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1. Introduction

The many adverse effects of alcohol have been proven. We can divide these effects into two main
groups, one of which is social impact and the other of which is self-harm. The negative social impacts
of alcohol include antisocial behaviour, criminal behaviour, and violence [6]. On the individual level,
alcohol consumption adversely affects all organs of the body and contributes to many diseases such
as heart disease, hepatitis, cirrhosis, lupus, and cancer [16, 17]. Some authors have studied models
of alcoholism. For instance, Lee [18] introduced a model using two control functions and performed
an analysis. Huo [19] worked on a time-delayed model. Huo et al. [20] developed a nonlinear model
of alcoholism. This model includes awareness and time delay, with the time delay indicating the
time delay of immunity to alcohol use. Mantley developed a new epidemiological model in order
to recognize the dynamics of alcohol problems on campus. Twitter is a well-known and important
microblogging service that allows Internet users to communicate their thoughts on diverse topics. This
service has approximately 500 million users, and these users make an average of 350 million tweets
per day. On any topic, users share their thoughts, not exceeding 160 characters. The rapid increase
in the popularity of Twitter has attracted the attention of many researchers. It is very easy to reliably
learn the thoughts of a user and to keep statistics about tweets.

An alcoholism model was examined by Huo and Zhang [22] with the assumption that the number of
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susceptible people is not constant. This model includes the positive and negative roles of Twitter. Woo
et al. [23] examined the development of influenza outbreaks through social media data, investigating
millions of users of social media and blog posts to conduct the research. In fact, this number of
studied users corresponded to more people than the population of Korea. Another influenza model was
examined by Hou and Zhang [24] using Twitter dynamics. Gomide et al. [25] showed that the spread
of dengue could be observed through Twitter and that the data could be used for later situations. Using
tweets sent from different regions, Njanku [26] examined the dynamics of Ebola broadcasts in media
campaigns. In the present study, the existence and the uniqueness solutions of an alcoholism model are
found using Caputo–Fabrizio fractional derivative and integral operators. This model was investigated
and studied by Huo and Zhang [22] with integer order. Gómez-Aguilar [27] examined the alcoholism
model for existence and a unique solution for the Atangana–Baleanu fractional derivative. The model
was also solved numerically. The importance of real-world problems in defining process and memory
effects is essential and this article is designed accordingly. The author has published other important
works in this regard [10–14].

Modelling and increasing the usability of real-world problems has always played an important role
in science. It is important to find the exact solutions of these problems, or the closest solutions. The
Caputo–Fabrizio fractional derivative operator provides results very close to the exact solution [7–9,
15].

In the first section, information has been given about the studies on the impacts of alcohol. In the
second section, the definitions and theorems used in this paper will be explained. In Section 3, the
integration of the classical alcoholism model with the Caputo–Fabrizio fractional derivative will be
performed. Section 4 details the existence and uniqueness solutions of the obtained model. Numerical
simulations are reported and the results are discussed in Section 5, and concluding remarks are given
in Section 6.

2. Preliminaries

In this section, the necessary definitions of fractional derivative and integral operators will be given.
More detailed information on the definitions can be found in articles [1–4].

Definition 2.1. The fractional derivative defined by Caputo is below [3]:

C
a Dν

t f (t)) =
1

Γ(n − ν)

∫ t

a

f (n)(r)
(t − r)ν+1−n dr, n − 1 < ν < n ∈ N.

Definition 2.2. Let f ∈ H1(a, b), b > a, ν ∈ (0, 1) then, the Caputo–Fabrizio derivative of fractional
derivative is defined as [1]:

CF
a D

ν
t ( f (t)) =

νM(ν)
1 − ν

∫ t

a

d f (x)
dx

exp
[
− ν

t − x
1 − ν

]
dx.

Here M(ν) is a normalization constants. Furthermore, M(0) = M(1) = 1. The definition is also
written as follows,

CF
a D

ν
t ( f (t)) =

νM(ν)
1 − ν

∫ t

a

(
f (t) − f (x)

)
exp

[
− ν

t − x
1 − ν

]
dx.
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Remark 2.3. If η = 1−ν
ν
∈ (0,∞), ν = 1

1+η
=∈ [0, 1], then the above equation supposes the form

D
η
t ( f (t)) =

N(η)
η

∫ t

a

d f (x)
dx

exp
[
−

t − x
η

]
dx, N(0) = N(∞) = 1.

Furthermore,

lim
ν→0

1
ν

exp
[
−

t − x
ν

]
= δ(x − t).

Note that, according to the above definition, the fractional integral of Caputo type of function of
order 0 < ν < 1 is an average between function f and its integral of order one. This therefore imposes

M(ν) =
2

2 − ν
, 0 ≤ ν ≤ 1.

Because of the above, Nieto and Losada proposed that the new Caputo derivative of order 0 < ν < 1
can be reformulated as below,

Definition 2.4. The fractional derivative of order ν is defined by [2],

CF
D
ν
?( f (t)) =

1
1 − ν

∫ t

0
f ′(x)exp

[
− ν

t − x
1 − ν

]
dx.

