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Abstract: This paper is to study the following coupled version of compound KdV and MKdV
equations with two componentsut + αvvx + βu2ux + uxxx + λuux = 0, β > 0,

vt + α(uv)x + 2vvx = 0,

which clearly has Hamiltonian form. In this paper, we mainly consider the orbital stability and
instability of solitary waves with zero or nonzero asymptotic value for this equations. Precisely, we
first obtain two explicitly exact solitary waves with zero asymptotic value and four explicitly exact
solitary waves with nonzero asymptotic value. Secondly, we conclude some results on the orbital
stability of solitary waves with zero or nonzero asymptotic value. To this aim, in order to overcome
the difficulty in studying orbital stability of solitary waves with nonzero asymptotic value, we use a
translation transformation to transfer this problem into solitary waves with zero asymptotic value for a
reduced nonlinear coupled equations. Then by applying the classical orbital stability theory presented
by Grillakis et al. and Bona et al., we obtain the orbital stability and instability of solitary waves with
zero asymptotic value for the new equations. We finally derive some results on orbital stability of
solitary waves with zero or nonzero asymptotic value. In addition, we also obtain the stability results
for the coupled compound KdV and MKdV equations with the degenerate condition v = 0, called the
compound KdV and MKdV equation, which have been studied by Zhang et al.
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1. Introduction

The coupled Korteweg-de Vries equationsut − 6αuux − 2βvvx − αuxxx = 0,
vt + 3uvx + vxxx = 0

(1.1)

were presented firstly by Hirota and Satsuma [1] in 1981, which indicated Eq.(1.1) exhibited a soliton
solution and three basic conserved quantities. System (1.1) is used to describe the interaction of two
long waves with different dispersion relations [2]. If v = 0, then system (1.1) is reduced to the well-
known KdV equation. From then on, the coupled nonlinear wave equations draw much more attention
from mathematicians. In recent years, system (1.1) has been extensively studied. Many profound
results have already been obtained, on the orbital stability of solitary waves, cnoidal waves and dnoidal
waves for the system (1.1) and its generalization, see Refereces [3–5] and the reference therein.

As we known, the following compound KdV and MKdV equation or the Gardner equation

ut + βu2ux + γuxxx + λuux = 0, (1.2)

has also been well studied during these decades. This equation is presented as a model for wave
propagation in a one-dimensional nonlinear lattice and has widespread applications in the field of
solid-state physics, plasma physics, fluid physics, and quantum field theory [6–8]. In plasma physics,
Eq.(1.2) describes the small amplitude propagation of ion acoustic waves without Landau damping.
When β = 0, Eq.(1.2) becomes the famous KdV equation, which is a classical model describing the
one-way wave propagating in fluid. When λ = 0, Eq.(1.2) becomes MKdV equation, which is applied
to describe the sonic wave propagating in some non-harmonic lattices and Alfven wave in the plasma
free cold collision.

Recently, Eq.(1.2) has been widely studied in physics and mathematics, see for example [9–15].
Using Hirota’s method, the modified method of full approximation, a special transformation based on
the similarity variables, mapping approach and Fan’s direct algebraic method, [9–14] studied the
conservation laws, N-soliton, exact solitary solution etc. for Eq.(1.2). Zhang and Shi et al. [15]
presented four explicit exact solitary waves with nonzero asymptotic value and two explicit exact
solitary waves with zero asymptotic value for Eq.(1.2), and applied the orbital stability theory
presented by Grillakis-Shatah-Strauss [16,17] to consider orbital stability of these solitary waves
solutions. Alejo [18] presented local well-posedness results in the classical Sobolev space H s(R) with
s > 1

4 for the Cauchy problem of the Gardner equation and proved that the soliton was orbitally stable
in the energy space using the standard techniques given by Zhidkov [19]. Muñoz [20] studied the
stability of multi-kink solutions of the Gardner equation. Andrade and Pastor [21] established
sufficient conditions for the orbital stability of periodic traveling wave solutions for one-dimensional
dispersive equations by combining Lyapunov stability theorem and GSS orbital stability theory, and
gave several applications for well known dispersive equations, such as KdV equation, MKdV
euqation and Gardner equation et al. Moreover, Alves et al. [22] dealt with sufficient conditions for
orbital stability of periodic waves of a general class of evolution equations supporting nonlinear
dispersive waves and studied orbital stability of periodic waves for KdV eqaution, generalized KdV
equation and Kawahara equation et al. The stability results revealed the behaviour of solution for
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KdV-type equation, and guided us to understand the evolution mechanism of physical quantity or
state of these equations.

As is well known, the coupled nonlinear equations in which a KdV structure are embedded occur
naturally in shallow water wave problems. Guha-Roy et al. [23–25] have studied the coupled
nonlinear partial differential equations that can be solved exactly. Even if the stability of solitary
waves with zero asymptotic value has been widely studied, few results are known on the orbital
stability of solitary waves with nonzero asymptotic value. Moreover, the stability of solitary waves
with nonzero asymptotic value cannot be easily obtained. As far as we know, the orbital stability of
solitary wave and periodic wave of the coupled version of compound KdV and MKdV equations with
two components have not been studied. In this paper, we are concerned with the following coupled
version of compound KdV and MKdV equations with two componentsut + αvvx + βu2ux + uxxx + λuux = 0, β > 0,

vt + α(uv)x + 2vvx = 0,
(1.3)

where α, β, λ ∈ R are arbitrary constants. The system (1.3) models the physical problem of describing
the strong interaction of two-dimensional long internal gravity waves propagating on neighboring
pycnoclines in a stratified fluid. It is interesting to point out that for v = 0, system (1.3) is reduced to
the compounded KdV and MKdV equation (1.2) with γ = 1. In this paper, we shall focus our
attentions on the orbital stability of solitary waves with zero and nonzero asymptotic value for
Eqs.(1.3). The study of orbital stability considered in this paper is original and valuable. In addition,
our work on Eqs.(1.3) includes and improves the results of Zhang et al. [15].

In this paper, we will apply the general theory of orbital stability presented by Grillakis et al.
[16,17] to study orbital stability and instability of Eqs.(1.3). To overcome the difficulty of studying
orbital stability of solitary waves with nonzero asymptotic value for Eqs.(1.3), we use a translation
transformation to transfer this problem into solitary waves with zero asymptotic value for a reduced
nonlinear coupled equations. Applying the translation transformation u = ϕ + D and v = ψ + D to
Eqs.(1.3), we have

ϕt + αψψx + αDψx + (λ + 2βD)ϕϕx + βϕ2ϕx + (βD2 + λD)ϕx + ϕxxx = 0, (1.4)
ψt + α(ϕψ)x + αDϕx + (αD + 2D)ψx + 2ψψx = 0. (1.5)

By direct computation, we obtain that if u(ξ) is a solitary wave with D asymptotic value, and v(ξ) is
a solitary wave with D asymptotic value of Eqs.(1.3), then ϕ = u−D and ψ = v−D are solitary waves
with zero asymptotic value of Eqs.(1.4) and (1.5). Therefore, to prove orbital stability of solitary waves
with D and D asymptotic values for Eqs.(1.3), we only need to verify that solitary waves ϕ = u − D
and ψ = v − D with zero asymptotic value of Eqs.(1.4) and (1.5) are orbitally stable.

