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1. Introduction
In the recently, there have been many studies and developments in the fractional calculus field

so far [1–9]. Random models that depend upon uncertainty in differential equations or partial
differential equations have been analysed in many years ago in many fields of applied science such
as sociology, physics, chemistry, sociology, economics, medicine and biology. Randomness effect in
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the input may arise because of several faults in the noted or measured data and empirical states [10–15].
Due to the truth that the stochastic types are more naturalistic than the deterministic types, we
concentrate our work in this article on the wick-type stochastic the time nonlinear Schrödinger
equation with conformable fractional derivatives. A lot of research on stochastic fractional
differential equations has been done recently [16–18]. Ghany and Zakarya [16] studied exact
traveling wave solutions for wick-type stochastic Schamel KdV equation, in [17] is obtained exact
solutions for the stochastic time fractional Gardner equation, in [18] is studied white noise functional
process for the fractional coupled KdV equations and is found some soliton solutions.

Birefringence in optical fibers is a natural phenomenal that occurs because of some components
such as twists, bends and anisotropic stress of fibers. These cause to differential set delay and thus
the splitting of pulses occur. An addition to detrimental positions of the random birefringence in
optical fibers, a ruled and artificial birefringence presented in the fiber is sometimes studied to realise
in-line fiber optical factors and tools. Artificially presented birefringence in optical fibers may be
used to advance of high-birefringence (Hi-Bi) fibers. Such Hi-Bi fibers are realised by introducing a
permanent high birefringence into the fiber during fabrication. The nonlinear Schrödinger's equation
plays a vital role in various areas of biological, physical and engineering sciences. It appears in many
applied fields, including fluid dynamics, nonlinear optics, plasma physics and proteinchemistry. In
this article, we will study the nonlinear Schrödinger equation with the aid of time conformable
derivative.

The presented equations for perturbation solitons in birefringent fibers given with Kerr law
nonlinearity are expressed with the vector coupled nonlinear Schrödinger's equations (NLSE).
The coupled NLSEs given with the spatio-temporal dispersion and Kerr law nonlinearity are as
below [19,20].
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Here ),(= xqq and ),(= xrr define wave profiles of two split pulses that are the function
of spatial variable x and the temporal variable  For 1,2,=l la defines the coefficients of
group-velocity dispersion, while lb gives the coefficients of spatio-temporal dispersion, lc defines
the coefficients of cross-phase modulation, ld defines the coefficients of self-phase modulations.
Where the perturbation conditions l defines the inter-modal dispersion, l is the self-steepening
expression, lv and l are nonlinear dispersions and finally l is the third order dispersion that
must be taken into account in case the group-velocity dispersion is small.

We assume the following types without Spatio-temporal dispersion and Kerr Law nonlinearity
without perturbation conditions, Hence 0,=0,=0,=0,=0,= lllll v  0,=lb Then the presented
equation is modeled by the following dimensionless vector coupled nonlinear Schrödinger equations,
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The space-time coupled nonlinear Schrödinger equations with the aid of conformable derivative
are given by [21–24]:
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where (0,1) , 121 ,, dcc and 2d are nonzero constants, q and r are complex functions of x
and  that represent the amplitudes of circularly-polarized waves in a nonlinear optical fiber [21].
Eq (1.3) are developed by [21] and are named to playing great role in the pulse propagation through a
two-mode optical fiber and the soliton wavelength division multiplexing. When 1= , we have the
original (1+1)-dimensional coupled nonlinear Schrödinger equations [21].

The nonlinear Schrödinger equation is an example of a universal nonlinear version that defines
many physical nonlinear systems. The equation can be studied to nonlinear optics, hydrodynamics,
quantum condensates, nonlinear acoustics, heat pulses in solids and various other nonlinear
instability phenomenal. Such equations have been expressed with govern pulse propagation along
orthogonal polarization axes in nonlinear optical fibers and in wavelength-division-multiplexed
systems. These equations also type beam propagation inside crystals or photorefractive as well as
water wave interactions. Solitary waves in these equations are often named vector solitons in the
literature as they generally comprise two elements. In all the above physical cases, collision of vector
solitons is an significant effect [25–31].

