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1. Introduction

Erdös proposed the tenth problem in the Third Conference on discrete mathematics in Clemson
University as follows: Whether there exists a regular triangle-free graph Gn on n vertices where the
largest independent sets have a size equal to the degree of Gn [5].

Bauer determined all n, r, l such that there exists a r-regular kl-free graph on n vertices [1]. Bauer
proposed the following structures: Suppose n is even. Let the vertices in the two parts be labelled as:

1, 2, . . . , n/2 and 1′, 2′, . . . , (n/2)′.

Now connect each vertex i to (i + k)′ mod n/2 for 0 6 k 6 r − 1. In this case, α(G) = n/2 and
the independence ratio is 1/2. If n is odd, then r must be even and 5r/2 6 n 6 3r − 1. Form
the graph G as in Figure 1. Each of parts A, B,C,D, E are independent sets. The size of them are:
|B| = |C| = r/2, |A| = 3r − n, |D| = |E| = n − 2r. Each vertex of B and C is adjacent to each vertex of A.
Then connect each vertex of B to every vertex of D and each vertex of C to every vertex of E. Since
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|D| = |E| = n − 2r ≥ r/2, join any vertex of D to some vertices of E to make a r/2-regular bipartite
graph. Note that B∪C is an independent set of size r and B∪E is an independent set of size (n−3r/2).
If n = 5r/2, then α(G) = r. Otherwise, α(G) > r and the independence ratio of this graph is at least
r/(3r − 1) [1].

Figure 1. Bauer’s triangle-free graph for odd vertices.

Sidorenko set some 2k-regular triangle-free graphs such that their independence number are equal
to their degree. It is obvious that the maximum degree of vertices is a lower bound for the independence
number in triangle-free graphs. Sidorenko graphs are circulant graphs [6]. Brandt investigated the class
S of triangle-free graphs where the neighbourhood of vertices are maximal independent sets [2]. The
Sidorenko graphs are in S [2].

Punnim showed that the values of independence number of regular graphs cover a line segment of
integer numbers, i.e., for all n, r there exist a 6 b ∈ N such that the independence number of any r-
regular graph on n vertices is in [a, b] and for every integer c ∈ [a, b], there exists a r-regular graph on
n vertices with independence number equals to c. This interval is called the independence interval [4].

In this current work, the independence interval of 2-regular graphs are determined in the second
section. The maximum independent set for circulant 3-regular triangle-free graphs will be determined
in Section 2. Moreover, a subinterval of independence interval for 3-regular graphs is determined in
this section. Finally, it will be proved that the independence ratio of 3-regular triangle-free graphs is
at least 3/8. Note that Staton proved that the independence ratio for 3-regular triangle-free graphs is at
least 5/14 [7]. Heckman and Thomas give a new proof for this theorem and they design a linear-time
algorithm to find the maximum independent set for cubic graphs [3].

On the last section, some class of regular triangle-free graphs with independence number equals to
degree for odd degree will be determined. In this case the lower and upper bounds are close to the even
case which determined by Sidorenko [6].

2. 2-regular & 3-regular circulant triangle-free graphs

Let G be a graph. The number of vertices of G is denoted by n(G). The independence number of G
is the maximum size of an independent set of G and it is denoted by α(G). The independence ratio is
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defined by i(G) =
α(G)
n(G) .

Definition 2.1. Suppose S ⊂ {1, . . . , n − 1} is such that

x ∈ S ⇐⇒ n − x ∈ S .

The circulant graph produced by S is defined as follows. The vertex set is {0, 1, . . . , n − 1} and x, y are
adjacent if and only if x − y ∈ S . Trivially, if x < y, it means n − (x − y) ∈ S . The circulant graph
produced by S is denoted by G[S ]. The circulant graph G[S ] is triangle-free if and only if

∀x, y ∈ S , x − y < S .

If r = 2, we could determine the minimum independence number, as follows.

Theorem 2.2. Let G be a 2-regular triangle-free circulant graph. If the set

X =

{
d; d , 1, d|n, d ,

n
3
,

n
d

is odd
}

(2.1)

is non-empty, then minα(G) =
n−max(x)

2 , else minα(G) = n
2 and the independence ratio is at least 2/5.