At this instant subsequent to the preface of the novel derivative, the connected anti-derivative turns
out to be imperative; the connected integral of the derivative was proposed by Nieto and Losada [2],

Theorem 2.5. For NFDt, if the function f (t) is such that

f (s)(a) = 0, s = 1, 2, . . . , n,

then, we have
D

(n)
t

(
D
ν
t f (t)

)
= D

(ν)
t

(
D

n
t f (t)

)
.

Proof. We begin considering n = 1, then D(ν+1)
t f (t), we obtain

D
(ν)
t

(
D

(1)
t f (t)

)
=

M(ν)
1 − ν

∫ t

a
f ′(τ)exp

[
−
ν(t − τ)
1 − ν

]
dτ.

Hence, after an integration by parts and assuming f ′(a) = 0, we have

D
(ν)
t

(
D

(1)
t f (t)

)
=

M(ν)
1 − ν

∫ t

a
(

d
dτ

f ′(τ))exp
[
−
ν(t − τ)
1 − ν

]
dτ

=
M(ν)
1 − ν

[ ∫ t

a

d
dτ

( f ′(τ))exp
(
−
ν(t − τ)
1 − ν

)
dτ

−
ν

1 − ν

∫ t

a
f ′(τ)exp

(
−
ν(t − τ)
1 − ν

)
dτ

]
=

M(ν)
1 − ν

[
f ′(t) −

ν

1 − ν

∫ t

a
f ′(τ)exp

(
−
ν(t − τ)
1 − ν

)
dτ

]
.
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otherwise

D
(1)
t

(
D

(ν)
t f (t)

)
=

d
dt

(M(ν)
1 − ν

∫ t

a
f ′(τ))exp

[
−
ν(t − τ)
1 − ν

]
dτ

)
=

M(ν)
1 − ν

[
f ′(t) −

ν

1 − ν

∫ t

a
f ′(τ)exp

(
−
ν(t − τ)
1 − ν

)
dτ

]
It is easy to generalize the proof for any n > 1 [1]. �

It is well known that Laplace Transform plays an important role in the study of ordinary differential
equations. In the case of this new fractional definition, it is also known (see [1]) that, for 0 < ν < 1,

L[CF
D
ν
t f (t)](s) =

(2 − ν)M(ν)
2(s + ν(1 − s))

(sL[ f (t)](s) − f (0)), s > 0.

where L[g(t)] denotes the Laplace Transform of function g. So, it is clear that if we work with
Caputo–Fabrizio derivative, Laplace Transform will also be a very useful tool [2].

After the notion of fractional derivative of order 0 < ν < 1, that of fractional integral of order
0 < ν < 1 becomes a natural requirement. In this section we obtain the fractional integral associated
to the Caputo–Fabrizio fractional derivative previously introduced. Let 0 < ν < 1. Consider now the
following fractional differential equation,

CF
D
ν
t f (t) = u(t), t ≥ 0,

using Laplace transform, we obtain:

L[CF
D
ν
t f (t)](s) = L[u(t)](s), s > 0.

We have that

(2 − ν)M(ν)
2(s + ν(1 − s))

((sL[ f (t)](s) − f (0)) = L[u(t)](s), s > 0,

or equivalently,

L[ f (t)](s) =
1
s

f (0) +
2ν

s(2 − ν)M(ν)
L[u(t)](s) +

2(1 − ν)
(2 − ν)M(ν)

L[u(t)](s), s > 0.

Hence, using now well known properties of inverse Laplace transform, we deduce that

f (t) =
2(1 − ν)

(2 − ν)M(ν)
u(t) +

2ν
(2 − ν)M(ν)

∫ t

0
u(s)ds + c, t ≥ 0.

where c ∈ R is a constant, is also a solution the above equation

We can also rewrite fractional differential equation as

(2 − ν)M(ν)
2(1 − ν)

∫ t

0
exp

(
−

ν

1 − ν
(t − s)

)
f ′(s)ds = u(t), t ≥ 0.
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or equivalently, ∫ t

0
exp

( ν

1 − ν
s
)
f ′(s)ds =

2(1 − ν)
(2 − ν)M(ν)

exp
( ν

1 − ν
t
)
u(t), t ≥ 0,

Differentiating both sides of the latter equation, we obtain that,

f ′(t) =
2(1 − ν)

(2 − ν)M(ν)

(
u′(t) +

ν

1 − ν
u(t)

)
, t ≥ 0.

Hence, integrating now from 0 to t, we deduce as in the above equation, that

f (t) =
2(1 − ν)

(2 − ν)M(ν)
[u(t) − u(0)] +

2ν
(2 − ν)M(ν)

∫ t

0
u(s)ds + f (0), t ≥ 0,

Definition 2.6. Let 0 < ν < 1. The fractional integral of order ν of a function f is defined by,

CF Iν f (t) =
2(1 − ν)

(2 − ν)M(ν)
u(t) +

2ν
(2 − ν)M(ν)

∫ t

0
u(s)ds, t ≥ 0.

