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1. Introduction and main results

The main purpose of this article is to deal with the existence of solutions for several complex
differential-difference equations of Fermat type. The basic results and the standard symbols of
Nevanlinna theory will be used in this paper (see [8, 28, 30]). A. Wiles and R. Taylor [23, 24] in 1995
pointed out: The Fermat equation xm + ym = 1 does not admit nontrivial solutions in rational numbers
as m ≥ 3, and this equation possesses nontrivial rational solutions as m = 2. About sixty years ago,
Gross [4] investigated the existence of solutions for the Fermat-type functional equation f m + gm = 1,
and obtained: For m = 2, the entire solutions are f = cos a(z), g = sin a(z), where a(z) is an entire
function; for m > 2, there are no nonconstant entire solutions.

In the last twenty years, Nevanlinna theory (especially the difference analogues such as logarithmic
derivative lemma, Tumura-Clunie theorem, etc.) has played an important role in studying the properties
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of solutions for complex difference equations, complex differential-difference equations, and there
were a number of results about the existence and the form of solutions for some equations (including
[1–3, 5–7, 9–13, 17–22, 25–27]). In 2009, Liu [14] proved that the Fermat type equation f (z)2 + [ f (z +

c) − f (z)]2 = a2 has no nonconstant entire solutions of finite order, where a is a nonzero constant. In
2012, Liu et al. [15] pointed out that equation f (z)2 + f (z + c)2 = 1 has a transcendental entire solution
of finite order. Furthermore, they also obtained that equation f ′(z)2 + [ f (z + c) − f (z)]2 = 1 admits the
finite order transcendental entire solutions with the form f (z) = 1/2 sin(2z + Bi), where c = (2k + 1)π,
and B is a constant (see [15]).

In 2018, Zhang [31] further discussed the existence of solutions for some Fermat type differential-
difference equations, which forms are more general than those given by Liu [14], Liu etal. [15], and
obtained
Theorem A (see [31, Theorem 1.3]). Let f be a transcendental meromorphic function with finitely
many poles and σ( f ) < ∞. Then f can not be a solution of the difference equation

f (z)2 + [ f (z + c) − f (z)]2 = R,

where R is a nonzero rational function and c is a nonzero constant.
Theorem B (see [31, Theorem 1.4]). Let f be a transcendental meromorphic function with finitely
many poles and σ( f ) < ∞. If f is a solution of the differential-difference equation

f ′(z)2 + [ f (z + c) − f (z)]2 = R,

where R is a nonzero rational function and c is a nonzero constant, then R is a nonzero constant and f
is of form

f (z) = c1e2iz + c2e−2iz + b, c = kπ + π/2,

where c1, c2 are two nonzero constants such that 16c1c2 = R, b is a constant and k is an integer.
In this paper, we proceed to study the existence and the form of the solutions for some differential-

difference equations with more general form than the previous form given by Liu, Liu et al. and
Zhang [14, 15, 31]. Our results are listed as follows.

Theorem 1.1. Let c be a nonzero constant, R be a nonzero rational function, and α, β ∈ C satisfy
α2 − β2 , 1. Then the following difference equation of Fermat type

f (z)2 + [α f (z + c) − β f (z)]2 = R(z), (1.1)

has no finite order transcendental meromorphic solutions with finitely many poles.

Theorem 1.2. Let c(, 0), α(, 0), β ∈ C and P(z),Q(z) be nonzero polynomials satisfying one of two
following cases

(i) degz R ≥ 1 or degz Q ≥ 1;
(ii) P,Q are two constants and P2(α2 − β2) , 1. Then the following Fermat-type difference equation

f (z)2 + P(z)2[α f (z + c) − β f (z)]2 = Q(z), (1.2)

has no transcendental entire solutions with finite order.
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Theorem 1.3. Let α(, 0), β ∈ C, and k is an integer. Let f be a transcendental meromorphic solution
of difference-differential equation of Fermat type

f ′(z)2 + [α f (z + c) − β f (z)]2 = R(z) (1.3)

where R(z) is a nonzero rational function and c is a nonzero constant. If f is of finite order and has
finitely many poles, then iαc = ±1 and R(z) is a nonconstant polynomial with degz R ≤ 2 or R(z) is a
nonzero constant. Furthermore,

(i) If R(z) is a nonconstant polynomial and degz R ≤ 2, then f is of the form

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
,

where R(z) = −(as1(z) + m1)(as2(z) + m2), a , 0, b ∈ C, and a, b, c, α, β satisfy α , ±β, a = −i(α + β),
c =