Proof. Let G = G[S ] be a triangle-free circulant graph and S = {t, n − t}. Since G is a 2-regular graph,
G is a union of disjoint circles. If gcd(n, t) = 1, then G[S ] is a Hamiltonian circle and α(G[S ]) = bn/2c.

If gcd(n, t) = d , 1, then G[S ] ' G[d, n − d] and we have:

n − d − d , d =⇒ n , 3d, d|n.

But the graph G[S ] is disjoint union of d circles of size n/d and α(G[S ]) = dbn/2dc. Since n = dk, we
have two cases:

(1). k = 2s is an even integer. Then α(G[S ]) = dbn/2dc = ds = n/2.
(2). k = 2s + 1 is an odd integer. Then α(G[S ]) = dbn/2dc = ds = (n − d)/2.

Therefore, if X = {d; d , 1, d|n, d , n/3, n/d is odd} is a non-empty set, then

min(α(G[S ])) = (n −max(X))/2.

Otherwise, min(α(G[S ])) = n/2.
Since

n
d

is an odd number and d , n/3, then
n
d
> 5 and consequently d 6

n
5

. Therefore, the
independence ratio is at least

n −
n
5

2n
=

2
5

.

�

Note that every 2-regular graph G is a disjoint union of circles, i.e., G = C1 ∪ · · · ∪ Ck. Thus
α(G) =

∑
α(Ci). Suppose the size of Ci is ni. If ni is odd, α(Ci) = (ni − 1)/2, otherwise α(Ci) = ni/2.

Suppose G = C1 ∪ · · · ∪Ct ∪Ck and C1, . . . ,Ct are odd circles and Ct+1, ,̇Ck are even circles. Thus:

α(G) = (n1 − 1)/2 + · · · + (nt − 1)/2 + nt+1/2 + · · · + nk/2 = n/2 − t/2.

The independence ratio in this case is 1/2 − t/2n. Since t 6 n
3 , then i(G) > 1

3 . In fact, the max/min of
independence number is determined by the size of t as follows.
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Proposition 2.3. The independence interval for 2-regular graphs is
[
dn

3e, b
n
2c

]
. In fact, if n > 3:

minα(G) = d
n
3
e =


k; n = 3k; G is union of k triangles;
k + 1; n = 3k + 1; G is union of k-1 triangles and a rectangle;
k + 1; n = 3k + 2; G is union of k-1 triangles and a pentagon.

The max/min of independence number of 2-regular triangle-free graphs is determined as follows.

Proposition 2.4. The independence interval for 2-regular triangle-free graphs is
[
d 2n

5 e, b
n
2c

]
. In fact,

the minimum independence number for 2-regular triangle-free graphs is as follows (n > 5):

minα(G) =

⌈
2n
5

⌉
=



2k; n = 5k; G is union of k pentagons;
2k + 1; n = 5k + 1; G is union of k-1 pentagons and a hexagon;
2k + 1; n = 5k + 2; G is union of k-1 pentagons and a heptagon;
2k + 2; n = 5k + 3; G is union of k-1 pentagons and 2 rectangles;
2k + 2; n = 5k + 4; G is union of k pentagons and a rectangle.

If r = 3, n must be an even number and n/2 ∈ S . Note that 3-regular circulant graph has a 2-regular
circulant as an induced subgraph. In the rest of this section, the minimum independence number of
3-regular triangle-free circulant graphs is determined.

Lemma 2.5. If S = {d, n/2, n − d} and G[S ] is a triangle-free circulant graph and gcd(n, d) = 1, then

α(G[S ]) =

{
n/2; n/2 is odd
n/2 − 1; n/2 is even.

(2.2)

Proof. Since G[S ] is a triangle free circulant graph, we have:

n/2 − d , d =⇒ d , n/4; (2.3)
n − d − d , d =⇒ d , n/3. (2.4)