The stochastic coupled nonlinear Schrödinger equations with the aid of time conformable
derivative are given by:
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where ),(1 a ),(2 a )(1 c and )(2 c are limited mensurable or integrable functions on .R

),( 
 xpD and ),( 

 xrD are the time conformable derivative operator and 21,dd are real

valued constants.
The conformable derivative operator was exposed in [32]. This derivative operator can reform

the failures of the other definitions. This important operator is the easiest, most ordinary and
effectual description of the fractional derivative for order (0,1] . We should note that the
description can be generalised to need any  . All the same, the order (0,1] is the most

influential order.
The conformable derivative of order (0,1) described as the following statement [32]
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The description represents a ordinary formation of standard derivatives. Furthermore, the
expression of the description represents that it is the most natural, and the most effectual definition.
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The description for 1<0  gives with the standard expressions on polynomials (up to a constant).
Some characteristics of the conformable derivative are given by [32,33].
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This derivative is more advantageous than others because it's easy to apply. In the recently, there
has been some researces on the conformable form of fractional computations [33–37].

The wick sense stochastic model of Eq (1.4) given with conformable derivatives expressed as
below,
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where "" give the Wick product on the Kondratiev distribution space 1)( S , ),(1 a ),(2 a )(1 c

and )(2 c are 1)( S -valued functions.

We only consider it in a white noise environment, that is, we will discuss the Wick-type
stochastic coupled nonlinear Schrödinger equations for time conformable derivative (1.5) to obtain
the exact solutions of the stochastic coupled nonlinear Schrödinger equations with time conformable
derivative.

Our focus in this study are to analyse new soliton and periodic wave solutions of coupled
nonlinear Schrödinger equations by using time conformable derivative and to analyse new stochastic
soliton and periodic wave solutions of the Wick-type stochastic coupled nonlinear Schrödinger
equations by using time conformable derivatives. We use Hermite transform, white noise theory and
the modified fractional sub-equation method [38,39]. In addition to, we use the inverse Hermite
transform to find stochastic soliton and periodic wave solutions of the Wick-type stochastic coupled
nonlinear Schrödinger equations by using time conformable derivative. Eventually, we give an
application example to show how the stochastic solutions can be expression as Brownian motion
functional solutions.

2. Deterministic case applications

In this section, we will obtain exact solutions of nonlinear Schrödinger equations. By using the
Hermite transform of Eq (1.3), we define the deterministic equation as below
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where  cNzzz C,...),(= 21 is a argument. To find travelling wave solutions to Eq (2.1), we give

the transformations below
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where 0, k, are arbitrary constants. So, Eq (2.1) can be reborn to NODEs. These equations

are resolved it into real and imaginary sections as follows,
The real sections;
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and by integrating with respect to  once of imaginary sections and by integration constant neglect gives:
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From Eq (2.3) we obtain




 ),(2

=
),(2

= 2
2

1
2 zakzak

and ).,(=),( 21 zaza  We consider

),,(=),(=),( 21 zazaza  we can write .
),(2

=
2


 zak

Assume the solutions of Eq (2.2) can express as a series expansion solution as below,
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where i ini ),0,1,...,=( )1,2,...,=( ni are functions to be determined later and )(G satisfies

the fractional Riccati equation as below:

),(=)( 2  GG'  (2.5)

where  is an arbitrary constants.

 N is control between the nonlinear terms and the highest order derivatives in Eq (2.2).
Some special solutions of Eq (2.5) are as below [40];
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From Eq (2.2), is found 1=N . Then we can choose the solution of Eq (2.2) are given by:
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where )(G satisfied Eq (2.5).
Now, replacing (2.6) and (2.5) into (2.2), by equating the all coefficients of )(G , we can solve

equations. Then we obtain the following some groups of solutions:
One of the obtained these groups is given by;
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(2.7)

The exact solutions of Eq (2.1) are given by;
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1) Hyperbolic function solutions (when 0< ) ,
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2) Trigonometric function solutions (when 0> ) ,
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3) Wave solutions (when 0,= .= const ) ,
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3. Stochastic case applications

In this part, we use the inverse Hermite transform and Theorem 4.1.1 in [41] to analyse white
noise functional solutions of Eq (1.2). The properties of generalized hyperbolic, trigonometric and
exponential functions express that there is a limited open station , RR ,< a 0>b such
that the solutions ),,( zxq  and ),,( zxr  of Eq (2.1) and whole its fractional derivatives which are

contained in Eq (2.1) are uniformly limited for ),(),,( bKzx a continuous with respect to

),( x for whole )(bKz a and analytic with respect to )(bKz a , for whole ),( x .