(2k+1)π
a i, iαc = −1 or a = i(α − β), c = 2kπ

a i, iαc = 1, where s j(z) = m jz + n j, m j, n j ∈ C( j = 1, 2);
(ii) If R(z) is a nonzero constant, then f is of the form

f (z) =
n1eaz+b + n2e−(az+b)

2
+ d,

R = −a2n1n2, a , 0, b ∈ C, and a, b, c, α, β satisfy the following cases:
(ii1) if α = β, then a = −2αi,c =

(2k+1)π
a i and d ∈ C;

(ii2) if α = −β, then a = 2αi, c = 2kπ
a i and d = 0;

(ii3) if α , ±β, then d = 0 and a = −i(α + β), c =
(2k+1)π

a i or a = i(α − β), c = 2kπ
a i.

Next, we give some examples to explain the existence of solutions for Eq. (1.3) in the above cases.

• For Case (i), let s1(z) = 1, s2 = z + 1, c = πi, a = 1 and b ∈ C. That is

f (z) =
ez+b + (z + 1)e−(z+b)

2
.

Thus, f (z) satisfies Eq. (1.3) with c = πi, α = 1
π
,β = i − 1

π
and R(z) = −z;

Let s1(z) = z + 1, s2 = z − 1, a = 1 and b ∈ C. That is

f (z) =
(z + 1)ez+b + (z − 1)e−(z+b)

2
.

Thus, f (z) satisfies Eq. (1.3) with c = πi,α = 1
π
, β = i − 1

π
and R(z) = −z(z + 2);

• For Case (ii1), let n1(z) = 1, n2 = 2, a = 1 and b, d ∈ C. That is

f (z) =
ez+b + 2e−(z+b)

2
+ d.

Thus, f (z) satisfies Eq. (1.3) with c = πi, α = i
2 , β = i

2 and R(z) = −2;
For Case (ii2), let n1(z) = 1, n2 = 1, a = 2 and b ∈ C. That is

f (z) =
e2z+b + e−(2z+b)

2
.
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Thus, f (z) satisfies Eq. (1.3) with c = πi, α = −i,β = i and R(z) = −4;
For Case (ii3), let n1(z) = 2, n2 = 1, a = 1 and b ∈ C. That is

f (z) =
2ez+b + e−(z+b)

2
.

Thus, f (z) satisfies Eq. (1.3) with c = 2πi, α = 1,β = 1 + i and R(z) = −2.

Theorem 1.4. Let α(, 0), β ∈ C, and k is an integer. Let f be a transcendental meromorphic solution
of difference-differential equation of Fermat type

f ′′(z)2 + [α f (z + c) − β f (z)]2 = R(z) (1.4)

where R(z) is a nonzero rational function and c is a nonzero constant.
(i) If α = ±β, then Eq. (1.4) has no finite order transcendental meromorphic solutions with finitely

many poles;
(ii) If α , ±β, and Eq. (1.4) has a finite order transcendental meromorphic solution f with finitely

many poles, then R(z) must be a nonzero polynomial with degz R ≤ 1. Furthermore,
(ii1) if R(z) is a nonzero polynomial of degree one, then f (z) is of the form

f (z) =
s1(z)eaz+b + n2e−(az+b)

2
,

where a4 = α2 − β2, b ∈ C, c =
log a2+iβ

iα +2kπi
a , eac = 2a

iαc , ±1 and R = a3n2[as1(z) + 2m1],s1(z) = m1z + n1,
or f (z) is of the form

f (z) =
n1eaz+b + s2(z)e−(az+b)

2
,

where a4 = α2 − β2, b ∈ C, c =
log −a2+iβ

iα +(2k+1)πi
a , eac = iαc

2a , ±1 and R = a3n1[as2(z) − 2m2],
s2(z) = m2z + n2;

(ii2) if R(z) is a nonzero constant, then f (z) is of the form

f (z) =
c1eaz+b + c2e−(az+b)

2
,

where a, b, c, α, β, c1, c2,R satisfy a4 = α2 − β2, b ∈ C, c =
log a2+iβ

iα +2kπi
a and R = a4c1c2;

The following examples show that the existence of solutions for complex differential-difference
equation of Theorem 1.4 (ii1) and (ii2).

Example 1.1. Let s1(z) = z, n2 = 1, a = 1 and b ∈ C. And let c0 be a solution of equation e2c(1−c) = 1,
α = 2

ic0ec0 , and β = 2−c0
ic0

. Then it follows that iαec0 − iβ = 1, iαe−c0 − iβ = 1, α2−β2 = 1, and iαc0ec0 = 2.
Thus, we can deduce that

f (z) =
zez+b + e−(z+b)

2
satisfies the following equation

f ′′(z)2 +
[
α f (z + c) − β f (z)

]2
= z + 2.
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Example 1.2. Let c1 = 1, c2 = 1, ec =
√

5 − 2, a = 1, b ∈ C, α = i
2 , and β =

√
5

2 i. Thus

f (z) =
c1ez+b + c2e−(z+b)

2

satisfies the following equation

f ′′(z)2 +

 i
2

f (z + c) −

√
5

2
i f (z)

2

= 1.