3. Fractional model

In this section, we expand the alcoholism model [5] to fractional Caputo–Fabrizio derivative of
order ν ∈ (0, 1). Classic integer order alcoholism model is reformulated in the nonlinear system of
differential in Eq. (3.1):

K(t)
dt = Λ − βK(t)M(t)exp(−φT1(t) + δT2(t)) − µK(t)

L(t)
dt = βK(t)M(t)exp(−φT1(t) + δT2(t)) − (µ + ρ)K(t)

M(t)
dt = ρL(t) − (µ + γ + d)M(t)

N(t)
dt = γM(t) − µN(t)

T1(t)
dt = p(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT1(t)

T2(t)
dt = q(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT2(t).

(3.1)

In the above system (3.1), K(t), L(t),M(t),N(t) represent the moderate drinkers compartment, the
light problem drinkers compartment, the heavy problem drinkers compartment and quitting drinkers
compartment, respectively. All the parameters are positive constants and µ is the natural death rate of
the population, d is the death rate due to heavy alcoholism, Λ is the constant recruitment rate of the
population, γ is the permanently quit or removal alcoholism rate of heave problem drinkers, ρ is the
transmission coefficient from the light problem drinkers compartment to the heavy problem drinkers
compartment, τ is the rate that tweets become outdated as a result of tweets that appeared earlier are less
visible and have less effect on the public, β is the basic transmission coefficient. p and q is the ratio that
the individual may provide positive and negative information about alcoholism during an alcoholism
occasion respectively. The transmission coefficient β is reduced by a factor exp(−αT1) owing to the
behavior change of the public after reading positive tweets about alcoholism, where α determines how
effective the positive drinking Twitter information can reduce the transmission coefficient, on the other
hand, β is increased by a factor exp(δT2) due to the behavior change of the public after reading negative
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tweets about alcoholism, where δ determines how effective the negative drinking Twitter information
can increase the transmission coefficient. µ1, µ2, µ3, and µ4 are the rates that the moderate drinkers, light
problem drinkers, heavy problem drinkers and quitting drinkers may tweet about alcoholism during an
alcoholism occasion, respectively.

The alcoholism model is integrated via Caputo–Fabrizio fractional derivative with alcoholism model
and can be written as follows:



CF
0 D

ν
t K(t) = Λ − βK(t)M(t)exp(−φT1(t) + δT2(t)) − µK(t),

CF
0 D

ν
t L(t) = βK(t)M(t)exp(−φT1(t) + δT2(t)) − (µ + ρ)K(t),

CF
0 D

ν
t M(t) = ρL(t) − (µ + γ + d)M(t),

CF
0 D

ν
t N(t) = γM(t) − µN(t),

CF
0 D

ν
t T1(t) = p(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT1(t),

CF
0 D

ν
t T2(t) = q(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT2(t).

(3.2)

where ν ∈ (0, 1) is the order of the fractional derivative. Then the following initial values:

 K(0)(t) = K(0), L(0)(t) = L(0), M(0)(t) = M(0),
N(0)(t) = N(0), T1(0)(t) = T1(0), T2(0)(t) = T2(0).

4. Existence and uniqueness of alcoholism model

Using fixed point theory, we show the existence of the model in this section. It is used the Caputo–
Fabrizio integral operator in [2] on (4.1) to establish



K(t) − K(0) =CF
0 Iνt {Λ − βK(t)M(t)exp(−φT1(t) + δT2(t)) − µK(t)},

L(t) − L(0) =CF
0 Iνt {βK(t)M(t)exp(−φT1(t) + δT2(t)) − (µ + ρ)K(t)},

M(t) − M(0) =CF
0 Iνt {ρL(t) − (µ + γ + d)M(t)},

N(t) − N(0) =CF
0 Iνt {γM(t) − µN(t)},

T1(t) − T1(0) =CF
0 Iνt {p(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT1(t)},

T2(t) − T2(0) =CF
0 Iνt {q(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT2(t)}.