From Theorem 4.1.1 in [42], there is 1)(),(  SxP  such that ))(,(=),,( zxQzxq  and

))(,(=),,( zxRzxr  for whole )(),,( bKzx a and ),,( xQ ),( xR solves Eq (1.5) in

1)( S . Thus, we will investigate the white noise functional solutions of Eq (1.5) for 0,>)(a

0>)(1 c and 0>)(2 c wit the aid of inverse Hermite transform for Eqs (2.8)–(2.12) as below.
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1) Hyperbolic function random solutions (when 0< ) ,
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2) Trigonometric function random solutions (when 0> ) ,
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3) Wave random solutions (when 0,= .= const ) ,
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4. Examples

In this part, we analyse special application example to show the accessibility of our
consequences and to support the real help of these results. We interpret that the solutions of Eq (1.5)
are powerfully count on the type of the given functions ),(1 c )(2 c and )(a . Thus, for different

types of ),(1 c )(2 c and )(a , we can obtain different solutions of Eq (1.5) that come from

Eqs (3.1)–(3.5). We demonstrate this by giving the following example.
When 1= ,

).(exp=)(),(coth=)(coth

),(tanh=)(tanh),(cot=)(cot),(tan=)(tan

xxExx

xxxxxx





Suppose =)(1 c ),(a =)(2 c  ),(a  Wha )(=)( and 1.== 21 dd Where , 
and  are arbitrary constants, )(h is a limited mensurable function on R and W is the
Gaussian white noise that is the time derivative (in the strong sense in 1)( S ) of the Brownian
motion B .

The Hermite transform of W is expressed by  
 t

ii
i

dzzW
00=

)(=)(
~  [42]. Using the

describtion of ),(
~

zW Eqs (3.1)–(3.5) given the white noise functional solution of Eq (1.5) as below:
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where we have already used the following relation [32]
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5. Physical reviews

In this section, we shown some figures to analyse the action of the obtained solutions of Eq (1.3).
In Figures 1 and 2, we show the evolutional effects of stochastic equation (1.5) for Brownian
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motion  2sinh[0,1]= randomB . In Figures 3 and 4, we consider and we considered the effects of

stochastic equation (1.5) without effect of stochastic term .W

a b

Figure 1. The 3D graphics of ),(1 xQ from the solutions (4.1) for Wick-type stochastic
time fractional nonlinear Schrödinger equations (1.5) ,2sinh=)(( h 1,=0.5,= k

,
2

1
=1,=  2,= )2sinh[0,1]=0.5,=0.3,=   randomBc )a for real section , )b

for imaginary section.

a b

Figure 2. The 3D graphics of ),(1 xR from the solutions (4.1) for Wick-type stochastic
time fractional nonlinear Schrödinger equations (1.5) ,2sinh=)(( h 1,=0.5,= k

,
2

1
=1,=  2,= )2sinh[0,1]=0.5,=0.3,=   randomBc )a for real section , )b

for imaginary section.
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a b

Figure 3. The 3D graphics of ),(1 xQ from the solutions (4.3) for Wick-type
stochastic time fractional nonlinear Schrödinger equations (1.5) ,2sinh=)(( h

1,=0.5,= k ,
2

1
=1,=  2,= 1,2)=0.5,=0.3,=  Bc )a for real section ,

)b for imaginary section.

a b

Figure 4. The 3D graphics of ),(1 xR from the solutions (4.3) for Wick-type
stochastic time fractional nonlinear Schrödinger equations (1.5) ,2sinh=)(( h

1,=0.5,= k ,
2

1
=1,=  2,= 1,2)=0.5,=0.3,=  Bc )a for real section ,

)b for imaginary section.

6. conclusions

In this article, we investigated the coupled nonlinear Schrödinger equations with the aid of
conformable derivative for deterministic and stochastic forms. In addition to, we studied Wick-model
stochastic coupled nonlinear Schrödinger equations with time conformable derivatives. We analysed
some exact solutions with the aid of the modified fractional sub-equation method, Hermite transform
and White noise theory. We obtained stochastic hiperbolic and trigonometric wave solutions via
inverse Hermite transform. Furthermore, we investigate an example, to show the stochastic solutions
can be found as Brownian motion functional solutions. In addition to, if 1= , then the stochastic
solutions (4.1)–(4.5) express a new set of stochastic solutions for the Wick-model stochastic coupled
nonlinear Schrödinger equations by using integer derivatives.
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This study emphasize that the modified fractional sub-equation method is adequate to solve the
stochastic nonlinear equations in mathematical physics. The studied method in this paper is normal,
direct and computerized method, which lets us to do confused and boring algebraic computation. It is
expressed that the method can be also applied to other nonlinear stochastic differential equations in
mathematical physics.
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