2. Some Lemmas

To prove our theorems, we require the following lemmas.

Lemma 2.1. ( [31, Lemma 2.1]). If f is a nonconstant rational function and it satisfies the following
differential-difference equation

f ′ = η∆c f = η[ f (z + c) − f (z)],

where η and c are two nonzero constants, then ηc = 1 and f is a polynomial of degree one.

Lemma 2.2. Let c, a, α be three nonzero constants satisfying ηc , n − 1 and n ≥ 1 be an integer. If f
is a nonconstant rational solution of the following differential-difference equation

iα∆c f (z) = f (n)(z) + (
n
1

)η f (n−1)(z) + · · · + (
n
j

)η j f (n− j)(z) + · · · + (
n
n − 1

)ηn−1 f ′(z). (2.1)

Then iαc = nηn−1 and f is a polynomial of degree one.

Proof. We firstly prove that f (z) has no poles. On the contrary, suppose that z0 is a pole of f . Since
(2.1) can be rewritten (2.1) in the following form

iα f (z + c)

=[ f (n)(z) + nη f (n−1)(z) + · · · + (
n
j

)η j f (n− j)(z) + · · · + nηn−1 f ′(z)] + iα f (z). (2.2)

It is easy to see that z0 + c is also a pole of f (z) by comparing the order of pole z0 on both sides of Eq.
(2.2). By the cyclic utilization of this operation, we can get that a sequence poles of f (z) are z0 + 2c,
z0 + 3c, . . ., z0 + tc,· · · , this is impossible since f (z) is a nonconstant rational function. Hence, f (z) is a
polynomial.

Let f (z) be a polynomial of the form f (z) = akzk + ak−1zk−1 + · · · + a0, where k ≥ 1 and ak(,
0), ak−1, . . . , a0 are constants. Then

f ′(z) = kakzk−1 + (k − 1)ak−1zk−2 + · · · ,

f ′′(z) = k(k − 1)akzk−2 + (k − 1)(k − 2)ak−1zk−3 + · · · ,

· · · ,

(2.3)
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and

∆c f (z) =ak[(z + c)k − zk] + ak−1[(z + c)k−1 − zk−1] + · · · + a1c

=ak(kczk−1 + (
k
2

)c2zk−2 + · · · ) + ak−1[(k − 1)czk−2 + · · · ]

+ · · · + a1c

=akkczk−1 + [ak(
k
2

)c2 + ak−1(k − 1)c]zk−2 + · · · + a1c. (2.4)

Substituting (2.3), (2.4) into Eq. (2.2), we obtain
iαakkc = nηn−1kak,

iα[ak(
k
2

)c2 + ak−1(
k − 1
1

)c] = nηn−1(k − 1)ak−1 + (
n
2

)ηn−2k(k − 1)ak,

which means


iαc = nηn−1,

1
2

akk(k − 1)ηn−2(ηc − n + 1) = 0.
In view of ηc , n − 1, thus it follows that iαc = nηn−1

and k = 1.
Noting that f (z) is a polynomial of degree one if k = 1, then the conclusions of this lemma are

proved.
Therefore, this completes the proof of this lemma. �

Lemma 2.3. Let α, a, c be three nonzero constants. If R1,R2 are two nonconstant rational functions
satisfying the following differential-difference equationsiαeac[R1(z + c) − R1(z)] = R′′1 (z) + 2aR′1(z),

iαe−ac[R2(z + c) − R2(z)] = −R′′2 (z) + 2aR′2(z),
(2.5)

Then eac = ±1 and R1,R2 are two polynomials of degree one.

