
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(1): 603–618.
DOI:10.3934/math.2020040
Received: 03 October 2019
Accepted: 18 November 2019
Published: 16 December 2019

Research article

Acceleration of implicit schemes for large systems of nonlinear
differential-algebraic equations

Mouhamad Al Sayed Ali1 and Miloud Sadkane2,∗

1 Université Libanaise, Faculté des Sciences 1, Beyrouth, Liban
2 Université de Brest, CNRS - UMR 6205, Mathématiques, 6, Av. Le Gorgeu. 29238 Brest Cedex 3,

France

* Correspondence: Email: miloud.sadkane@univ-brest.fr.

Abstract: When solving large systems of nonlinear differential-algebraic equations by implicit
schemes, each integration step requires the solution of a system of large nonlinear algebraic equations.
The latter is solved by an inexact Newton method which, in its turn, leads to a set of large linear systems
commonly solved by a Krylov subspace iterative method. The efficiency of the whole process depends
on the initial guesses for the inexact Newton and the Krylov subspace methods. An inexpensive
approach is proposed and justified that computes good initial guesses for these methods. It requires a
subspace of small dimension and the use of line search and trust region for the inexact Newton method
and Petrov-Galerkin for the Krylov subspace method. Numerical examples are included to illustrate
the effectiveness of the proposed approach.

Keywords: nonlinear equations; nonlinear DAE systems; inexact Newton; GMRES; line search;
trust region
Mathematics Subject Classification: 65H10, 65L80, 65F10, 65K10

1. Introduction

Consider the system of nonlinear differential-algebraic equations (DAEs){
f (t, y(t), y′(t)) = 0, ∀t ∈ [t0,T],
y(t0) = y(0),

(1.1)

where y(t) ∈ Rn is the unknown solution and n is large. We assume that the function f : [t0,T] ×
Rn × Rn −→ Rn is nonlinear and sufficiently smooth. We also assume that the solution exists and refer
to [5, chap. 2] and [14, chap. 4] and references therein for the theory of DAEs. For an overview, see
the surveys in [8, 15].

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020040

604

Integration schemes provide natural ways to solve (1.1) for large n. An important and general class
of integration schemes is given by (see, e.g., [5, p. 71])

f

 q∑
j=0

a jti− j,

q∑
j=0

b jyi− j,
1
h

q∑
j=0

c jyi− j

 = 0, for i = q + 1, . . . ,N, (1.2)

where y0 = y(0), N and y1, . . . , yq are given, q � N, and yi is an approximation of y(ti) where ti =

t0 + ih, h = T−t0
N is the step size, and a j, b j, c j are given scalars. We assume throughout the note that

the scheme (1.2) is stable, see, e.g., [5, p. 70] for a precise definition.

Let

xi =
1
h

q∑
j=0

c jyi− j and ϕi =

q∑
j=1

c jyi− j. (1.3)

Then
yi = (hxi − ϕi)/c0 (1.4)

and (1.2) becomes
Gi(xi) = 0, i = q + 1, . . . ,N, (1.5)

where

Gi(x) = f

 q∑
j=0

a jti− j,

q∑
j=1

b jyi− j −
b0

c0
ϕi +

b0

c0
hx, x

 . (1.6)

Since n is large and the equation Gi(xi) = 0 in (1.5) must be solved N − q times, the natural way for
finding xi is the inexact Newton method, which is sketched in Algorithm 1.

Algorithm 1 Inexact Newton for solving Gi(xi) = 0

Input: initial guess x(0)
i .

Output: approximation of xi

1: for k = 0, 1, . . . , do
2: Solve the system G′i(x(k)

i)s̃(k)
i = −Gi(x(k)

i) inexactly, so that

‖G′i(x(k)
i)s̃(k)

i + Gi(x(k)
i)‖ ≤ ε(k)

i ‖Gi(x(k)
i)‖; (1.7)

3: x(k+1)
i = x(k)

i + s̃(k)
i ;

4: end for

For a fixed i, Algorithm 1 starts with x(0)
i and computes the sequence (x(k)

i)k≥0 which converges,
under some conditions, to the solution xi.