Because the stability in view here refers to perturbations of the solitary wave profile itself, a study
of the initial value problem (1.3) is necessary. Similar to Theorem 1–2 in [26] and Theorem in [27],
we can obtain the existence of solutions to the initial value problem of Eqs.(1.4) and (1.5).
Theorem 1.1. For any fixed (ϕ0, ψ0) ∈ H1(R) × H1(R), there exists a unique solution
(ϕ, ψ) ∈ C([0,∞); H1(R) × H1(R)) satisfying (ϕ(0), ψ(0) = (ϕ0, ψ0)) for Eqs.(1.4) and (1.5).

We define the orbital stability as follows:
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Definition 1.1. The solitary waves T (ct)Φ(x) are orbitally stable if for any ε > 0, there exists δ > 0
with the following property: If ‖U0 − Φ(x)‖X < δ and U(t) is a solution of (1.4) and (1.5) in some
interval [0, t0) with U(0) = U0, then U(t) can be continued to a solution in 0 ≤ t < +∞, and

sup
0≤t<+∞

inf
s∈R
‖U(t) − T (s)Φ‖X < ε, (1.6)

where Φ(x) = (ϕ(x), ψ(x)). Otherwise T (ct)Φ(x) are called orbitally unstable.
Then, by applying the extension version of the general theory of orbital stability presented by

Grillakis et al. and Bona et al., we obtain the orbital stability of solitary waves for Eqs.(1.4) and (1.5).
Theorem 1.2. The solitary wave T (ct)Φ(x) of (1.4) and (1.5) are stable in X if the condition p(d′′) =

n(Hc) holds, where n(Hc) be the number of negative eigenvalues of Hc, p(d′′) be the numbers of positive
eigenvalue of d′′,

d(c) = E(Φ) − cQ(Φ),

and

Hc = E′′(Φ) − cQ′′(Φ).

More specifically, if d′′(c) > 0, then solitary waves Φ(x) are orbitally stable. Otherwise, Φ(x) are
orbitally unstable.

This paper is organized as follows. In section 2, we obtain six solitary waves with zero and nonzero
asymptotic values of Eqs.(1.3) (see Theorem 2.1 and Corollary 2.1). Section 3 shows that Eqs.(1.4)
and (1.5) can be written as a Hamiltonian system and fulfills the conditions of orbital stability theory.
In section 4, we show that six solitary waves of the coupled compound KdV and MKdV equations
(1.3) are orbital stability and instability under some conditions (see Theorem 4.1). A brief summary is
provided in the last section.

2. Exact solitary waves of the coupled compound KdV and MKdV equations

The method of seeking the solitary wave solutions are various, such as inverse scattering
transform, Painlevé analysis, Hirota bilinear transform method, Exp-function method, similarity
transformation and so on., but we study the orbital stability for one specific form of solution in this
paper. For simplicity, we will seek the solution of sech-type by a direct method.

Considering the traveling wave solutions of Eqs.(1.3)

u(x, t) = u(x − ct) = u(ξ), v(x, t) = v(x − ct) = v(ξ), (2.1)

and substituting (2.1) into Eqs.(1.3), we have

−cu′ + αvv′ + βu2u′ + u′′′ + λuu′ = 0, (2.2)
−cv′ + α(uv)′ + 2vv′ = 0. (2.3)

Integrating Eq.(2.3) once with respect to ξ yields

−cv + αuv + v2 = E1, (2.4)
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where E1 is an integration constant. Then, we obtain from (2.4)

u(ξ) =
E1

αv
+

c
α
−

v
α
. (2.5)

It is to be noted here that u would be regular everywhere (in particular, as v(ξ) → 0) provided E1

vanishes. As a result, Eq.(2.5) yields

v(ξ) = c − αu(ξ). (2.6)

Integrating (2.2) once and inserting (2.6), one can eliminate v from (2.2) to get

u′′ +
β

3
u3 + (

λ

2
+
α3

2
)u2 − (α2 + 1)cu = E2 −

α

2
c2, (2.7)

where E2 is an integration constant. Following the idea in [15], we seek the solitary wave satisfying

u′(ξ), u′′(ξ), u′′′(ξ)→ 0, |ξ| → ∞, (2.8)

and the asymptotic values C± = limξ→±∞ u(ξ) satisfy the algebraic equation

1
3

a3x3 +
1
2

a2x2 − a1x = 0, (2.9)

where a3 = β, a2 = λ + α3, and a1 = (α2 + 1)c. We can assume E2 = α
2 c2 in (2.7) without loss of

generality. Then, (2.7) reduces to

u′′ +
1
3

a3u3 +
1
2

a2u2 − a1u = 0. (2.10)

In what follows, we assume the solutions of (2.10) with the following form

u(ξ) =
Aek(ξ+ξ0)

(1 + ek(ξ+ξ0))2 + Bek(ξ+ξ0) + D =
Asech2 k

2 (ξ + ξ0)

4 + Bsech2 k
2 (ξ + ξ0)

+ D, (2.11)

where A, B, k and D are constants to be determined later. Substitution of (2.11) into (2.10) leads to the
simultaneous equations with respect to A, B, k, and D

1
3

a3D3 +
1
2

a2D2 − a1D = 0,

k2 + a2D + a3D2 − a1 = 0,

(
1
2

a2 + a3D)A − 3k2(2 + B) = 0,

1
3

a3A2 + (2 + B)(
1
2

a2 + a3D)A − k2(2 + B)2 − 8k2 = 0.

(2.12)

If D satisfies the equality 2a3D3 + 3a2D2 − 6a1D = 0, then system (2.12) has solutions

k =
√

a1 − a2D − a3D2,

B = −2 ±
2|a2 + 2a3D|√

6a3k2 + (a2 + 2a3D)2
,

A =
6k2(2 + B)
a2 + 2a3D

,

(2.13)
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as a2 + 2a3D , 0, and

k =

√
a1 −

a2

2
D, A = ±

√
24
a3

(a1 −
a2

2
D), B = −2, (2.14)

as a2 + 2a3D = 0, a3 > 0, and a1 −
a2
2 D > 0.

Remark 2.1. Since sechx is an even function, we take k =
√

a1 − a2D − a3D2 and k =
√

a1 −
a2
2 D in

Eqs.(2.13) and (2.14), respectively.
By combining (2.6), (2.11) with (2.13) and (2.14), respectively, we get the following theorem:

Theorem 2.1. Suppose that D satisfies the equality a3D3 + 3
2a2D2 − 3a1D = 0.

(1) If a2 + 2a3D , 0 and a1 > a2D + a3D2, the coupled compound KdV and MKdV equations (1.3)
have the bell-shaped solitary waves (u+, v+) and (u−, v−), where u is the form of (2.11), v is the form
of (2.6), and A, B, k and D are given by (2.13), u+ represents the solution taking “ + ” in B of (2.13),
while u− represents another case.
(2) If a2 + 2a3D = 0, and a1 −

a2
2 D > 0, the coupled compound KdV and MKdV equations (1.3) has

two solutions of the form (2.6) and (2.11)

u±(ξ) = ±
√

6
a3

(a1 −
a2
2 D)sech

√
a1 −

a2
2 D(ξ + ξ0) + D, (2.15)

v±(ξ) = c − αD ∓ α
√

6
a3

(a1 −
a2
2 D)sech

√
a1 −

a2
2 D(ξ + ξ0), (2.16)

where u+ denotes the solution taking “ + ” in front of radical sign in (2.15), u− denotes another case.
Also, v+ represents the solution taking “ − ” in front of radical sign in (2.16), v− represents another
case.
Remark 2.2. As an example, we give the 3D surfaces of u by taking the values a1 = 2, a2 = 2,
a3 = 0.5, and D = −2 in the following Figures 1 and 2.
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Figure 1. The 3D graphics of u+(ξ) corresponding to (a) ξ0 = −3, (b) ξ0 = 0, (c) ξ0 = 3.