Suppose gcd(n, d) = 1, then G[S ] has a Hamiltonian circle. If kd
n
≡ n

2 and k 6 n, then k = n
2 and

therefore G[S ] � G[{1, n/2, n − 1}]. Note that α(G[S ]) 6 n/2.
Suppose n/2 is an odd integer. Since the numbers {1, n/2, n − 1} are odd and any odd vertex is

adjacent to 3 even vertices, then the set of all odd vertices is an independent set in G[S ] and α(G[S ]) =

n/2.
Otherwise, suppose n/2 = 2k is an even integer. Then for every odd number 2l + 1 < n/2, the

number n/2− (2l + 1) = 2(k − l)− 1 is an odd number less than n/2. Thus the set of odd integers is not
an independent set in G[S ]. Nevertheless, the set {1, . . . , 2k − 1, 2k + 2, . . . , 4k − 2} is an independent
set of size 2k − 1. Now suppose there exists an independent set I of size 2k. Since {a, n/2 + a} is an
edge in G[S ] for arbitrary integer 0 6 a 6 n/2 − 1, then I have at most exactly one element from each
of these pairs. Without less of generality, suppose I has 0. Then, I must have n/2 + 1, and so on.
Therefore, one could see

I = {0, n/2 + 1, 2, n/2 + 3, . . . , n − 1}

and it is a contradiction, because n − 1 is adjacent to 0. �
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Theorem 2.6. Suppose n is an even number and S = {d, n/2, n − d; d|n}. If G[S ] is a triangle-free
circulant graph, then

α(G[S ]) =


n/2 − d; n/2d is even
n/2; n/2d is odd
(n − d)/2; n/d is odd

Proof. Note that d , n/2, n/3, n/4. Then we have two cases:

i) If n/d is even, then n = 2td and G0 = {0, d, . . . , (2t − 1)d}. Thus n/2 = td is one of the vertices
of G0. Note that G0 is a n/d-cycle with addition edges {kd, (k + t)d} for k = 0, 1, . . . t − 1. If n/2d is
even, α(G0) = n

2d − 1 = t − 1. But G[S ] is d copies of G0. Therefore, α(G[s]) = d(t − 1) = n/2 − d.
Otherwise, if n/2d is odd, α(G0) = n

2d and α(G[s]) = n/2.

ii) If n/d is odd, then n = (2t + 1)d. Thus n/2 = td + (d/2). Note that d is an even divisor of n. Let
Gi = {i, i + d, . . . , i + 2td}, for i = 0, . . . , d − 1. The graph G0 is a n/d-cycle and every vertex of Gi is
adjacent to one and only one vertex of Gi+ d

2
for i = 0, . . . , d/2 − 1. But α(Gi) = b n

2d c = t and therefore
α(G[s]) = d

2 (2t) = (n − d)/2. �

Theorem 2.7. Suppose n is an even number and 1 < d < n. If gcd(n, d) = t , 1, then

G[d, n/2, n − d] � G[t, n/2, n − t].

Proof. Since gcd(n, d) = t, then G[d, n− d] � G[t, n− t] and this graph is t disjoint cycles of order n/t.
We have two cases:

Case 1. t|n/2. Then n = 2kt and d = d′t. Therefore, d′ is an odd integer. Suppose V(G0) =

{0, d, . . . , (n/t − 1)d} = {0, t, . . . , (n/t − 1)t}. Thus n/2 ∈ V(G0). G0 is a 3-regular triangle-free circulant
graph on n/t vertices and S = {1, n/2t, n/t − 1} and

α(G0) =

{
n/2t; n/2t is odd
n/2t − 1; n/2t is even

(2.5)

Thus we have α(G[S ]) = tα(G0) and

α(G[S ]) =

{
n/2; n/2 is odd
n/2 − t; n/2 is even

(2.6)

Case 2. t - n/2. Thus n/2 < V(G0) and there exists i < t such that n/2 ∈ V(Gi) = {i, i + d, . . . , i +

(n/t−1)d}. Note that n = kt and t - n/2. Therefore, k is an odd number and t is an even. But 0 ∈ V(G0)
is adjacent to n/2 ∈ V(Gi) and for every j = 0, 1, . . . , n/t − 1, jd is adjacent to n/2 + jd ∈ V(Gi). In
fact, we have t/2 copies of graph such as the graph Figure 2 on 2n/t vertices.
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Figure 2. Induced subgraph of G0
⋃

Gd in Theorem 2.7 case 2.