Proof. Firstly, (2.5) can be written in the following form
R1(z + c) =

1
iαeac [R′′1 (z) + 2aR′1(z)] + R1(z),

R2(z + c) =
1

iαe−ac [−R′′2 (z) + 2aR′2(z)] + R2(z).
(2.6)

Similar to the argument in Lemma 2.2, we can prove that R1,R2 are two nonconstant polynomials. Let

R1(z) = akzk + ak−1zk−1 + · · · + a1z + a0,R2(z) = btzt + bt−1zt−1 + · · · + b1z + b0,

where a j, b j ∈ C, ak , 0, bt , 0, k ≥ 1 and t ≥ 1. Substituting R1(z),R2(z) into (2.5), and comparing
the coefficients of zk−1, zk−2, zt−1 and zt−2 both sides of such two equations, it yields

iαeacakkc = 2aakk,

iαe−acbttc = 2aatt,

iαeac[ak(
k
2

)c2 + ak−1(k − 1)c] = 2a(k − 1)ak−1 + k(k − 1)ak,

iαe−ac[bt(
t
2

)c2 + bt−1(t − 1)c] = 2a(t − 1)bt−1 − t(t − 1)bt,
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which means 
eac = ±1,
k(k − 1)(ac − 1) = 0,
t(t − 1)(ac + 1) = 0.

(2.7)

Since k ≥ 1 and t ≥ 1, it follows eac = ±1 and k = 1, s = 1. Therefore, this completes the proof of
Lemma 2.3 �

Lemma 2.4. Let R be a nonconstant rational function and p(z) = az+b (a , 0). Denote A1 = R′+Rp′,
An = A′n−1 + An−1 p′, B1 = R′ − Rp′, Bn = B′n−1 + Bn−1(−p)′. Then

lim
|z|→∞

A′n
R

= 0, lim
|z|→∞

An

R
= an, lim

|z|→∞

B′n
R

= 0, lim
|z|→∞

Bn

R
= (−a)n.

Proof. We use the mathematical induction to prove it. When k = 1, since R is a nonconstant rational
function and p′ = a, then lim

|z|→∞

A′1
R = lim

|z|→∞

R′′+R′a
R = 0 and lim

|z|→∞

A1
R = lim

|z|→∞

R′+Rp′

R = a.

Suppose that lim
|z|→∞

A′k
R = 0, lim

|z|→∞

Ak
R = ak. Thus, lim

|z|→∞

A′k+1
R = lim

|z|→∞

A′k+A′ka
R = 0 and lim

|z|→∞

Ak+1
R =

lim
|z|→∞

A′k+Ak p′

R = ak+1. Hence, we have lim
|z|→∞

A′n
R = 0 and lim

|z|→∞

An
R = an.

Similar to the above argument, we can prove that lim
|z|→∞

B′n
R = 0 and lim

|z|→∞

Bn
R = (−a)n.

Therefore, this completes the proof of Lemma 2.4. �

Lemma 2.5. ( [30, Theorem 1.51]). Suppose that f1, f2, . . . , fn(n ≥ 2) are meromorphic functions and
g1, g2, . . ., gn are entire functions satisfying the following conditions

(i)
∑n

j=1 f jeg j ≡ 0;
(ii) g j − gk are not constants for 1 ≤ j < k ≤ n;
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, f j) = o{T (r, egh−gk)} (r → ∞, r < E), where E is a set of

r ∈ (0,∞) with finite linear measure.
Then f j ≡ 0 ( j = 1, 2, . . . , n).

Lemma 2.6. (see [30, Theorem 2.7]). Let f be a meromorphic function of finite order ρ( f ). Write

f (z) = ckzk + ck+1zk+1 + · · · , (ck , 0)

near z = 0 and let {a1, a2, . . .} and {b1, b2, . . .} be the zeros and poles of f in C\{0}, respectively. Then

f (z) = zkeQ(z) P1(z)
P2(z)

,

where P1(z) and P2(z) are the canonical products of f formed with the non-null zeros and poles of f ,
respectively, and Q(z) is a polynomial of degree ≤ ρ( f ).

3. The proof of Theorem 1.1

Proof. Suppose that Eq. (1.1) admits a finite order transcendental meromorphic solution f (z) with
finitely many poles. We can rewrite Eq. (1.1) as

[ f (z) + i(α f (z + c) − β f (z))][ f (z) − i(α f (z + c) − β f (z))] = R(z). (3.1)
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Since f (z) has finitely many poles and R is a nonzero rational function, then f (z) + i(α f (z + c)− β f (z))
and f (z) − i(α f (z + c) − β f (z)) both have finitely many poles and zeros. Thus, in view of Lemma 2.6,
(3.1) can be written as  f (z) + i(α f (z + c) − β f (z)) = R1ep(z),

f (z) − i(α f (z + c) − β f (z)) = R2e−p(z),
(3.2)

where R1,R2 are two nonzero rational functions such that R1R2 = R and p(z) is a nonconstant
polynomial. By solving the above equations system, we have

f (z) =
R1ep(z) + R2e−p(z)

2
,

α f (z + c) − β f (z) =
R1ep(z) − R2e−p(z)

2i
.

