 − x2| + |y1 − y2|

]
,

M1 = 0, lim
n−→∞

Fn

(
t, s, 0, 0

)
= 0,

| f1

(
t, u(t, x)

)
| ≤ sup

n≥1

{
|ui(t, x)|; i ≥ n

}
,

| f1

(
t, u(t, x)

)
− f1

(
t, v(t, x)

)
| ≤ sup

n≥1

{
|ui(t, x)| − |vi(t, x); i ≥ n

}
Also, it can easily be seen that the operator T satisfies assumption (D3) and

|(Tu)(t, x)| ≤ e−100π
2

6
sup
n≥1

{
|ui(t, x)|; i ≥ n

}
,

|(Tu)(t, x) − (Tv)(t, x)| ≤ e−τ
π2

6
sup
n≥1

{
|ui(t, x) − vi(t, x)|; i ≥ n

}
.

Moreover, since ∂g1
∂s = e−2t

1+t2 > 0, so g1 is increasing and we have

s∨
q=0

g1(t, q) = g1(t, s) − g1(t, 0) = g1(t, s) =
se−2t

1 + t2 > 0

Consequently,

|gn(t, s, x, y, u(t, x))| ≤ es+t2−n,
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lim
t−→∞

∫ t

0
|gn(t, s, x, y, u(t, x)) − gn(t, s, x, y, v(t, x))|ds

t∨
q=0

g1(t, q)

≤ 2 lim
t−→∞

∫ t

0
et+s e−2t

1 + t2 ds = 0

Again, we have
y∨

q=0

g2(x, y) = g2(x, y) − g2(x, 0) = g2(x, y) ≤
π

4
,

lim
n−→∞

∫ t

0
an(t, s)ds

s∨
q=0

g1(t, q) = lim
n−→∞

2−n(
1

1 + t2 −
e−t

1 + t2 ) = 0.

So, G = π
4 and A < ∞. On the other hand the function Vn(t, s, u(t, x)) = e−t−s−nΣk≥n

|uk(t,x)|
10n(1+k2) verifies

assumption (D6) with k(t, s) = e−t−s and M = 1. By applying the continuity of the function h −→∨w
z=0 gi(h, z) on the interval [0,T ] we can take G1 = sup

{∨w
z=0 g1(w, z) : w ∈ [0,T ]

}
where T > 0 is

arbitrarily fixed. Thus all conditions of Theorem 4 are satisfied and by applying Theorem 4, infinite
system (4) has at least one solution in the space c0

5. Conclusions

We studied the existence of solutions for an infinite system of integral equations of Volterra-Stieltjes
type of the following form in the Banach sequence spaces `p and c0 via the techniques of measures of
noncompactness and Darbo’s fixed point theorem.

un(t, x) = Fn

(
t, s, f1(t, u(t, x))

∫ t

0

∫ x

0
gn

(
t, s, x, y, u(t, x)

)
dyg2(x, y)dsg1(t, s),

(Tu)(t, x)
∫ ∞

0
Vn(t, s, u(t, x))ds

)
;

u(t, x) =

{
ui(t, x)

}∞
i=1
, ui(t, x) ∈ BC(R+ × R+,R),

where BC(R+ ×R+,R) is the space of all real functions u(t, x) = u : R+ ×R+ −→ R, which are defined,

continuous and bounded on the set R+ × R+ with a supremum norm ‖u‖ = sup
{
|u(t, x)| : (t, x) ∈

R+ × R+

}
. Some examples in the Banach sequence spaces `p and c0 are also given to ascertain the

usefulness of our main result.
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