(4.1)

Applying the idea used in [2], we obtain
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

K(t) − K(0) =
2(1−ν)

(2−ν)M(ν) {Λ − βK(t)M(t)exp(−φT1(t) + δT2(t)) − µK(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0
{Λ − βK(r)M(r)exp(−φT1(r) + δT2(r)) − µK(r)}dr,

L(t) − L(0) =
2(1−ν)

(2−ν)M(ν) {βK(t)M(t)exp(−φT1(t) + δT2(t)) − (µ + ρ)K(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0
{βK(r)M(r)exp(−φT1(r) + δT2(r)) − (µ + ρ)K(r)}dr,

M(t) − M(0) =
2(1−ν)

(2−ν)M(ν) {ρL(t) − (µ + γ + d)M(t)} + 2ν
(2−ν)M(ν)

∫ t

0
{ρL(r) − (µ + γ + d)M(r)}dr,

N(t) − N(0) =
2(1−ν)

(2−ν)M(ν) {γM(t) − µN(t)} + 2ν
(2−ν)M(ν)

∫ t

0
{γM(r) − µN(r)}dr,

T1(t) − T1(0) =
2(1+ν)

(2−ν)M(ν) {p(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT1(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0
{p(µ1K(r) + µ2L(r) + µ3M(r) + µ4N(r)) − τT1(r)}dr,

T2(t) − T2(0) =
2(1−ν)

(2−ν)M(ν) {q(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT2(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0
{q(µ1K(r) + µ2L(r) + µ3M(r) + µ4N(r)) − τT2(r)}dr.

For simplicity, we replace as follows:

G1(t,K) = Λ − βK(t)M(t)exp(−φT1(t) + δT2(t)) − µK(t),
G2(t, L) = βK(t)M(t)exp(−φT1(t) + δT2(t)) − (µ + ρ)K(t),
G3(t,M) = ρL(t) − (µ + γ + d)M(t),
G4(t,N) = γM(t) − µN(t),
G5(t,T1)T = p(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT1(t),
G6(t,T2) = q(µ1K(t) + µ2L(t) + µ3M(t) + µ4N(t)) − τT2(t).

Theorem 4.1. The kernels G1,G2,G3,G4,G5 and G6 satisfy the Lipschitz condition and contraction if
the following inequality holds:

0 ≤ c1exp(−φc2 + δc3) + µ < 1

Proof. We start with G1. Suppose that K and K1 are two functions, then we calculate in below,

‖G1(t,K) −G1(t,K1)‖ = ‖ − β(K(t) − K1(t))M(t)exp(−φT1(t) + δT2(t)) − µ(K(t) − K1(t))‖. (4.2)

When using the triangular inequality on Eq. (4.2),

‖G1(t,K) −G1(t,K1)‖ ≤ ‖ − β(K(t) − K1(t))M(t)exp(−φT1(t) + δT2(t)) + µ(K1(t) − K(t))‖
≤ {M(t)exp(−φT1(t) + δT2(t)) + µ}‖(K(t) − K1(t))‖
≤ {‖M(t)‖exp(−φ‖T1(t)‖ + δ‖T2(t)‖) + µ}‖(K(t) − K1(t))‖
≤ {‖M‖exp(−φ‖T1‖ + δ‖T2‖) + µ}‖(K(t) − K1(t))‖
≤ {c1exp(−φc2 + δc3) + µ}(K(t) − K1(t))‖
≤ η1‖(K(t) − K1(t))‖.

Taking η1 = (c1exp(−φc2 + δc3) + µ), where ‖M(t)‖ ≤ c1, ‖T1(t)‖ ≤ c2, ‖T2(t)‖ ≤ c3 are a bounded
functions, then we get,

‖G1(t,K) −G1(t,K1)‖ ≤ η1‖(K(t) − K1(t))‖. (4.3)
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Therefore, the Lipshitz condition is satisfyed for G1, and if also 0 ≤ (c1exp(−φc2 + δc3) + µ) < 1, then
it is also a contraction. Similiarly, the Lipschitz conditions are given as follows:

‖G2(t, L) −G2(t, L1)‖ ≤ η2‖(L(t) − L1(t))‖,
‖G3(t,M) −G3(t,M1)‖ ≤ η3‖(M(t) − M1(t))‖,
‖G4(t,N) −G4(t,N1)‖ ≤ η4‖(N(t) − N1(t))‖,
‖G5(t,T1) −G5(t,T11)‖ ≤ η5‖(T1(t) − T11(t))‖,
‖G6(t,T2) −G6(t,T21)‖ ≤ η6‖, (T2(t) − T21(t))‖.

Using notations for kernels, Eq. (4.1) becomes



K(t) = K(0) +
2(1−ν)

(2−ν)M(ν)G1(t,K) + 2ν
(2−ν)M(ν)

∫ t

0
(G1(r,K))dr,

L(t) = L(0) +
2(1−ν)

(2−ν)M(ν)G2(t, L) + 2ν
(2−ν)M(ν)

∫ t

0
(G2(r, L))dr,

M(t) = M(0) +
2(1−ν)

(2−ν)M(ν)G3(t,M) + 2ν
(2−ν)M(ν)

∫ t

0
(G3(r,M))dr,

N(t) = N(0) +
2(1−ν)

(2−ν)M(ν)G4(t,N) + 2ν
(2−ν)M(ν)

∫ t

0
(G4(r,N))dr,

T1(t) = T1(0) +
2(1+ν)

(2−ν)M(ν)G5(t,T1) + 2ν
(2−ν)M(ν)

∫ t

0
(G5(r,T1))dr,

T2(t) = T2(0) +
2(1−ν)

(2−ν)M(ν)G6(t,T2) + 2ν
(2−ν)M(ν)

∫ t

0
(G6(r,T2))dr.