The maximum independent set in these graphs has order n/t − 1 as such as: {0, n/2 + d, 2d, n/2 +

3d, . . . , (n/t− 3)d, n/2 + (n/t− 2)d}. This independent set is shown by black vertices in Figure 2. Then
α(G[S ])) = (n − t)/2. �

We summarize Theorems 2.6,2.7 and Lemma 2.5 as follows:

Theorem 2.8. Suppose n is an even number and 1 6 d < n. If gcd(n, d) = t and S = {d, n/2, n − d},
then

α(G[S ]) =


n/2 − t; n/2t is even
n/2; n/2t is odd
(n − t)/2; n/t is odd

By Theorem 2.7, one could determine the independence number for every 3-regular circulant
triangle-free graphs. The minimum independence number for these graphs are determined for n 6 44
as follows:

Table 1. The minimum independence number for 3-regular circulant triangle-free graphs.

n d α

6 1 3
8 1 3
10 2 4
12 1 5
14 2 6

n d α

16 2 6
18 2 8
20 4 8
22 2 10
24 3 9

n d α

26 2 12
28 4 12
30 6 12
32 4 12
34 2 16

n d α

36 3 15
38 2 18
40 5 15
42 6 18
44 4 20

Corollary 2.9. Suppose n = 2p = 2(2k + 1) and p > 5 is a prime number and G[S ] is a 3-regular
triangle-free circulant graph. Then minα(G[S ]) = p − 1 and

i(G[S ]) =
1
2
−

1
2p
>

2
5
.
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Corollary 2.10. The independence ratio of circulant 3-regular triangle-free graphs is at least 3
8 and

this lower bound is sharp, i.e. there exists a 3-regular triangle-free circulant graph on 8k vertices such
that its independence number equals to 3k, for all k.

Proof. Note that the minimum independence number is n
2 −d and d must divide n and n

2d is even. Since
d , n/2, n/3, n/4, then d 6 n

8 . Thus α(G) > n
2 −

n
8 = 3n

8 and therefore the independence ratio is at least
3
8 .

Suppose d|8k and n/d is an even integer. Then the maximum value of d is k. Therefore S =

{k, 4k, 7k} and α(G[S ]) = 4k − k = 3k and consequently the independence ratio is 3/8. �

3. r-regular circulant triangle-free graphs

In this section, the circulant triangle-free graphs with independence number equal to their degree
are investigated. These graphs are denoted byA-graph in this work. The first integer n such that there
exists a r-regularA-graph with n vertices is obviouse:

Proposition 3.1. The least number n such that there exists a r-regularA-graph on n vertices is 2r.

Proof. Suppose G is a triangle-free r-regular graph on n vertices, then n is at least 2r.
Suppose n = 2r,V = {0, 1, . . . , 2r−1} and S = {2t−1; 0 6 t 6 r}. Then G[S ] = Kr,r is a triangle-free

circulant graph. The set of odd integers is an independent set of size r. If I is a set of size r + 1, then
there exist two integers in I with different parity like a = 2k, b = 2l + 1. Since a − b ∈ S , then a, b are
adjacent vertices in G[S ] and it is a contradiction. �

The above lower bound is trivial. But there does not exist r-regular A-graphs for all n > 2r, as
follows.

Proposition 3.2. There does not exist any 2r-regular circulant triangle-free graph on 4r + 1 vertices.

Proof. Suppose S = {x1 < · · · < xr 6 2r < xr+1 < · · · < x2r}. Since the graph G[S ] is triangle-free,
then the set {xr− xr−1, xr− xr−2, . . . , xr− x1} is disjoint from {x1, . . . , xr}. But {xr− xr−1, xr− xr−2, . . . , xr−

x1} ∪ {x1, . . . , xr} ⊂ {1, . . . , 2r}. Therefore, we have two cases:

(1). xr = 2r. Then 4r + 1 − xr = 2r + 1 ∈ S . Therefore, 1 = 2r + 1 − 2r < S . Thus

1 < x1 < x2 < · · · < xr = 2r,

and
2r + 1 − xr, 2r + 1 − xr−1, . . . , 2r + 1 − x1 < S .

Moreover, the set {2r − xr−1, 2r − xr−2, . . . , 2r − x1} < S , too. Thus

{2r − xr−1, 2r − xr−2, . . . , 2r − x1} ⊆ {1, 2r + 1 − xr, 2r + 1 − xr−1, . . . , 2r + 1 − x1}.