(3.3)

Substituting the first equation of system (3.3) into the second equation of system (3.3), we get

ep(z)
[
iαR1(z + c)ep(z+c)−p(z) − iβR1(z) − R1(z)

]
+ e−p(z)

[
iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + R2(z)

]
= 0. (3.4)

By Lemma 2.5, it yields from (3.4) thatiαR1(z + c)ep(z+c)−p(z) − iβR1(z) − R1(z) = 0,
iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + R2(z) = 0.

(3.5)

Since R1,R2 are two nonzero rational functions and f is of finite order, we obtain that p(z) is a
polynomial of degree one. Otherwise, assume that degz p(z) ≥ 2. Thus, in view of (3.5), we have

ep(z+c)−p(z) =
iβR1(z) + R1(z)

iαR1(z + c)
, e−p(z+c)+p(z) =

iβR2(z) − R2(z)
iαR2(z + c)

,

which imply 1 = ρ
(
ep(z+c)−p(z)

)
= ρ

(
iβR1(z)+R1(z)

iαR1(z+c)

)
= 0, a contradiction. Hence, degz p(z) = 1. Let

p(z) = az + b, a , 0, b ∈ C. Substituting this into (3.5), we can deduce

lim
|z|→∞

i
(
R1(z + c)

R1(z)
ep(z+c)−p(z) − β

)
= i(αeac − β) = 1,

lim
|z|→∞

i
(
R2(z + c)

R2(z)
ep(z+c)−p(z) − β

)
= i(αe−ac − β) = −1.

Thus, it yields that α2 − β2 = 1, a contradiction.
Therefore, this completes the proof of Theorem 1.1. �

4. The proof of Theorem 1.2

Proof. Suppose that f (z) is a transcendental entire solution with finite order of Eq. (1.2). Similar to
the above argument as in the proof of Theorem 1.1, it follows that

f (z) =
Q1ep(z) + Q2e−p(z)

2
,

α f (z + c) − β f (z) =
Q1ep(z) − Q2e−p(z)

2iP(z)
,

(4.1)
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where p(z) is a nonconstant polynomial and Q1(z)Q2(z) = Q(z), Q1(z),Q2(z) are nonzero polynomials.
In view of (4.1), it yields that

ep(z)
[
iαP(z)Q1(z + c)ep(z+c)−p(z) − iβP(z)Q1(z) − Q1(z)

]
+ e−p(z)

[
iαP(z)Q2(z + c)e−p(z+c)+p(z) − iβP(z)Q2(z) + Q2(z)

]
= 0. (4.2)

Since p(z) is a nonconstant polynomial, then by Lemma 2.5, we conclude thatiαP(z)Q1(z + c)ep(z+c)−p(z) − iβP(z)Q1(z) − Q1(z) = 0,
iαP(z)Q2(z + c)e−p(z+c)+p(z) − iβP(z)Q2(z) + Q2(z) = 0,

(4.3)

which implies that p(z) is a polynomial of degree one. Set p(z) = az + b, a , 0, b ∈ C. Thus, it follows
from (4.3) that iαP(z)Q1(z + c)eac = (iβP(z) + 1)Q1(z),

iαP(z)Q2(z + c)e−ac = (iβP(z) − 1)Q2(z),

which means that
α2P(z)2Q1(z + c)Q2(z + c) = (β2P(z)2 + 1)Q1(z)Q2(z).

Hence, it yields
P(z)2[α2Q(z + c) − β2Q(z)] = Q(z). (4.4)

Set degz P = p and degz Q = q, then p ≥ 0, q ≥ 0 and p, q ∈ N+.
Case 1. p ≥ 1 and α = ±β. If q ≥ 1. Since α , 0, thus, by comparing the order both sides of Eq.

(4.4), it follows 2p + q − 1 = q, that is, p = 1
2 , a contradiction. If q = 0, that is, Q(z) is a constant.

Thus, we can conclude from (4.4) that Q(z) ≡ 0, a contradiction.
Case 2. p ≥ 1 and α , ±β. If q ≥ 1. Since α , 0, thus, by comparing the order both sides of Eq.

(4.4), it follows 2p + q = q, that is, p = 0, a contradiction. If q = 0, that is, Q(z) is a constant. Thus,
we can conclude from (4.4) that P(z) is a constant, a contradiction with p ≥ 1.

Case 3. p = 0 and α = ±β. Thus, P(z) = K(, 0). If q ≥ 1. Since α , 0, thus, by comparing the
order both sides of Eq. (4.4), it follows q − 1 = q, a contradiction. If q = 0, it follows Q(z) ≡ 0, a
contradiction.