−10

−5
0

5
10 −10

−5

0

5

10−3

−2

−1

0

1

2

t

(i)

x

u− c

−10

−5

0

5

10 −10

−5

0

5

10−3

−2

−1

0

1

2

t

(ii)

x

u− c

−10

−5

0

5

10 −10

−5

0

5

10
−3

−2

−1

0

1

2

t

(iii)

x

u− c

Figure 2. The 3D graphics of u−(ξ) corresponding to (a) ξ0 = −3, (b) ξ0 = 0, (c) ξ0 = 3.

AIMS Mathematics Volume 5, Issue 4, 3298–3320.



3304

Remark 2.3. When a3 , 0 and D = 0, from Theorem 2.1, system (1.3) has the solitary waves
(u±(ξ), v±(ξ)), with (0, c) asymptotic value

u+(ξ) =

6a1 |a2 |

a2

√
6a3a1+a2

2

sech2
√a1

2 (ξ+ξ0)

2+(−1+
|a2 |√

6a3a1+a2
2

)sech2
√a1

2 (ξ+ξ0)
, v+(ξ) = c − αu+(ξ), (2.17)

u−(ξ) = −

6a1 |a2 |

a2

√
6a3a1+a2

2

sech2
√a1

2 (ξ+ξ0)

2+(−1− |a2 |√
6a3a1+a2

2

)sech2
√a1

2 (ξ+ξ0)
, v−(ξ) = c − αu−(ξ). (2.18)

Meanwhile, the exact solutions (u(ξ), v(ξ)) are the solitary waves with nonzero asymptotic value of
Eqs.(1.3) as D , 0 in Theorem 2.1. Since the asymptotic value D is the solution of a3D3 + 3

2a2D2 −

3a1D = 0, we know that Theorem 2.1 gives the solitary waves (u(ξ), v(ξ)) with the following three
asymptotic values

(D1, c − αD1), (D2, c − αD2) = (0, c), (D3, c − αD3), (2.19)

where D1 =
−3a2+
√

9a2
2+48a1a3

4a3
,D3 =

−3a2−
√

9a2
2+48a1a3

4a3
, in the case of 3a2

2 + 16a1a3 > 0.
For convenience of express, we take qi = a2 +2a3Di (i = 1, 3). It follows from Theorem 2.1, u+

qi>0(ξ)
represents solitary wave taking “ + ” in B of (2.13), u−qi>0(ξ) represents another case, and v±qi>0(ξ) = c −
αu±qi>0. Meanwhile, we similarly define u+

qi<0(ξ) and u−qi<0(ξ), where v±qi<0(ξ) = c − αu±qi<0. Furthermore,
it is easy to see that u+

qi>0(ξ) is equivalent to u−qi<0(ξ), and u+
qi<0(ξ) is equivalent to u−qi>0(ξ). By some

simple computations, we get the corollary as follows.
Corollary 2.1. (1) For wave speed c > 0, the coupled compound KdV and MKdV equations (1.3) have
the solitary waves (u(ξ), v(ξ)) with (0, c) asymptotic value

u1(ξ) =

6c(1+α2)√
6βc(1+α2)+(λ+α3)2

sech2
√

c(1+α2)
2 (ξ + ξ0)

2 + (−1 + λ+α3
√

6βc(1+α2)+(λ+α3)2
)sech2

√
c(1+α2)

2 (ξ + ξ0)
,

v1(ξ) = c −

6αc(1+α2)√
6βc(1+α2)+(λ+α3)2

sech2
√

c(1+α2)
2 (ξ + ξ0)

2 + (−1 + λ+α3
√

6βc(1+α2)+(λ+α3)2
)sech2

√
c(1+α2)

2 (ξ + ξ0)
,

(2.20)



u2(ξ) = −

6c(1+α2)√
6βc(1+α2)+(λ+α3)2

sech2
√

c(1+α2)
2 (ξ + ξ0)

2 + (−1 − λ+α3
√

6βc(1+α2)+(λ+α3)2
)sech2

√
c(1+α2)

2 (ξ + ξ0)
,

v2(ξ) = c +

6αc(1+α2)√
6βc(1+α2)+(λ+α3)2

sech2
√

c(1+α2)
2 (ξ + ξ0)

2 + (−1 − λ+α3
√

6βc(1+α2)+(λ+α3)2
)sech2

√
c(1+α2)

2 (ξ + ξ0)
.

(2.21)

In the condition of α > c
M1

, where M1 = inf |u1(ξ)|, we have v1 < 0. In the condition of α < − c
M2

, where
M2 = inf |u2|, we have v2 < 0.
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(2) Suppose that 3(λ + α3)2 + 16βc(1 + α2) > 0, (λ + α3)2 + 6βc(1 + α2) , 0. If λ + α3 > 0 and
c < 0, the coupled compound KdV and MKdV equations (1.3) have the solitary waves (u(ξ), v(ξ)) with
(D1, c − αD1) asymptotic value

u3(ξ) =
A1sech2 k1

2 (ξ + ξ0)

4 + B1sech2 k1
2 (ξ + ξ0)

+ D1

=


u+

q1>0, −
(λ + α3)2

6β(1 + α2)
< c < 0,

u−q1<0, −
3(λ + α3)2

16β(1 + α2)
< c < −

(λ + α3)2

6β(1 + α2)
,

v3(ξ) = c − αD1 −
A1αsech2 k1

2 (ξ + ξ0)

4 + B1sech2 k1
2 (ξ + ξ0)

,

(2.22)



u4(ξ) =
−A1sech2 k1

2 (ξ + ξ0)

4 + (−4 − B1)sech2 k1
2 (ξ + ξ0)

+ D1

=


u+

q1<0, −
3(λ + α3)2

16β(1 + α2)
< c < −

(λ + α3)2

6β(1 + α2)
,

u−q1>0, −
(λ + α3)2

6β(1 + α2)
< c < 0,

v4(ξ) = c − αD1 +
αA1sech2 k1

2 (ξ + ξ0)

4 + (−4 − B1)sech2 k1
2 (ξ + ξ0)

,

(2.23)

where

k1 =

√
a1 − a2D1 − a3D2

1

=

√
(λ + α3)

√
9(λ + α3)2 + 48βc(1 + α2) − (3(λ + α3)2 + 16βc(1 + α2))

8β
,

B1 = −2 +
2|a2 + 2a3D1|√

6a3k2
1 + (a2 + 2a3D1)2

= −2 +
2(−(λ + α3) +

√
9(λ + α3)2 + 48βc(1 + α2))√

(λ + α3)2 + (λ + α3)
√

9(λ + α3)2 + 48βc(1 + α2)
,

A1 =
6k2

1(2 + B1)
a2 + 2a3D1

.