Thus for every i = 1, 2, . . . , r−1, there exists j = 1, . . . , r such that 2r− xi = 2r+1− x j. Therefore,
x j = xi + 1. Thus 2r − xi = 2r + 1 − xi+1, for all i and S = {r + 1, . . . , 2r − 1, 2r, 2r + 1, . . . , 3r}.
But 3r − (r + 1) = 2r − 1 ∈ S and it is a contradiction.
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(2). xr = 2r − 1. Thus 4r + 1 − xr = 2r + 2 ∈ S and 2r + 2 − (2r − 1) = 3 < S . Therefore x1 < x2 <

· · · < xr = 2r − 1 ∈ S and 2r + 2 − (2r − 1) = 3 < 2r + 2 − xr−1 < · · · < 2r + 2 − x1 6 2r + 1 < S .
If x1 = 1, then 2 < S and {2} < {1 = x1, x2, . . . , xr = 2r − 1}∪̇{3, 2r + 2 − xr−1, . . . , 2r}. Therefore,
there exists xi ∈ S such that 2r = 2r + 2 − xi. Thus xi = 2 and it is a contradiction. If x1 = 2,
then {2 = x1 < x2 < · · · < xr = 2r}∪̇{3 < 2r + 2 − xr−1 < · · · < 2r} is a set of size 2r and
this set is a subset of {1, 2, . . . , 2r}. It is a contradiction. Thus x1 , 1, 2, 3. Then x1 > 4 and
2r + 2 − x1 6 2r − 2. Therefore the set

{x1 < x2 < · · · < xr = 2r − 1} ∪ {3 < · · · < 2r + 2 − x1 6 2r − 2}

is a set of size 2r and it is a subset of {3, 4, . . . , 2r − 1}. It is a contradiction too.

�

There exists similar result for circulant graphs with odd regularity:

Proposition 3.3. Let r > 1. There does not exist any (2r + 1)-regular circulant triangle-free graph on
4r + 4 vertices.

Proof. Suppose S = {x1 < x2 < · · · < xr < xr+1 = 2r + 2 < xr+2 < · · · < x2r+1} and G[S ] is a
(2r + 1)-regular circulant triangle-free graph. Therefore 2r + 2 − x1, 2r + 2 − x2, . . . , 2r + 2 − xr < S .

Note that r + 1 < S and it is not adjacent to 2r + 2, too. Moreover, xr > r + 1. Otherwise,
S = {1, 2, . . . , r} and G[S ] is not a triangle-free graph. If xr < 2r, then the set {xr + 1, . . . , 2r + 1} is
disjoint from S . Thus these elements are in the form 2r + 2 − x1, 2r + 2 − x2, . . . . Thus x1 = 1, x2 and
G[S ] is not triangle-free graph.

Now suppose xr = 2r. Then 2r + 1 < S and 2r + 1 = 2r + 2 − x1. Thus x1 = 1. Since G[S ] is
triangle-free graph, 2 = (2r + 2) − 2r < S . Moreover, (4r + 4) − 2r = 2r + 4 ∈ S . Similary, since G[S ]
is triangle-free graph, 4 = (2r + 4) − 2r < S .

If 4 = r + 1, then r = 3 and 2, 4, 5 < S and 1, 3, 6 ∈ S and G[S ] is not triangle-free graph. If
4 , r + 1, then 4 = (2r + 2)− xr−1 and xr−1 = 2r − 2 and xr+3 = (4r + 4)− (2r − 2) = 2r + 6. Since G[S ]
is triangle-free graph, then 6, 8 < S . One could continue this process. If r = 2t − 1 is an odd element,
then 2r, 2r − 2, 2r − 4, . . . , r + 3 ∈ S . But 2r + 6, r + 3 ∈ S , then G[S ] is not a triangle-free graph.

If r is an even element, then 2, 4, 6, · · · < S , but 2r ∈ S and it is a contradiction. �

Now the main family ofA-graphs are presented as follows.

Definition 3.4. Suppose S = {±k,±(k + 1), . . . ,±(2k − 1)}. The graph G[S ] is denoted by Gn,k.

The graphs Gn,k are triangle-free graph if and only if n > 6k − 2.