In (1.7) and throughout this note, the symbol ‖ ‖ denotes the 2-norm. The matrix G′i(x(k)
i) is the

Jacobian of Gi at x(k)
i , the approximate solution s̃(k)

i is obtained by an appropriate iterative method,
and ε(k)

i is the required convergence tolerance threshold. In [10] it is shown that local convergence is
guaranteed under the condition that the sequence ε(k)

i is uniformly less than one.

AIMS Mathematics Volume 5, Issue 1, 603–618.

605

Inexact Newton type methods are particularly suitable for solving large-scale nonlinear equations
or series of nonlinear systems as those arising when large-scale ordinary differential equations (ODEs)
are solved by implicit integration schemes, see, e.g., [2,4,6,7,10,12,13,16]. Krylov subspace iterative
methods [17] are generally used to solve the linear systems arising in step 2 of Algorithm 1. They have
the advantage of requiring only the action of the Jacobian matrix on a given vector and the Jacobian
need not be stored. However, unless good and cheap preconditioners are available, the efficiency of
these methods strongly depends on the initial guesses. In the present note, this will be obtained by the
Petrov-Galerkin method (see [17]), which has proved to be effective.

The choice of the initial guess x(0)
i in Algorithm 1 is crucial for convergence. The standard choice

in Newton-like methods is the zero vector or the previous iterate. This, however, does not necessarily
lead to convergence. In this note we will show that the line search and trust region algorithms (see,
e.g., [11]) offer a cheap and efficient way for the computation of x(0)

i through convergent sequences.
The line search and trust region algorithms involve linear systems similar to the one in step 2 and are
solved in the same way.

Thus, for a fixed i, computing a good initial x(0)
i and good initial guesses for each linear system to be

solved in step 2 will result in an acceleration of the scheme (1.2), which is the purpose of the present
work. For this reason, issues specific to numerical methods for DAEs are not considered (the interested
readers may usefully refer to [1, 5, 14]).

The special case when f is of the form f (t, y, z) = z− g(t, y) where g is a (linear) non linear function
leads to (linear) nonlinear ODEs. This case has been addressed in a previous work [2, 3] where some
subspaces were used to provide good initial guesses of the underlying implicit schemes. The approach
taken in the present work extends to DAEs the investigations started in [2, 3] for ODEs. However, the
approximation subspaces used for ODEs are no longer valid here since y′ is not given explicitly in
terms of t and y. Nevertheless, our goal is still to construct a low-dimensional subspaces (see (2.7),
(2.11)) that contain good approximations of each initial guess in Algorithm 1 and for the corresponding
linear systems.

The note is organized as follows. In Section 2 we explain the construction of a low-dimensional
subspace that contains useful information on the desired initial guess for Algorithm 1 and provide
related error estimates. In Section 3 we briefly review the Petrov-Galerkin process and the line search
and trust region algorithms. The algorithmic aspect related to the acceleration of the numerical solution
of (1.1) is discussed in section 4. Section 5 is devoted to numerical tests and a conclusion is given in
Section 6

2. Acceleration of implicit scheme

When implemented, Algorithm 1 can only provide an approximate solution x̃i to xi, such that

‖G̃i(x̃i)‖ ≤ ε, i = q + 1, . . . ,N, (2.1)

where ε is a tolerance threshold and G̃i is the approximate analogue of Gi, defined by

G̃i(x) = f

 q∑
j=0

a jti− j,

q∑
j=1

b jỹi− j −
b0

c0
ϕ̃i +

b0

c0
hx, x

 , (2.2)

AIMS Mathematics Volume 5, Issue 1, 603–618.