In addition, if c < min{αD1, 0, α( A1
4+B1

+ D1)}, we have v3(ξ) < 0. Also, if c < min{αD1, 0, α( A1
B1

+ D1)},
we have v4(ξ) < 0.
(3) Assume that 3(λ + α3)2 + 16βc(1 + α2) > 0, (λ + α3)2 + 6βc(1 + α2) , 0. If λ + α3 < 0 and
c < 0, the coupled compound KdV and MKdV equations (1.3) have the solitary waves (u(ξ), v(ξ)) with
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(D3, c − αD3) asymptotic value

u5(ξ) =
A3sech2 k3

2 (ξ + ξ0)

4 + B3sech2 k3
2 (ξ + ξ0)

+ D3

=


u+

q3>0, −
3(λ + α3)2

16β(1 + α2)
< c < −

(λ + α3)2

6β(1 + α2)
,

u−q3<0, −
(λ + α3)2

6β(1 + α2)
< c < 0,

v5(ξ) = c − αD3 −
A3αsech2 k3

2 (ξ + ξ0)

4 + B3sech2 k3
2 (ξ + ξ0)

,

(2.24)



u6(ξ) =
−A3sech2 k3

2 (ξ + ξ0)

4 + (−4 − B3)sech2 k3
2 (ξ + ξ0)

+ D3

=


u−q3>0, −

3(λ + α3)2

16β(1 + α2)
< c < −

(λ + α3)2

6β(1 + α2)
,

u+
q3<0, −

(λ + α3)2

6β(1 + α2)
< c < 0,

v6(ξ) = c − αD3 +
αA3sech2 k3

2 (ξ + ξ0)

4 + (−4 − B3)sech2 k3
2 (ξ + ξ0)

,

(2.25)

where

k3 =

√
a1 − a2D3 − a3D2

3

=

√
−

(λ + α3)
√

9(λ + α3)2 + 48βc(1 + α2) + (3(λ + α3)2 + 16βc(1 + α2))
8β

,

B3 = −2 +
2|a2 + 2a3D|√

6a3k2
1 + (a2 + 2a3D)2

= −2 +
2(−(λ + α3) −

√
9(λ + α3)2 + 48βc(1 + α2))√

(λ + α3)2 + (λ + α3)
√

9(λ + α3)2 + 48βc(1 + α2)
,

A3 =
6k2

3(2 + B3)
a2 + 2a3D3

.

Moreover, if c < min{αD3, 0, α( A3
4+B3

+ D3)}, we have v5(ξ) < 0. Also, if c < min{αD3, 0, α( A3
B3

+ D3)},
we have v6(ξ) < 0.

3. General conclusion for orbital stability of solitary waves to Eqs.(1.3)

We first employ the translation transformation u = ϕ + D and v = ψ + D to Eqs.(1.3). It follows
from (1.3) by simple computation

ϕt + αψψx + αDψx + (λ + 2βD)ϕϕx + βϕ2ϕx + (βD2 + λD)ϕx + ϕxxx = 0, (3.1)

AIMS Mathematics Volume 5, Issue 4, 3298–3320.



3307

ψt + α(ϕψ)x + αDϕx + (αD + 2D)ψx + 2ψψx = 0. (3.2)

We will prove that system (3.1)–(3.2) are a Hamiltonian system, and satisfies the conditions of the
general orbital stability theory proposed by Grillakis et al. [16].

Let U = (ϕ, ψ). The function space on which we shall work is defined by X = H1(R) × H1(R). Let
the inner product of X be

( f , g) =

∫
R
( f1g1 + f1xg1x + f2g2 + f2xg2x)dx, (3.3)

for f = ( f1, f2), g = (g1, g2) ∈ X. The dual space of X is X∗ = H−1(R) × H−1(R), there exists a nature
isomorphism I : X → X∗ defined by

〈I f , g〉 = ( f , g), (3.4)

where 〈·, ·〉 denotes the pairing between X and X∗

〈 f , g〉 =

∫
R
(

2∑
i=1

figi)dx. (3.5)

From (3.3)–(3.5), we can see that

I =

 1 − ∂2

∂x2 0
0 1 − ∂2

∂x2

 . (3.6)

Let T be one-parameter groups of unitary operator on X defined by

T (s)U(·) = U(· − s), f or U(·) ∈ X, s ∈ R. (3.7)

Differentiating (3.7) with respect to s at s = 0, we have

T ′(0) =

(
− ∂
∂x 0
0 − ∂

∂x

)
. (3.8)

It follows from Theorem 2.1, (3.1) and (3.2) that there exist solitary waves T (ct)Φ(x) of (3.1) and (3.2)
with Φ(x) defined by

Φ(x) = (ϕ(x), ψ(x)) = (
Asech2 k

2 x

4 + Bsech2 k
2 x
,−

Aαsech2 k
2 x

4 + Bsech2 k
2 x

). (3.9)

In this and the following sections, we shall consider the orbital stability of solitary waves T (ct)Φ(x)
of (3.1) and (3.2).

Let us define a functional vector on X

E(U) =

∫
R
[
ϕ2

x

2
−
α

2
ϕψ2 − αDϕψ −

λ + 2βD
6

ϕ3 −
β

12
ϕ4

−
βD2 + λD

2
ϕ2 −

αD + 2D
2

ψ2 −
ψ3

3
]dx. (3.10)
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By (3.7) and (3.10), we can verify that E(U) is invariant under T

E(T (s)U) = E(U), f or any s ∈ R. (3.11)

For any t ∈ R, we get

E(U(t)) = E(U(0)). (3.12)

Note that system (3.1) and (3.2) can be written as the following Hamiltonian system

dU
dt

= JE′(U), (3.13)

where U = (ϕ, ψ), J is a skew-symmetrically linear operator defined by

J =

(
∂
∂x 0
0 ∂

∂x

)
,

and

E′(U) =

(
−α2ψ

2 − αDψ − λ+2βD
2 ϕ2 −

β

3ϕ
3 − (βD2 + λD)ϕ − ϕxx

−αϕψ − αDϕ − (αD + 2D)ψ − ψ2

)
(3.14)

is the Frechet derivative of E.
Let

B =

(
−1 0
0 −1

)
such that T ′(0) = JB, and

Q(U) = 1
2〈BU,U〉 = −1

2

∫
R
(ϕ2 + ψ2)dx. (3.15)

By (3.7) and (3.15), we can prove that

Q(T (s)U) = Q(U), f or any s ∈ R, (3.16)
Q(U(t)) = Q(U(0)), (3.17)

and

Q′(U) = BU =

(
−ϕ

−ψ

)
. (3.18)

Furthermore, notice that U(ξ) = (ϕ(ξ), ψ(ξ)) satisfies system (3.1)–(3.2), where ξ = x − ct, we have

−cϕ′ + αψψ′ + αDψ′ + (λ + 2βD)ϕϕ′ + βϕ2ϕ′ + (βD2 + λD)ϕ′ + ϕ′′′ = 0, (3.19)
−cψ′ + α(ϕψ)′ + αDϕ′ + (αD + 2D)ψ′ + 2ψψ′ = 0. (3.20)
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We integrate (3.19) and (3.20) once, respectively, then have