Case 4. p = 0 and α , ±β. If q ≥ 1, set P(z) = K(, 0), Q(z) = bqzq + bq−1zq−1 + · · · + b0,
bq , 0, bq−1, . . . , b0 are constants. By comparing the coefficients of zq, zq−1 both sides of (4.4), it yields
that

K2[α2 − β2] = 1, K2[α2qcaq + (α2 − β2)aq−1] = aq−1, (4.5)

which implies that α2qcaq = 0, a contradiction. If q = 0, then K2(α2 − β2) = 1, a contradiction.
Therefore, this completes the proof of Theorem 1.2. �

5. The proof of Theorem 1.3

Proof. Suppose that Eq. (1.3) admits a finite order transcendental meromorphic solution f (z) with
finitely many poles. We can rewrite Eq. (1.3) in the following form

[ f ′(z) + i(α f (z + c) − β f (z))][ f ′(z) − i(α f (z + c) − β f (z))] = R(z). (5.1)
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Since f (z) has finitely many poles and R is a nonzero rational function, then f ′(z) + i(α f (z + c)−β f (z))
and f ′(z) − i(α f (z + c) − β f (z)) both have finitely many poles and zeros. Thus, in view of Lemma 2.6,
(5.1) can be written as  f ′(z) + i(α f (z + c) − β f (z)) = R1ep(z),

f ′(z) − i(α f (z + c) − β f (z)) = R2e−p(z),
(5.2)

where R1,R2 are two nonzero rational functions such that R1R2 = R, and p(z) is a nonconstant
polynomial. By solving the above equations system, we have

f ′(z) =
R1ep(z) + R2e−p(z)

2
,

α f (z + c) − β f (z) =
R1ep(z) − R2e−p(z)

2i
.

(5.3)

In view of the second equation of (5.3), it follows that

α f ′(z + c) − β f ′(z) =
A1ep(z) − B1e−p(z)

2i
, (5.4)

where A1 = R′1 + R1 p′ and B1 = R′2 − R2 p′. Substituting the first equation of system (5.3) into (5.4), it
yields that

ep(z)
[
iαR1(z + c)ep(z+c)−p(z) − iβR1(z) − A1(z)

]
+ e−p(z)

[
iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + B1(z)

]
= 0. (5.5)

By Lemma 2.5, it yields from (5.5) thatiαR1(z + c)ep(z+c)−p(z) − iβR1(z) − A1(z) = 0,
iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + B1(z) = 0.

(5.6)

Since R1,R2 are two nonzero rational functions and f is of finite order, similar to argument as in the
proof of Theorem 1.1, it follows that p(z) is a polynomial of degree one. Let p(z) = az+b, a , 0, b ∈ C.
Substituting p(z), A1, B1 into (5.6), and let z→ ∞, thus we can conclude from Lemma 2.4 that

lim
|z|→∞

i
(
R1(z + c)

R1(z)
ep(z+c)−p(z) − β

)
= i(αeac − β) =

R′1(z)
R1(z)

+ a = a,

lim
|z|→∞

i
(
R2(z + c)

R2(z)
ep(z+c)−p(z) − β

)
= i(αe−ac − β) = −

R′2(z)
R2(z)

+ a = a,

which means that

i(αeac − β) = a, i(αe−ac − β) = a. (5.7)

Hence, it yields eac = ±1.
If eac = 1, then a = iα − iβ. Thus, we can rewrite (5.6) in the following formiα[R1(z + c) − R1(z)] = R′1(z),

iα[R2(z + c) − R2(z)] = R′2(z).
(5.8)
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If R1,R2 are nonzero constants, then (5.8) holds and R = R1R2 is a constant.
If R j( j = 1, 2) is a nonzero rational function, then in view of Lemma 2.1, it follows that iαc = 1 and

R j( j = 1, 2) is a polynomial of degz R j = 1. In view of R = R1R2, thus R is a nonconstant polynomial
with degz R ≤ 2.

If eac = −1, then a = −iα − iβ. Thus, we can rewrite (5.6) in the following form − iα[R1(z + c) − R1(z)] = R′1(z),
− iα[R2(z + c) − R2(z)] = R′2(z).

(5.9)

Like in the previous case, we can obtain that iαc = ±1 and R(z) is a nonconstant polynomial with
degz R ≤ 2 or R(z) is a nonzero constant.

Hence, we can conclude that R is a nonconstant polynomial with degz R ≤ 2 or R is a nonzero
constant.