606

with

ϕ̃i =

q∑
j=1

c jỹi− j and ỹi =
hx̃i − ϕ̃i

c0
. (2.3)

Assume that ỹ0 = y0 = y(0) and that for i = 1, . . . , q, ỹi is computed, for example, with an i-step scheme,
such that

max
0≤i≤q
‖yi − ỹi‖ = O(ε). (2.4)

Then, since the scheme (1.2) is stable, there exists a constant C > 0 such that

max
q+1≤i≤N

‖yi − ỹi‖ ≤ C
(
max
0≤i≤q
‖yi − ỹi‖ + max

q+1≤i≤N
‖G̃i(x̃i)‖

)
.

Using (2.1), (2.4) and (1.4), (2.3) we get

max
0≤i≤N

‖yi − ỹi‖ = O(ε), (2.5)

max
0≤i≤N

‖xi − x̃i‖ = O(ε/h). (2.6)

The following theorem shows that a good approximation to xi (and therefore to yi + ϕi/c0) can be
obtained from the subspace spanned by the previous approximate solutions x̃i−1, x̃i−2,

Theorem 2.1. Assume that y ∈ Cr([t0,T]), r � n and let

Vi = span{x̃i−1, x̃i−2, . . . , x̃i−r}. (2.7)

Then, there exist a x̃ ∈ Vi and a ỹ ∈ (−ϕ̃i/c0) +Vi such that for i = q + 1, . . . ,N,

‖x̃ − xi‖ = O(hp−1) + O(hr−1) + O(ε/h), (2.8)
‖ỹ − yi‖ = O(hp) + O(hr) + O(ε), (2.9)

where p is the order of the scheme (1.2).

Proof. The Lagrange interpolation formula (see, e.g., [9]) ensures the existence of constants αl, 1 ≤
l ≤ r such that

‖y(ti) −
r∑

l=1

αly(ti−l)‖ = O(hr). (2.10)

Let x̃ =
∑r

k=1 αk x̃i−k ∈ Vi. Then we have

x̃ − xi =
1
h

 r∑
k=1

αk

q∑
j=0

c jỹi−k− j −

q∑
j=0

c jyi− j


=

1
h

 q∑
j=0

c j

 r∑
k=1

αkỹi− j−k − yi− j


 .

The estimate (2.8) follows by noticing that
r∑

k=1

αkỹi−k− j − yi− j = (a) + (b) + (c) + (d),

AIMS Mathematics Volume 5, Issue 1, 603–618.

607

where

(a) =

r∑
k=1

αk(ỹi− j−k − yi− j−k), (b) =

r∑
k=1

αk(yi− j−k − y(ti− j−k)),

(c) =

r∑
k=1

αky(ti− j−k) − y(ti− j), (d) = y(ti− j) − yi− j,

and using (2.10) in (c) and the stability and order p properties in (a), (b) and (d), i.e., (2.5) and ‖yi −

y(ti)‖ = O(hp) for i = 0, . . . ,N.
Now let ỹ = −ϕ̃i/c0 + h x̃

c0
∈ −ϕ̃i/c0 +Vi. Then we have

ỹ − yi =
h
c0

(x̃ − xi) +
1
c0

(ϕi − ϕ̃i)

=
h
c0

(x̃ − xi) +
1
c0

q∑
j=1

c j(yi− j − ỹi− j)

and the estimate (2.9) follows then from (2.8) and (2.5). �

The computation of the initial guess for Algorithm 1 will be based on the subspaceVi. However, in
order to further reduce the computational cost, we will modify this subspace by keeping only the last
active vectors, that is, the approximate solutions which require the use of Algorithm 1 to satisfy (2.1).
For example, if it happens that no iterative method is needed in Inexact Newton, or in other words, that
the initial guess x(0)

i already satisfies (2.1), then we set x̃i = x(0)
i and use the same subspace Vi for the

next iteration i of the scheme. This leads to the following simplification.