The following recursive formula is presented:



Kn(t) =
2(1−ν)

(2−ν)M(ν)G1(t,Kn−1) + 2ν
(2−ν)M(ν)

∫ t

0
(G1(r,Kn−1))dr,

Ln(t) =
2(1−ν)

(2−ν)M(ν)G2(t, Ln−1) + 2ν
(2−ν)M(ν)

∫ t

0
(G2(r, Ln−1))dr,

Mn(t) =
2(1−ν)

(2−ν)M(ν)G3(t,Mn−1) + 2ν
(2−ν)M(ν)

∫ t

0
(G3(r,Mn−1))dr,

Nn(t) =
2(1−ν)

(2−ν)M(ν)G4(t,Nn−1) + 2ν
(2−ν)M(ν)

∫ t

0
(G4(r,Nn−1))dr,

T1(n)(t) =
2(1+ν)

(2−ν)M(ν)G5(t,T1(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0
(G5(r,T1(n−1)))dr,

T2(n)(t) =
2(1−ν)

(2−ν)M(ν)G6(t,T2(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0
(G6(r,T1(n−1)))dr.

(4.4)

and 

K(0)(t) = K(0),
L(0)(t) = L(0),
M(0)(t) = M(0),
N(0)(t) = N(0),
T1(0)(t) = T1(0),
T2(0)(t) = T2(0).

where K(0)(t), L(0)(t),M(0)(t),N(0)(t),T1(0)(t) and T2(0)(t) are the initial conditions. The difference of the
succeeding terms is computed as follows:
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

ψ1n(t) = Kn(t) − Kn−1(t)
=

2(1−ν)
(2−ν)M(ν) (G1(t,Kn−1) −G1(t,Kn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0
(G1(r,Kn−1) −G1(r,Kn−2)dr,

ψ2n(t) = Ln(t) − Ln−1(t)
=

2(1−ν)
(2−ν)M(ν) (G2(t, Ln−1) −G2(t, Ln−2)

+ 2ν
(2−ν)M(ν)

∫ t

0
(G2(r, Ln−1) −G2(r, Ln−2)dr,

ψ3n(t) = Mn(t) − Mn−1(t)
=

2(1−ν)
(2−ν)M(ν) (G3(t,Mn−1) −G3(t,Mn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0
(G3(r,Mn−1) −G3(r,Mn−2)dr,

ψ4n(t) = Nn(t) − Nn−1(t)
=

2(1−ν)
(2−ν)M(ν) (G4(t,Nn−1) −G4(t,Nn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0
(G4(r,Nn−1) −G4(r,Nn−2)dr,

ψ5n(t) = T1(n)(t) − T1(n−1)(t)
=

2(1−ν)
(2−ν)M(ν) (G5(t,T1(n−1)) −G5(t,T1(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0
(G5(r,T1(n−1)) −G5(r,T1(n−2))dr,

ψ6n(t) = T2(n)(t) − T2(n−1)(t)
=

2(1−ν)
(2−ν)M(ν) (G6(t,T2(n−1)) −G6(t,T2(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0
(G6(r,T2(n−1)) −G6(r,T2(n−2))dr.

Notive that 

Kn(t) =
∑n

i=1 ψ1i(t),
Ln(t) =

∑n
i=1 ψ2i(t),

Mn(t) =
∑n

i=1 ψ3i(t),
Nn(t) =

∑n
i=1 ψ4i(t),

T1(n)(t) =
∑n

i=1 ψ5i(t),
T2(n)(t) =

∑n
i=1 ψ6i(t).

When we want to continue the same process we evaluate the following,
‖ψ1n(t)‖ = ‖Kn(t) − Kn−1(t)‖

= ‖
2(1−ν)

(2−ν)M(ν) (G1(t,Kn−1) −G1(t,Kn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0
(G1(r,Kn−1) −G1(r,Kn−2)dr‖.

Using the triangular inequality, Eq. (4.4) is simplified to

‖Kn(t) − Kn−1(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)‖(G1(t,Kn−1) −G1(t,Kn−2)‖

+ 2ν
(2−ν)M(ν)‖

∫ t

0
(G1(r,Kn−1) −G1(r,Kn−2)dr‖.
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As the kernel satisfyies the Lipschitz condition, then we have‖Kn(t) − Kn−1(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)η1‖Kn−1 − Kn−2‖

+ 2ν
(2−ν)M(ν)η1‖

∫ t

0
‖Kn−1 − Kn−2‖dr.

(4.5)

Then we have

‖ψ1n(t)‖ ≤
2(1 − ν)

(2 − ν)M(ν)
η1‖ψ1(n−1)(t)‖ +

2ν
(2 − ν)M(ν)

η1

∫ t

0
‖ψ1(n−1)(r)‖dr.