−cϕ +
α

2
ψ2 + αDψ +

λ + 2βD
2

ϕ2 +
β

3
ϕ3 + (βD2 + λD)ϕ + ϕ′′ = 0, (3.21)

−cψ +
α

2
ϕψ + αDϕ + (αD + 2D)ψ + ψ2 = 0. (3.22)

Combining (3.14), (3.18), (3.21) and (3.22), we have

E′(Φ) − cQ′(Φ) = 0. (3.23)

Define an operator from X to X∗

Hc = E′′(Φ) − cQ′′(Φ)

=

(
−∂2

x − (λ + 2βD)ϕ − βϕ2 − βD2 − λD + c −αψ − αD
−αψ − αD −ψ − D

)
. (3.24)

Observe that Hc is self-adjoint in the sense that H∗c = Hc. This means that I−1Hc is a bounded self-
adjoint operator on X. The spectrum of Hc consists of the real numbers λ such that Hc − λI is not
invertible. By complex calculation with (3.8) and (3.24), we get that

HcT ′(0)Φ = 0, (3.25)

that is, λ = 0 belongs to the spectrum of Hc.
For any y = (y1, y2) ∈ X, by (3.24), we have

〈Hcy, y〉 = 〈Ly1, y1〉 −

∫
R
(ψ + D)(αy1 + y2)2dx, (3.26)

where L = −∂2
x−(λ+2βD)ϕ−βϕ2−βD2−λD+c+α2(ψ+D). Next, let’s study the spectrum structure of

the linear operators L. For L, when x→ ∞, we have ϕ→ 0, ψ→ 0 and −(λ+ 2βD)ϕ−βϕ2 +α2ψ→ 0.
Therefore, by Weyl′s essential spectral theorem, the essential spectrum of L is σessL = [−βD2 − λD +

α2D + c,+∞). It follows from (2.6) and (3.19) that

Lϕx = 0. (3.27)

Since ϕx has a unique zero at x = 0, by using the Sturm-Liouville theorem, we know that zero is the
second eigenvalue of L, and L has exactly one strictly negative eigenvalue −σ2, with an eigenfunction
χ, that is,

Lχ = −σ2χ. (3.28)

According to the Lemma in Appendix of [28], for any real functions y , 0 ∈ H1(R) satisfying 〈y, χ〉 =

〈y, ϕx〉 = 0, there exists a positive number δ > 0 such that 〈Ly, y〉 ≥ δ‖y‖2H1(R). Then, we get 〈Ly, y〉 > 0.
For any Ψ = (y−1 , y

−
2 ) ∈ X, we choose y−1 = χ, y−2 = −αχ, Ψ− = (χ,−αχ), then

〈HcΨ
−,Ψ−〉 = −σ2〈χ, χ〉. (3.29)
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Combining (3.25)–(3.29), the spectrum property of L and the conditions in Corollary 2.1, we know
that Hc has exactly one strictly negative eigenvalue −σ2, zero is the second eigenvalue.

Let

P = {p ∈ X|p = (p1, p2), 〈p1, χ〉 = 〈p1, ϕx〉 = 0}. (3.30)

Again using the Lemma in Appendix of [28], we get that the third eigenvalue of Hc is strictly positive,
that is, for any p = (p1, p2) ∈ P, p , (0, 0), there exist δ > 0 such that 〈Hc p, p〉 > δ‖p‖2X. Let

Z = {k1T ′(0)Φ|k1 ∈ R}, (3.31)
N = {k2Ψ

−|k2 ∈ R/{0}}. (3.32)

Then, the assumption 3.3 in [16] holds.
Next, we define d(c) : R→ R by

d(c) = E(Φ) − cQ(Φ) (3.33)

and define d′′(c) to be the second derivative of function d with respect to c. In addition, we use p(d′′)
to denote the numbers of positive eigenvalue of d′′.

Then, by applying the extension version of the general theory of orbital stability presented by
Grillakis et al., the results obtained in [28] or by the similar derivation, we obtain the orbital stability
of solitary waves in Theorem 1.2.

4. Orbital stability of solitary waves for Eqs.(1.3)

In this section, we shall verify that p(d′′) = 1 and give the detailed proof of Theorem 1.2.
Combining (3.8), (3.15) with (3.23) and differentiating (3.33) once with respect to c , it follows that

d′(c) = 〈E′(Φ),Φ′〉 − c〈Q′(Φ),Φ′〉 − Q(Φ)

= −Q(Φ) =
1
2

∫
ϕ2 + ψ2dx =

1 + α2

2

∫
ϕ2dx. (4.1)

According to the stability theory developed by Grillakis et al. [16], we only need to observe the sign
of d′′, from which we can obtain the orbital stability of solitary waves Φ(ξ) with zero asymptotic value
for system (3.1)–(3.2). Since orbital stability of Φ(ξ) is equivalent to that of solitary waves (u(ξ), v(ξ))
of Eqs.(1.3), we only need to prove d′′ > 0 or d′′ < 0 for Φ(ξ). According to the case of the value
a2 + 2a3D, we discuss the orbital stability and instability of the corresponded solutions.

4.1. Orbital stability of solitary waves for Eqs.(1.3) in the case of a2 + 2a3D = 0

In the case of a2 + 2a3D = 0, k, A, and B are given by (2.14). From (4.1), we have

d′(c) =
1 + α2

2

∫
R
[

Aekξ

(1 + ekξ)2 + Bekξ ]2dξ =
1 + α2

2

∫
R
(

Aekξ

1 + e2kξ )2dξ. (4.2)

Let y = e2kξ, we get

d′(c) =
A2(1 + α2)

4k

∫ +∞

0

1
(1 + y)2 dy =

A2(1 + α2)
4k
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=
6(1 + α2)

β

√
c(1 + α2) −

(λ + α3)D
2

,

d′′(c) =
3(1 + α2)2

β

√
c(1 + α2) − (λ+α3)D

2

> 0, (4.3)

since β > 0 and 2(1 + α2)c > (λ + α3)D. Then, we get conclusion as follows:
Conclusion 4.1. If a2 + 2a3D = 0, and the wave speed c satisfies c ∈ E = {c|c < min{−α(λ+α3)

2β ,

α(
√

24c(1+α2)+6(λ+α3)2−λ−α3)
2β }, c > − (λ+α3)2

4(1+α2)β }, then the solitary waves u+ and v+ in (2.15) and (2.16) of
Eqs.(1.3) are orbitally stable. If a2 + 2a3D = 0, and the wave speed c satisfies c ∈ E = {c|c <

min{−α(λ+α3)
2β ,

−α(λ+α3+
√

24c(1+α2)+6(λ+α3)2)
2β }, c > − (λ+α3)2

4(1+α2)β }, then the solitary waves u− and v− in (2.15) and
(2.16) of Eqs.(1.3) are orbitally stable.
Remark 4.1 We simulate numerically the orbital stability of the solitary wave (2.15) and (2.16) for
Eqs.(1.3) by Maple, to show the result obtained visually. Figure 3 is the 3D surface of d′′(c) in (4.3)
by taking the values λ = 1.2, α = 0.3.
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Figure 3. The 3D graphic of d′′(c) corresponding to (i) β = 0.1, (ii) β = 0.2, (iii) β = 0.7.

It is shown in Figure 3 that d′′(c) is positive when β > 0 and D = −λ+α3

2β . So there exists a wave
speed interval, such that d′′(c) is positive.