(i) Suppose that R(z) is a nonconstant polynomial with degz R ≤ 2, then in view of the first equation
of (5.3), it follows that f (z) is of the form

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
+ γ, (5.10)

where s j(z) = m jz + n j,m j, n j ∈ C ( j = 1, 2) and γ ∈ C.
Case 1. If degz R = 2, then it follows that m j , 0( j = 1, 2). Substituting (5.10) into (5.3), it follows

that R(z) = −(as1(z) + m1)(as2(z) + m2), iαc = 1 and a = i(α − β) or iαc = −1 and a = −i(α + β).
If iαc = 1 and a = i(α − β), then eac = 1, i.e., c = 2kπi

a . Obviously, α , β as a , 0. If α = −β, then
a = 2iα. Thus, since α , 0 and from (5.7), it follows 1 = eac = e2iαc = e2, a contradiction. Hence,
α , ±β. Thus, substituting (5.10) into the second equation of (5.3), it follows γ ≡ 0.

If iαc = −1 and a = −i(α+β), then eac = −1, i.e., c =
(2k+1)πi

a . Obviously, α , −β as a , 0. If α = β,
then a = −2iα. Thus, since α , 0 and from (5.7), it follows −1 = eac = e−2iαc = e2, a contradiction.
Hence, α , ±β.

Case 2. If degz R = 1, then one of m1,m2 is zero, without loss of generality, assuming that m1 = 0.
Substituting (5.10) into (5.3), it follows that R1 is a constant and R2 is a polynomial of degree one, and
iαc = 1 and a = i(α− β) or iαc = −1 and a = −i(α+ β). Similar to the argument as in Case 1, it is easy
to prove that α , ±β and γ ≡ 0.

Therefore, f (z) is of the form

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
,

where R(z) = −(as1(z) + m1)(as2(z) + m2), a , 0, b ∈ C, and a, b, c, α, β satisfy α , ±β, a = −i(α + β),
c =

(2k+1)π
a i, iαc = −1 or a = i(α − β), c = 2kπ

a i, iαc = 1.
(ii) If R(z) is a nonzero constant, then in view of the first equation of (5.3), it follows that f (z) is of

the form

f (z) =
n1eaz+b + n2e−(az+b)

2
+ d, (5.11)

where n1, n2 ∈ C and γ ∈ C. Substituting (5.11) into the first equation of (5.3), it yields R = −a2n1n2.
For the sake of brevity and readability, we give the proof of Theorem 1.3 (ii1)-(ii3) in Appendix A.

Therefore, this completes the proof of Theorem 1.3. �
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6. The proof of Theorem 1.4

Proof. Suppose that Eq. (1.4) admits a finite order transcendental meromorphic solution f (z) with
finitely many poles. We can rewrite Eq. (1.4) as

[ f ′′(z) + i(α f (z + c) − β f (z))][ f ′′(z) − i(α f (z + c) − β f (z))] = R(z). (6.1)

Since f (z) has finitely many poles and R is a nonzero rational function, then f ′′(z)+ i(α f (z+c)−β f (z))
and f ′′(z) − i(α f (z + c) − β f (z)) both have finitely many poles and zeros. Thus, (6.1) can be written as f ′′(z) + i(α f (z + c) − β f (z)) = R1ep(z),

f ′′(z) − i(α f (z + c) − β f (z)) = R2e−p(z),
(6.2)

where R1,R2 are two nonzero rational functions such that R1R2 = R and p(z) is a nonconstant
polynomial. By solving the above equations system, we have

f ′′(z) =
R1ep(z) + R2e−p(z)

2
,

α f (z + c) − β f (z) =
R1ep(z) − R2e−p(z)

2i
.

(6.3)

In view of the second equation of (6.3), it follows that

α f ′′(z + c) − β f ′′(z) =
A2ep(z) − B2e−p(z)

2i
, (6.4)

where A2 = A′1 + A1 p′ and B2 = B′1 − B1 p′. Substituting the first equation of system (6.3) into (6.4), it
yields

ep(z)
[
iαR1(z + c)ep(z+c)−p(z) − iβR1(z) − A2(z)

]
+ e−p(z)

[
iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + B2(z)

]
= 0. (6.5)

By Lemma 2.5, it yields from (6.5) thatiαR1(z + c)ep(z+c)−p(z) − iβR1(z) − A2(z) = 0,
iαR2(z + c)e−p(z+c)+p(z) − iβR2(z) + B2(z) = 0.