Similarly, we get the following results:

‖ψ2n(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)η2‖ψ2(n−1)(t)‖ + 2ν

(2−ν)M(ν)η2

∫ t

0
‖ψ2(n−1)(r)‖dr,

‖ψ3n(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)η3‖ψ3(n−1)(t)‖ + 2ν

(2−ν)M(ν)η3

∫ t

0
‖ψ3(n−1)(r)‖dr,

‖ψ4n(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)η4‖ψ4(n−1)(t)‖ + 2ν

(2−ν)M(ν)η4

∫ t

0
‖ψ4(n−1)(r)‖dr,

‖ψ5n(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)η5‖ψ5(n−1)(t)‖ + 2ν

(2−ν)M(ν)η5

∫ t

0
‖ψ5(n−1)(r)‖dr,

‖ψ6n(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)η6‖ψ6(n−1)(t)‖ + 2ν

(2−ν)M(ν)η6

∫ t

0
‖ψ6(n−1)(r)‖dr.

We shall then state the following theorem. �

Theorem 4.2. The alcoholism model (4.1) has unique solution if the conditions below hold.

2(1 − ν)
(2 − ν)M(ν)

η1 −
2ν

(2 − ν)M(ν)
η1t < 1.

Proof. Since all the functions K(t), L(t),M(t),N(t),T1(t) and T2(t) are bounded, we have shown that the
kernels satisfy the Lipschitz condition, thus by using the recursive method, we obtain the succeeding
relation as follows: 

‖ψ1n(t)‖ ≤ ‖Kn(0)‖
[( 2(1−ν)

(2−ν)M(ν)η1
)

+
( 2ν

(2−ν)M(ν)η1t
)]n
,

‖ψ2n(t)‖ ≤ ‖Ln(0)‖
[( 2(1−ν)

(2−ν)M(ν)η2
)

+
( 2ν

(2−ν)M(ν)η2t
)]n
,

‖ψ3n(t)‖ ≤ ‖Mn(0)‖
[( 2(1−ν)

(2−ν)M(ν)η3
)

+
( 2ν

(2−ν)M(ν)η3t
)]n
,

‖ψ4n(t)‖ ≤ ‖Nn(0)‖
[( 2(1−ν)

(2−ν)M(ν)η4
)

+
( 2ν

(2−ν)M(ν)η4t
)]n
,

‖ψ5n(t)‖ ≤ ‖T1(n)(0)‖
[( 2(1−ν)

(2−ν)M(ν)η5
)

+
( 2ν

(2−ν)M(ν)η5t
)]n
,

‖ψ6n(t)‖ ≤ ‖T2(n)(0)‖
[( 2(1−ν)

(2−ν)M(ν)η6
)

+
( 2ν

(2−ν)M(ν)η6t
)]n
.

(4.6)

Hence, the existence and continuity of the said solutions is proved. Furthermore, to ensure that the
above function is a solution of Eq. (4.1), we proceed as follows:

K(t) − K(0) = Kn(t) − An(t),
L(t) − L(0) = Ln(t) − Bn(t),
M(t) − M(0) = Mn(t) −Cn(t),
N(t) − N(0) = Nn(t) − Dn(t),
T1(t) − T1(0) = T1n(t) − En(t),
T2(t) − T2(0) = T2n(t) − Fn(t).

(4.7)
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Therefore, we have 

‖An(t)‖ = ‖
2(1−ν)

(2−ν)M(ν) (G1(t,Kn) −G1(t,Kn−1)

+ 2ν
(2−ν)M(ν)

∫ t

0
(G1(r,Kn) −G1(r,Kn−1))dr‖

≤
2(1−ν)

(2−ν)M(ν)‖(G1(t,Kn) −G1(t,Kn−1))‖

+ 2ν
(2−ν)M(ν)

∫ t

0
‖(G1(r,Kn) −G1(r,Kn−1))‖dr

≤
2(1−ν)

(2−ν)M(ν)η1‖K − Kn−1‖ + 2ν
(2−ν)M(ν)η1‖K − Kn−1‖t.

Using the process in a recursive manner gives

‖An(t)‖ ≤
( 2(1 − ν)
(2 − ν)M(ν)

+
2ν

(2 − ν)M(ν)
t
)n−1

ηn+1
1 a. (4.8)

By applying the limit on Eq. (4.8) as n tends to infinity, we get

‖An(t)‖ → 0.

Similarly,
‖Bn(t)‖ → 0, ‖Cn(t)‖ → 0, ‖Dn(t)‖ → 0,

‖En(t)‖ → 0, ‖Fn(t)‖ → 0.

For the uniqueness system (4.1) solution, we take on contrary that there exists another solution of (4.1)
given by K1(t), L1(t),M1(t),N1(t),T11(t) and T12(t). ThenK(t) − K1(t) =

2(1−ν)
(2−ν)M(ν) (G1(t,Kn) −G1(t,Kn−1)

+ 2ν
(2−ν)M(ν)

∫ t

0
(G1(r,Kn) −G1(r,Kn−1))dr.