4.2. Orbital stability of solitary waves for Eqs.(1.3) in the case of a2 + 2a3D , 0

In the case of a2 + 2a3D , 0, k, A, B are given by (2.13). From (4.1), we have

d′(c) =
1 + α2

2

∫
R
[

Aekξ

(1 + ekξ)2 + Bekξ ]2dξ. (4.4)

Let z = ekξ, we get

d′(c) =
A2(1 + α2)

2k

∫ +∞

0

z
[(1 + z)2 + Bz]2 dz

=
A2(1 + α2)

2k

∫ +∞

0

z

[(z + B+2
2 )2 + 1 − (B+2)2

4 ]2
dz

=
A2(1 + α2)

2k

∫ +∞

0

z
[(z + p)2 + 1 − p2]2 dz
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=
A2(1 + α2)

2k
[
1
2
− p

∫ +∞

0

1
[(z + p)2 + 1 − p2]2 dz], (4.5)

where p = B+2
2 . From (2.13), we have p2 =

(a2+2a3D)2

6a3k2+(a2+2a3D)2 < 1. Due to∫ +∞

0

1
[(z + p)2 + 1 − p2]2 dz = −

p
2(1 − p2)

+
1

2(1 − p2)

∫ +∞

0

1
(z + p)2 + 1 − p2 dz

= −
p

2(1 − p2)
+

1
2(1 − p2)

·
1√

1 − p2
(
π

2
− arctan

p√
1 − p2

) (4.6)

and (4.5), we have

d′(c) =
A2(1 + α2)

2k
[
1
2

+
p2

2(1 − p2)
−

p

2(1 − p2)
3
2

(
π

2
− arctan

p√
1 − p2

)]

=
A2(1 + α2)

4k
[

1
1 − p2 −

p

(1 − p2)
3
2

(
π

2
− arctan

p√
1 − p2

)]. (4.7)

From (2.13) and p = B+2
2 , we get

A =
6k2(2 + B)
a2 + 2a3D

=
12k2 p

a2 + 2a3D
. (4.8)

Substituting (4.8) into (4.7), we have

d′(c) =
36k3 p2(1 + α2)
(a2 + 2a3D)2 [

1
1 − p2 −

p

(1 − p2)
3
2

(
π

2
− arctan

p√
1 − p2

)]

=
6(1 + α2)

√
(1 + α2)c − (λ + α3)D − βD2

β
[1 −

p√
1 − p2

(
π

2
− arctan

p√
1 − p2

)],

(4.9)

where p is a function of D and D is a function of c. Hence

d′′(c) = −
6(1 + α2)

√
(1 + α2)c − (λ + α3)D − βD2

β

· [
p√

1 − p2
(
π

2
− arctan

p√
1 − p2

)]′p p′c

+
3(1 + α2)[1 + α2 − (λ + α3 + 2βD)D′c]

β
√

(1 + α2)c − (λ + α3)D − βD2

· [1 −
p√

1 − p2
(
π

2
− arctan

p√
1 − p2

)]. (4.10)

Since

[
p√

1 − p2
(
π

2
− arctan

p√
1 − p2

)]′p =
1

1 − p2 [−p +
1√

1 − p2
(
π

2
− arctan

p√
1 − p2

)],
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(4.11)

p2 = (
B + 2

2
)2 =

(a2 + 2a3D)2

6a3(a1 − a2D − a3D2) + (a2 + 2a3D)2 , (4.12)

p2

1 − p2 =
(a2 + 2a3D)2

6a3(a1 − a2D − a3D2)
, (4.13)

and

2pp′c =
4a3 p2D′c

a2 + 2a3D
−

2a3 p4

(a2 + 2a3D)2 [3(1 + α2) − (a2 + 2a3D)D′c], (4.14)

we have

p′c =
a3 p

(a2 + 2a3D)2 [2(a2 + 2a3D)D′c − p2(3(1 + α2) − (a2 + 2a3D)D′c)]. (4.15)

Substituting (4.11) and (4.15) into (4.10), we have

d′′(c) = −
6(1 + α2)

√
(1 + α2)c − (λ + α3)D − βD2 p

(1 − p2)(a2 + 2a3D)2

· [−p +
1√

1 − p2
(
π

2
− arctan

p√
1 − p2

)]l

+ [1 −
p√

1 − p2
(
π

2
− arctan

p√
1 − p2

)] (4.16)

·
3(1 + α2)[1 + α2 − (λ + α3 + 2βD)D′c]

β
√

c(1 + α2) − (λ + α3)D − βD2
,

where l = 2(a2 + 2a3D)D′c − p2(3(1 + α2) − (a2 + 2a3D)D′c).
Furthermore, substituting p = ± |a2+2a3D|√

6a3k2+(a2+2a3D)2
into (4.16), we have

d′′(c) =
6(1 + α2)k

6a3k2 + (a2 + 2a3D)2 [3(1 + α2) − (a2 + 2a3D)D′c]

∓
6
√

2(1 + α2)|a2 + 2a3D|D′c
√

3a3(a2 + 2a3D)
(
π

2
− arctan(

±|a2 + 2a3D|

k
√

6a3
)), (4.17)

where a1 = c(1 + α2), a2 = λ + α3, a3 = β, and k is given by (2.13). The choice of the signs in
parenthesis of (4.17) is the same as that in B of (2.13). From Theorem 2.1, assumption q = a2 + 2a3D
and (4.17), we can get that

(1) the same expression of the discrimination of orbital stability for u+
q>0(ξ) and u−q<0(ξ) is

d′′(c) =
6(1 + α2)

√
a1 − a2D − a3D2

6a3k2 + (a2 + 2a3D)2 [3(1 + α2) − (a2 + 2a3D)D′c]

−
6
√

2(1 + α2)D′c
√

3a3
(
π

2
− arctan(

(a2 + 2a3D)
k
√

6a3
)). (4.18)
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(2) the same expression of the discrimination of orbital stability for u+
q<0(ξ) and u−q>0(ξ) is

d′′(c) =
6(1 + α2)

√
a1 − a2D − a3D2

6a3k2 + (a2 + 2a3D)2 [3(1 + α2) − (a2 + 2a3D)D′c]

+
6
√

2(1 + α2)D′c
√

3a3
(
π

2
+ arctan(

(a2 + 2a3D)
k
√

6a3
)). (4.19)

Remark 4.2. Figures 4 and 5 are the 3D surfaces of d′′(c) in (4.18) and (4.19) by taking the values
λ = 1.2 and β = 0.3.
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Figure 4. The 3D graphics of d′′(c) corresponding to (i) α = 1, (ii) α = 1.5, (iii) α = 2.
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Figure 5. The 3D graphics of d′′(c) corresponding to (i) α = −0.1, (ii) α = −0.5, (iii) α = 1.