Theorem 3.5. (Sidorenko’s Theorem)- If 6k − 2 6 n 6 8k − 3, then Gn,k is a 2k-regularA-graph, [6].

Note that if one add n/2 to S , then G[S ] has triangle, because n/2 ∈ S − S = [n − 4k + 2, n − 2k].
Thus for odd degree, we must define new structures:

Theorem 3.6. Suppose n = 8k, let S = {±1,±3, · · · ± (2k − 1)} ∪ {4k}. Then G[S ] is a (2k + 1)-regular
A-graph on 8k vertices.
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Proof. Since 4k − (2k − 1) = 2k + 1, then (8k − (2k − 1))− 4k = 2k + 1 and it is obviously triangle-free
graph. Let V = {0, 1, . . . , 8k − 1}.

Suppose 0 < t1 < · · · < t2k+2 < 8k is an independent set of size 2k + 2. If all ti’s are odd integers.
Suppose ti < 4k < ti+1. Note that t j − ti are even, for all j > i. Thus t j is adjacent to ti if and only if
t j − ti = 4k. Since there are 2k odd elements less than 4k, one must choose at most one element from
each {ti, ti + 4k}, for all ti < 4k. It is a contradiction.

If all ti’s are even, there are at most 2k − 1 even numbers less than 4k. if t j > ti, t j is adjacent to ti if
and only if t j − ti = 4k. One must choose at most one element from each {ti, ti + 4k}, for all ti < 4k. But
there are 2k − 1 set of {ti, ti + 4k} and it is a contradiction.

Now suppose some ti’s are odd and some of them are even. Let si = ti+1 − ti, i = 1, . . . , 2k + 1,
s2k+2 = 8k − t2k+2 + t1. Then s1 + · · · + s2k+2 = 8k. There are some odd si and some even si. Since the
sum of si’s are even, the number of odd si’s are even.

Let the number of odd si’s is r. If si is an odd element, then 2k+1 6 si < 6k+1. But s1 + · · ·+ s2k+2 =

8k, then r < 4. Thus we have two cases. If r = 0 is solved before.Now suppose r = 2. Then
si > 2, s1 + · · · + s2k+2 > (2k) × 2 + 2 × (2k + 1) = 4k + 4k + 2 = 8k + 2 and it is a contradiction. �

The above theorem is an upper bound for odd regularity. A non-trivial lower bound for these
numbers is as follows:

Theorem 3.7. Suppose n = 6k + 2 and S = {3t + 1; 0 6 t 6 2k}. Then G[S ] is a (2k + 1)-regular
A-graph on 6k + 2 vertices.

Proof. It is obviouse that G[S ] is a triangle-free circulant graph on 6k + 2 vertices.
Now suppose we have an independent set I of size 2k + 2. Let 0 ∈ I. Thus the other elements of I

are elements of S 0 = {3t; 1 6 t 6 2k} and S 2 = {3t + 2; 0 6 t 6 2k − 1}. But |S 0| = |S 2| = 2k. Then
I ∩ S 0, I ∩ S 2 , ∅. Suppose a = 3t ∈ S 0, b = 3s + 2 ∈ S 2.

We have two cases: If a > b, then a − b = 3t − 3s − 2 ∈ S . Otherwise, every element of I ∩ S 0 is
less than every element of I ∩ S 2. Suppose 3s is the greatest element of I ∩ S 0, then |I ∩ S 0| 6 s and
for all element 3t + 2 ∈ I ∩ S 2, 3t + 2 > 3s. Therefore t > s and I ∩ S 2 ⊆ {3t + 2; s 6 2k − 1}. Thus
|I ∩ S 2| 6 2k − s and |(I ∩ S 0) ∪ (I ∩ S 2)| 6 2k. It is a contradiction. �

According to the above theorems, we have the following conjecture:

Conjecture 3.8. Suppose 6k + 2 6 n 6 8k and n is an even number. There exists a (2k + 1)-regular
A-graph on n vertices.

4. Conclusion

Some of the well-known examples for (s, t, n)-graphs are circulant graphs. Thus t-regular triangle-
free circulant graphs must be some good lower bounds for R(3, t + 1) if their independence number
is t. Thus it is better to find some A-graphs with the maximum number of vertices. The algebraic
properties of these graphs will be helpful to find their minimum independence number.
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