(4.9)

Taking norm on Eq. (4.9), we get‖K(t) − K1(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)‖(G1(t,Kn) −G1(t,Kn−1)‖

+ 2ν
(2−ν)M(ν)

∫ t

0
‖(G1(r,Kn) −G1(r,Kn−1))‖dr.

By applying the Lipschitz condition of kernel, we have‖K(t) − K1(t)‖ ≤ 2(1−ν)
(2−ν)M(ν)η1‖K(t) − K1(t)‖

+ 2ν
(2−ν)M(ν)

∫ t

0
η1t‖K(t) − K1(t)‖dr.

It gives

‖K(t) − K1(t)‖
(
1 −

2(1 − ν)
(2 − ν)M(ν)

η1 −
2ν

(2 − ν)M(ν)
η1t

)
≤ 0. (4.10)

�

Theorem 4.3. The model (4.1) solution will be unique if(
1 −

2(1 − ν)
(2 − ν)M(ν)

η1 −
2ν

(2 − ν)M(ν)
η1t

)
> 0. (4.11)
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Proof. If condition (4.11) holds, then (4.10) implies that

‖K(t) − K1(t)‖ = 0.

Hence, we get

K(t) = K1(t).

On employing the same procedure, we get

L(t) = L1(t),
M(t) = M1(t),
N(t) = N1(t),
T1(t) = T11(t),
T2(t) = T21(t).

�

5. Numerical solution

The differential transform method was first introduced by Zhou [28], who solved linear and
nonlinear initial value problems in electric circuit analysis. This method constructs an analytical
solution in the form of a polynomial. It is different from the traditional higher order Taylor series
method, which requires symbolic computation of the necessary derivatives of the data functions. The
Taylor series method is computationally time-consuming for large orders. The differential transform
is an iterative procedure for obtaining analytic Taylor series solutions of ordinary or partial differential
equations. We apply the fractional differential transform method for solving the alcoholism model.
By using the basic definitions of the fractional one-dimensional differential transform and taking the
corresponding transform of Eq. (3.2), we obtain the following system:

Table 1. The operations for the one-dimensional differential transform method.

Original function Transformed function
f (x) = g(x) ± h(x) Fν(k) = Gν(k) ± Hν(k)
f (x) = ag(x) Fν(k) = aGν(k)
f (x) = g(x)h(x) Fν(k) =

∑k
l=0 Gν(l)Hν(k − l)

f (x) = g1(x)g2(x), . . . gn(x) F(k) =
∑k

kn−1=0 · · ·
∑k2

k1=0 G1(k1) . . .Gn(k − kn−1)
f (x) = Dν

x0
g(x) Fν(k) =

Γ(ν(k+1)+1)
Γ(νk+1) Gν(k + 1)

f (x) = (x − x0)γ Fν(k) = δ(k − γ/ν)
f (x) = Dβ

x0g(x) Fν(k) =
Γ(νk+β+1)

Γ(νk+1) Gν(k + β/ν)

We apply the fractional differential transform method for solving the alcoholism model. By using
the basic definitions of the fractional one-dimensional differential transform and taking the
corresponding transform of the equation (3.2), we obtain the following system:
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

K(h + 1) =
Γ(νh+1)

Γ(ν(h+1)+1)

[
Λ − β

∑h
l3=0

∑l3
l2=0

∑l2
l1=0 K(l1)M(l2 − l1)F1(l3 − l2)F2(h − l3) − µK(h)

]
,

L(h + 1) =
Γ(νh+1)

Γ(ν(h+1)+1)

[
β
∑h

l3=0
∑l3

l2=0

∑l2
l1=0 K(l1)M(l2 − l1)F1(l3 − l2)F2(h − l3) − (µ + ρ)K(h)

]
,

M(h + 1) =
Γ(νh+1)

Γ(ν(h+1)+1)

[
ρL(h) − (µ + γ + d)M(h)

]
,

N(h + 1) =
Γ(νh+1)

Γ(ν(h+1)+1)

[
γM(h) − µN(h)

]
,

T1(h + 1) =
Γ(νh+1)

Γ(ν(h+1)+1)

[
pµ1K(h) + pµ2L(h) + pµ3M(h) − pµ4N(h) − τT1(h)

]
,

T2(h + 1) =
Γ(νh+1)

Γ(ν(h+1)+1)

[
qµ1K(h) + qµ2L(h) + qµ3M(h) − qµ4N(h) − τT2(h)

]
.

where F1(k), F2(k) are the T-functions of e−φT1(t) and eδT2(t), respectively.

F1(k) =

e−φT1(0) h = 0,
−φ

∑h−1
m=0

(m+1
h T1(m + 1)F1(h − m − 1)

)
h ≥ 1,

and

F2(k) =

eδT2(0) h = 0
δ
∑h−1

m=0
(m+1

h T2(m + 1)F2(h − m − 1)
)

h ≥ 1.