It is shown in Figure 4 that d′′(c) may be positive or negative when β > 0 and λ + α3 + 2βD , 0.
So there exists a wave speed interval, such that d′′(c) is positive or negative for solutions u+

q>0(ξ) and
u−q<0(ξ). Meanwhile, it is shown in Figure 5 that d′′(c) is positive when β > 0 and λ + α3 + 2βD , 0.
So there exist the wave speed interval, such that d′′(c) is positive for solutions u+

q<0(ξ) and u−q>0(ξ).
Using mathematical analysis methods, we have the following theorem from the discrimination

(4.17)–(4.19):
Theorem 4.1. (1) If (λ + α3)2 + 6βc(1 + α2) > 0 and α > c

M1
, where M1 = inf |u1(ξ)|, then the solitary

waves (u1(ξ), v1(ξ)) with (0, c) asymptotic value are orbitally stable. If α < − c
M2

, where M2 = inf |u2(ξ)|,
then the solitary waves (u2(ξ), v2(ξ)) with (0, c) asymptotic value are orbitally stable.
(2) If 3a2

2 + 16a1a3 > 0, a2
2 + 6a1a3 , 0, λ + α3 > 0, E1 = {c|c < min{αD1, 0, α(D1 + A1

4+B1
)} and

E2 = {c|c < min{αD1, 0, α(D1 + A1
B1

)}, then the solitary waves (u3(ξ), v3(ξ)) and (u4(ξ), v4(ξ)) with
(D1, c − αD1) asymptotic value have the following stability results, respectively.

(2.1) There exist c0 ∈ (− a2
2

6(1+α2)a3
, 0) and c1 ∈ (− 3a2

2
16(1+α2)a3

,−
a2

2
6(1+α2)a3

) such that (u3(ξ), v3(ξ)) are

orbitally stable as c ∈ (c1, c0) ∩ E1 and c , −
a2

2
6(1+α2)a3

, and they are orbitally unstable as
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c ∈ (− 3a2
2

16(1+α2)a3
, c1) ∩ E1 or c ∈ (c0, 0) ∩ E1.

(2.2) (u4(ξ), v4(ξ)) are orbitally stable when the wave speed c satisfies c ∈ (− 3a2
2

16(1+α2)a3
, 0) ∩ E2 and

c , − a2
2

6(1+α2)a3
.

(3) Suppose that 3a2
2 + 16a1a3 > 0, a2

2 + 6a1a3 , 0, λ + α3 < 0, E3 = {c|c < min{αD3, 0, α(D3 + A3
4+B3

)}
and E4 = {c|c < min{αD3, 0, α(D3 + A3

B3
)} , then the solitary waves (u5(ξ), v5(ξ)) and (u6(ξ), v6(ξ)) with

(D3, c − αD3) asymptotic value have the following properties, respectively.

(3.1) (u5(ξ), v5(ξ)) are orbitally stable when the wave speed c ∈ {−
3a2

2
16(1+α2)a3

, 0} ∩ E3 and

c , − a2
2

6(1+α2)a3
.

(3.2) There exist c2 ∈ (− a2
2

6(1+α2)a3
, 0) and c3 ∈ (− 3a2

2
16(1+α2)a3

,−
a2

2
6(1+α2)a3

) such that (u6(ξ), v6(ξ)) are

orbitally stable as c ∈ (c3, c2) ∩ E4 and c , −
a2

2
6(1+α2)a3

, and they are orbitally unstable as

c ∈ (− 3a2
2

16(1+α2)a3
, c3) ∩ E4 or c ∈ (c2, 0) ∩ E4.

Proof of Theorem 4.1. (1) Firstly, we show that conclusion (1) in Theorem 4.1 holds.
According to D2 = 0 and (4.17), we have

d′′(c) =
18(1 + α2)2

√
(1 + α2)c

6a3a1 + a2
2

> 0, (4.20)

when c > 0 and a2
2 + 6a1a3 > 0. Hence, conclusion (1) holds.

(2) Secondly, we prove the orbital stability of (u4(ξ), v4(ξ)) in (2.2) of Theorem 4.1.
Since (u4(ξ), v4(ξ)) = (u−q1>0, c − αu−q1>0) as q1 > 0, and (u4(ξ), v4(ξ)) = (u+

q1<0, c − αu+
q1<0) as q1 < 0,

we only need to show the stabilities of solitary waves (u−q1>0, c − αu−q1>0) and (u+
q1<0, c − αu+

q1<0).
From D1 in (2.19), we have

D′1c =
6(1 + α2)√

9a2
2 + 48a1a3

> 0, (4.21)

and

3(1 + α2) − (a2 + 2a3D1)D′1c = 3(1 + α2) − (a2 + 2a3D1)
6(1 + α2)√

9a2
2 + 48a1a3

=
3(1 + α2)a2√
9a2

2 + 48a1a3

> 0. (4.22)

Substituting (4.21) and (4.22) into (4.19), we have d′′(c) > 0. Then, (u−q1>0, c − αu−q1>0) and (u+
q1<0, c −

αu+
q1<0) are orbitally stable at D1. Hence, we get that (u4, v4) are orbitally stable.

(3) Thirdly, we prove the orbital stability of (u3(ξ), v3(ξ)) in (2.1) of Theorem 4.1.
Similar to proof (2), since (u3(ξ), v3(ξ)) = (u+

q1>0, c−αu+
q1>0) as q1 > 0, and (u3(ξ), v3(ξ)) = (u−q1<0, c−

αu−q1<0) as q1 < 0, we only need to prove the stabilities of solitary waves (u+
q1>0, c−αu+

q1>0) and (u−q1<0, c−
αu−q1<0).
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(3.1) Stability and instability of (u+
q1>0, c − αu+

q1>0).
From Theorem 2.1, we know that the existence range of (u+

q1>0, c − αu+
q1>0) is a2 > 0 and c ∈

(− (λ+α3)2

6(1+α2)a3
, 0) ∩ E1. Taking k = k1 and D = D1, we have

a2 + 2a3D1 =
−a2 +

√
9a2

2 + 48a1a3

2
=

< 0, for a2 > 0, a2
2 + 6a1a3 < 0,

> 0, for a2 > 0, a2
2 + 6a1a3 > 0,

(4.23)

k2
1 =

a2

√
9a2

2 + 48a3a1 − (3a2
2 + 16a1a3)

8a3
(4.24)

Combining (4.21), (4.23), (4.24) and (4.18), we have

d′′(c) =
24(1 + α2)

a2
2 + a2

√
9a2

2 + 48a1a3

√
a2

√
9a2

2 + 48a1a3 − (3a2
2 + 16a1a3)

2
√

2a3

3a2(1 + α2)√
9a2

2 + 48a1a3

−
12
√

6(1 + α2)2

√
a3

√
9a2

2 + 48a1a3

(
π

2
− arctan

−a2 +

√
9a2

2 + 48a1a3√
3a2

√
9a2

2 + 48a1a3 − (9a2
2 + 48a1a3)

)

=
12
√

6(1 + α2)2

√
a3

√
9a2

2 + 48a1a3

(

√
3a2

√
9a2

2 + 48a1a3 − (9a2
2 + 48a1a3)

2(a2 +

√
9a2

2 + 48a1a3)
−
π

2

+ arctan
−a2 +

√
9a2

2 + 48a1a3√
3a2

√
9a2

2 + 48a1a3 − (9a2
2 + 48a1a3)

). (4.25)

Let

x =
−a2 +

√
9a2

2 + 48a1a3√
3a2

√
9a2

2 + 48a1a3 − (9a2
2 + 48a1a3)

, −
a2

2

6a3(1 + α2)
< c < 0 (4.26)

in (4.25), we have

x′(c) =
6a3(1 + α2)(a2

√
9a2

2 + 48a1a3 + 3a2
2)