(6.6)

Since R1,R2 are two nonzero rational functions and f is of finite order, we obtain that p(z) is a
polynomial of degree one. Let p(z) = az + b, a , 0, b ∈ C. Substituting p(z), A2, B2 into (6.6), and let
z→ ∞, thus we can conclude from Lemma 2.4 that

lim
|z|→∞

i
(
R1(z + c)

R1(z)
ep(z+c)−p(z) − β

)
= i(αeac − β) =

A′1(z)
R1(z)

+ a2 = a2,

lim
|z|→∞

i
(
R2(z + c)

R2(z)
ep(z+c)−p(z) − β

)
= i(αe−ac − β) =

B′1(z)
R2(z)

− a2 = −a2,
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which means that

i(αeac − β) = a2, i(αe−ac − β) = −a2. (6.7)

Hence, it follows a4 = α2 − β2.
(i) If α = ±β, this is a contradiction with a4 = α2 − β2. Therefore, this proves the conclusion of

Theorem 1.3 (i).
(ii) If α , ±β. Substituting p(z) = az + b and (6.7) into (6.6), it yieldsiαeac[R1(z + c) − R1(z)] = R′′1 (z) + 2aR′1(z),

iαe−ac[R2(z + c) − R2(z)] = −R′′2 (z) + 2aR′2(z).
(6.8)

Suppose that R1,R2 are nonconstant rational functions, in view of Lemma 2.3 and (6.8), we can
conclude that eac = ±1 and R1,R2 are nonconstant polynomials of degree one. Set degz R1 = k and
degz R2 = s.

If k = 1 and s = 1, in view of Lemma 2.3, we obtain (2.7). If eac = 1, then from (6.7), it follows that
iα− iβ = a2 and iα− iβ = −a2, a contradiction. If e−ac = 1, then from (6.7), it follows that −iα− iβ = a2

and −iα − iβ = −a2, a contradiction. Hence, there is at most a polynomial of degree one in R1 and R2.
For the sake of brevity and readability, we give the proof of Theorem 1.4 (ii1) and (ii2) in Appendix B.

Therefore, this completes the proof of Theorem 1.4.
�
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Appendix A

The proof of Theorem 1.3 (ii1) − (ii3): (ii1) If α = β, in view of (5.7), it follows that eac = ±1.
If eac = 1, then a = 0 as iα(eac − 1) = a, a contradiction. Thus, eac = −1. Hence, it follows that
c =

(2k+1)πi
2 , a = −2iα and d ∈ C.

(ii2) If α = −β, in view of (5.7), it follows that eac = ±1. If eac = −1, then a = 0 as iα(e−ac + 1) = a,
a contradiction. Thus, eac = 1. Hence, it follows that c = 2kπi

2 , a = 2iα and d ≡ 0.
(ii3) If α , ±β, substituting (5.11) into the second equation of (5.3), it yields d ≡ 0. in view of

(5.7), it follows that eac = ±1. If eac = −1, it follows that c =
(2k+1)πi

2 and a = i(α − β). If eac = −1, it
follows that c = 2kπi

2 and a = −i(α + β).

Appendix B

The proof of Theorem 1.4 (ii1) and (ii2): (ii1) Suppose that k = 1 and s = 0. In view of (6.5), it
follows that f is of the form

f (z) =
s1(z)eaz+b + s2(z)e−(az+b)

2
+ P(z), (6.9)

where a , 0, b ∈ C, s1(z) = m1z + n1, s2(z) = n2, m1(, 0), n1, n2 ∈ C and P(z) is a polynomial of degree
one. Since α , β, then it yields from the second equation of (6.5) that P(z) ≡ 0. And in view of the
first equation in (6.8), it follows that iαeacc = 2a. Hence, f (z) is of the form

f (z) =
s1(z)eaz+b + n2e−(az+b)

2
,

where a4 = α2 − β2, b ∈ C, c =
log a2+iβ

iα +2kπi
a , eac = 2a

iαc , ±1 and R = a3n2[as1(z) + 2m1].
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Suppose that k = 0 and s = 1. Similar to the above argument as in (ii1), we get that

f (z) =
n1eaz+b + s2(z)e−(az+b)

2
,

where a4 = α2 − β2, b ∈ C, c =
log −a2+iβ

iα +(2k+1)πi
a , eac = iαc

2a , ±1 and R = a3n1[as2(z) − 2m2].
(ii2) Suppose that R1,R2 are two nonzero constants. In view of (6.5), it follows that f is of the form

f (z) =
c1eaz+b + c2e−(az+b)

2
+ P(z), (6.10)

where a , 0, b ∈ C, c1, c2 ∈ C − {0} and P(z) is a polynomial of degree one. Since α , β, then it yields
from the second equation of (6.5) that P(z) ≡ 0. Hence, f (z) is of the form

f (z) =
c1eaz+b + c2e−(az+b)

2
,

where a4 = α2 − β2, b ∈ C, c =
log a2+iβ

iα +2kπi
a and R = a4c1c2.
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