By using the following initial conditions and parameters we have

K(0) = 5, L(0) = 2,M(0) = 3,N(0) = 1,T1(0) = 6,T2(0) = 4,
∆ = 0.8, β = 0.099, µ = 0.009, γ = 0.8, d = 0.5, ρ = 0.3, τ = 0.3µ1 = 0, µ2 = 0.08, µ3 = 0.6,
µ4 = 0.8, δ = 0.003, p = 0.66, φ = 0.09.

For h = 0, 1, 2, . . . respectively the values of K(h),M(h),N(h), L(h),T1(h) and T2(h) are as follows

K(h) L(h) M(h)
-0,120828286052481 -2,46917171394752 -3,327
0,49800423437587 -0,457043445404079 1,80714574290787
-0,217706485329673 0,105157528360727 -0,834222270362543
0,100957921788796 -0,0640566725254163 0,280886052603197
-0,0419390616097007 0,0282491674151399 -0,0773793689230419
0,0175455074539311 -0,0128063934920349 0,0182940573574673
-0,00719864713251534 0,00549923941054888 -0,00396983416121931
0,00290951664635863 -0,00229943130187796 0,000855785592525092
-0,00115154658572007 0,000932362998361051 -0,00020111697013097

and
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N(h) T1(h) T2(h)
2,391 0,0216000000000003 -0,2892
-1,3415595 -0,0959481332482144 -0,0029740666241072
0,485930209942099 0,00397961474954874 -0,00251019262522563
-0,167937797044878 -0,0173556087853892 -0,0083403043926946
0,0452440564511922 0,00487684206348898 0,00241817103174449
-0,0103851152744157 -0,00112081081113706 -0,000559392905568532
0,00210410170334908 0,000203024502232462 0,000101468858259088
-0,000399350530538198 -2,8954517283411E-05 -1,44756314095627E-05
7,64691809772131E-05 1,70115521795943E-06 8,50523367908285E-07

By using the differential inverse reduced transform of K(h),M(h),N(h), L(h),T1(h), and T2(h), and
for special case ν = 1, the solution will be as follows:

K(t) =

∞∑
h=0

K(h)thν =5 − 0, 120828286052481t + 0, 49800423437587t2 − 0, 217706485329673t3

+ 0, 100957921788796t4 − 0, 0419390616097007t5 + 0, 0175455074539311t6

− 0, 00719864713251534t7 + 0, 00290951664635863t8 − 0, 00115154658572007t9

+ . . . ,

L(t) =

∞∑
h=0

L(h)thν =2 − 2, 46917171394752t − 0, 457043445404079t2 + 0, 105157528360727t3

− 0, 0640566725254163t4 + 0, 0282491674151399t5 − 0, 0128063934920349t6

+ 0, 00549923941054888t7 − 0, 00229943130187796t8 + 0, 000932362998361051t9

+ . . . ,

M(t) =

∞∑
h=0

M(h)thν =3 − 3, 327t + 1, 80714574290787t2 − 0, 834222270362543t3

+ 0, 280886052603197t4 − 0, 0773793689230419t5 + 0, 0182940573574673t6

− 0, 00396983416121931t7 + 0, 000855785592525092t8 − 0, 00020111697013097t9

+ . . . ,

N(t) =

∞∑
h=0

N(h)thν =1 + 2, 391t − 1, 3415595t2 + 0, 485930209942099t3

− 0, 167937797044878t4 + 0, 0452440564511922t5 − 0, 0103851152744157t6

+ 0, 00210410170334908t7 − 0, 000399350530538198t8

+ 7, 64691809772131 × 10−5t9 + . . . ,
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T1(t) =

∞∑
h=0

T1(h)thν =6 + 0, 0216000000000003t − 0, 0959481332482144t2 + 0, 00397961474954874t3

− 0, 0173556087853892t4 + 0, 00487684206348898t5 − 0, 00112081081113706t6

+ 0, 000203024502232462t7 − 2, 8954517283411 × 10−5t8

+ 1, 70115521795943 × 10−6t9 + . . . ,

T2(t) =

∞∑
h=0

T2(h)thν =4 − 0, 2892t − 0, 0029740666241072t2 − 0, 00251019262522563t3

− 0, 0083403043926946t4 + 0, 00241817103174449t5 − 0, 000559392905568532t6

+ 0, 000101468858259088t7 − 1, 44756314095627 × 10−5t8

+ 8, 50523367908285 × 10−7t9 + . . . .

6. Conclusion

In the present study, we have used the new Caputo fractional derivative to bring the alcoholism
model into fractional order. The existence and uniqueness of the solution for the CF-derived alcoholism
model have been proven in detail. The effect of fractional order was demonstrated through some
simulations. The results show that the Caputo–Fabrizio fractional derivative and integral operators are
very useful.
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