(3a2

√
9a2

2 + 48a1a3 − (9a2
2 + 48a1a3))

3
2

√
9a2

2 + 48a1a3

> 0, (4.27)

that is, x = x(c) is monotone increasing with respect to c. Therefore, when c changes from − a2
2

6a3(1+α2)
to 0, x changes from 0 to +∞. For convenience, we write the part in curly braces of (4.25) as the
following form

f1(x) = g ·
1
x
− (

π

2
− arctan x), 0 < x < +∞, (4.28)
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where g =
−a2+
√

9a2
2+48a1a3

2(a2+
√

9a2
2+48a1a3)

. Since a2 + 2a3D1 > 0, a2 > 0, and a2
2 + 6a1a3 > 0, we get 0 < g < 1. In

order to determine the sign of d′′(c) in (4.25), we discuss the sign of f1(x). Differentiating (4.28) with
respect to x, we have

f ′1(x) = −
g
x2 +

1
1 + x2 =

−g(1 + x2) + x2

x2(1 + x2)
=

(1 − g)x2 − g
x2(1 + x2)

. (4.29)

Solving (1 − g)x2 − g = 0, we have x0 =
√

g
1−g and x1 = −

√
g

1−g . By computation, we have f1(x) is

monotone decreasing in (0,
√

g
1−g ) and monotone increasing in (

√
g

1−g ,+∞). According to lim
x→0+

f1(x) =

+∞, lim
x→+∞

f1(x) = 0 and the intermediate value theorem of continuous functions, we get that there
exists x2 ∈ (0,+∞) such that f1(x2) = 0, f1(x) > 0 in (0, x2), and f1(x) < 0 in (x2,+∞). Therefore,
we have that d′′(c) > 0 in (0, x2), and d′′(c) < 0 in (x2,+∞). Since x = x(c) is monotone increasing
with respect to c, there exists c0 ∈ (− a2

2
6(1+α2)a3

, 0) such that x(c0) = x2. Hence, we conclude that there

exists c0 ∈ (− a2
2

6(1+α2)a3
, 0) such that (u+

q1>0, c − αu+
q1>0) are orbitally stable as c ∈ (− a2

2
6(1+α2)a3

, c0) ∩ E1 and
orbitally unstable as c ∈ (c0, 0) ∩ E1.

(3.2) Stability and instability of (u−q1<0, c − αu−q1<0).
From (4.18), we know that the discrimination d′′(c) of orbital stability of solitary wave (u−q1<0, c −

αu−q1<0) is also given by (4.25). From Theorem 2.1, we get that the existence range of (u−q1<0, c−αu−q1<0)

is a2 > 0 and c ∈ (− 3(λ+α3)2

16(1+α2)a3
,− (λ+α3)2

6(1+α2)a3
) ∩ E1. Taking k = k1 and D = D1, for q1 < 0, we have

a2 + 2a3D1 =
−a2 +

√
9a2

2 + 48a1a3

2
< 0. (4.30)

Let

x(c) =
−a2 +

√
9a2

2 + 48a1a3√
3a2

√
9a2

2 + 48a1a3 − (9a2
2 + 48a1a3)

, (4.31)

−
3a2

2

16a3(1 + α2)
< c < −

a2
2

6a3(1 + α2)

in (4.25), we have

x′(c) =
6a3(1 + α2)(a2

√
9a2

2 + 48a1a3 + 3a2
2)

(3a2

√
9a2

2 + 48a1a3 − (9a2
2 + 48a1a3))

3
2

√
9a2

2 + 48a1a3

> 0, (4.32)

that is, x = x(c) is monotone increasing with respect to c. Therefore, x changes from −∞ to 0 as c
changes from − 3a2

2
16a3(1+α2) to − a2

2
6a3(1+α2) . For convenience, we write the part in curly braces of (4.25) as

the following form

f2(x) = g ·
1
x
− (

π

2
− arctan x), −∞ < x < 0, (4.33)
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where g =
−a2+
√

9a2
2+48a1a3

2(a2+
√

9a2
2+48a1a3)

. Since a2 + 2a3D1 < 0, a2 > 0, and a2
2 + 6a1a3 > 0, we have g < 0. In

order to determine the sign of d′′(c) in (4.25), we discuss the sign of f1(x). Differentiating (4.33) with
respect to x, we have

f ′2(x) = −
g
x2 +

1
1 + x2

=
−g(1 + x2) + x2

x2(1 + x2)
=

(1 − g)x2 − g
x2(1 + x2)

> 0, −∞ < x < 0. (4.34)

Then, f2(x) is monotone increasing in (−∞, 0). According to lim
x→0−

f2(x) = +∞, lim
x→−∞

f2(x) = −π and
the intermediate value theorem of continuous functions, we get that there exists x3 ∈ (−∞, 0) such
that f2(x3) = 0, f2(x) < 0 in (−∞, x3), and f2(x) > 0 in (x3, 0). Then, we have that d′′(c) < 0 in
(−∞, x3), and d′′(c) > 0 in (x3, 0). Since x = x(c) is monotone increasing with respect to c, there
exists c1 ∈ (− 3a2

2
16(1+α2)a3

,−
a2

2
6(1+α2)a3

) such that x(c1) = x3. Hence, we conclude that there exists c1 ∈

(− 3a2
2

16(1+α2)a3
,−

a2
2

6(1+α2)a3
) such that (u−q1

, c − αu−q1
)) are orbitally unstable as c ∈ (− 3a2

2
16(1+α2)a3

, c1) ∩ E1 and

orbitally stable as c ∈ (c1,−
a2

2
6(1+α2)a3

) ∩ E1.

For (u5(ξ), v5(ξ)), similar to the proof of orbital stability of (u4(ξ), v4(ξ)), by (4.16), we obtain that
they are orbitally stable. Also, similar to the proof of orbital stability of (u3(ξ), v3(ξ)), by (4.17), we
conclude the results on the orbital stability of (u6(ξ), v6(ξ)) in Theorem 4.1. In summary, the proof of
Theorem 4.1 is finished.

5. Conclusion

In this article, we are interested in studying the stability of the solitary waves with nonzero
asymptotic value for a coupled version of compound KdV and MKdV equations with two
components (1.3). In order to overcome the difficulty of studying orbital stability of solitary waves
with nonzero asymptotic value for the coupled compound KdV and MKdV equations, we use a
translation transformation to transfer this problem into solitary waves with zero asymptotic value for a
reduced nonlinear coupled equations. By applying the orbital stability theory presented by Grillakis et
al., the results obtained by Bona et al. and detailed spectral analysis, we obtain the orbital stability
and instability of solitary waves with zero asymptotic value for a reduced new coupled nonlinear
equation. From Conclusion 4.1 and Theorem 4.1, it is easy to see that the orbital stability and
instability of solitary waves with zero and nonzero asymptotic value are related to wave speed c. The
influence regions of stability and instability are given separately in Conclusion 4.1 and Theorem 4.1.
As v = 0, we can also obtain the stability and instability of solitary waves for the compound KdV
equation. Our work not only extends GSS methods to study the orbital stability and instability of
solitary wave solutions with nonzero asymptotic value, but also includes and improves the results of
Zhang et al. [15]. Moreover, the orbital stability of periodic solitary wave is an open problem, we will
go on to study this problem.
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