Corollary 1. Let
Vi = span{x̃i−l1 , x̃i−l2 , . . . , x̃i−lr} (2.11)

be the subspace spanned by the last r vectors whose computations require the use the inexact Newton
method, where l1 < l2 < . . . < lr and r � n. Then there exist a x̃ ∈ Vi and a ỹ ∈ (−ϕ̃i/c0) +Vi such
that for i = q + 1, . . . ,N,

‖x̃ − xi‖ = O(hp−1) + O(hr+l1−2) + O(ε/h), (2.12)
‖ỹ − yi‖ = O(hp) + O(hr+l1−1) + O(ε). (2.13)

Proof. The hypothesis means that the vectors x̃i−k, k = 1, . . . , l1 − 1 are already in Vi. Therefore the
subspaces (2.7) and (2.11) coincide and the proof of Theorem 2.1 can be repeated to show the existence
of x̃ ∈ Vi and ỹ ∈ (−ϕ̃i/c0) +Vi that satisfy (2.12) and (2.13). �

3. Petrov-Galerkin, line search and trust region

Using the subspace Vi defined in (2.7) or (2.11), we seek the initial guess ŝ(k)
i ∈ −x(k)

i +Vi to the
linear system G̃′i(x(k)

i)s̃(k)
i = −G̃i(x(k)

i) that satisfies the Petrov-Galerkin condition

G̃′i(x(k)
i)ŝ(k)

i + G̃i(x(k)
i) ⊥ G̃′i(x(k)

i)Vi,

AIMS Mathematics Volume 5, Issue 1, 603–618.

608

where ⊥ denotes orthogonality with respect to the Euclidean inner product.
This is equivalent to the least-squares problem

min
s∈−x(k)

i +Vi

‖G̃′i(x(k)
i)s + G̃i(x(k)

i)‖

whose solution provides the initial guess

ŝ(k)
i = −x(k)

i + Viv
(k)
i , (3.1)

where Vi is a matrix whose columns form an orthonormal basis of Vi and v(k)
i solves the small-size

linear system [
(G̃′i(x(k)

i)Vi)T (G̃′i(x(k)
i)Vi)

]
v(k)

i = −(G̃′i(x(k)
i)Vi)T

(
G̃i(x(k)

i) − G̃′i(x(k)
i)x(k)

i

)
. (3.2)

Recall that the initial guess x(0)
i has to be chosen to guarantee convergence of the sequence (x(k)

i) to xi.
To this end, the line search and trust region algorithms will be employed. These algorithms compute a
sequence of vectors u(k)

i that converges, under some conditions, to a local minimum or a saddle point
of the function

hi(x) =
1
2
‖G̃i(x)‖2. (3.3)

We refer to [11] for more details on these algorithms. Here, we present a brief description useful for
understanding Algorithms 2, 3 and 4.

The sequence of vectors computed by the line search algorithm is given by

u(k+1)
i = u(k)

i + λk p(k)
i , k ≥ 0, λk > 0, (3.4)

where u(0)
i is an initial guess and p(k)

i is a descent direction of G̃i at u(k)
i (that is, ∇hi(u

(k)
i)T p(k)

i < 0) and
the scalar λk is chosen so that the sequence u(k)

i satisfies the Wolf condition

hi(u
(k+1)
i) ≤ hi(u

(k)
i) + αλk∇hi(u

(k)
i)T p(k)

i , (3.5)

where α ∈ (0, 1/2) is a parameter typically set to 10−4.
The computation of λk uses the backtracking method, which starts with λk = 1 and repeatedly

reduces it until an acceptable iterate u(k+1)
i satisfying (3.5) is found. The descent direction

p(k)
i = −

{
G̃′i(u

(k)
i)

}−1
G̃i(u

(k)
i), (3.6)

which is referred to as the Newton direction, ensures that (3.5) is satisfied. In practice, an iterative
method is used to compute an approximation p̃(k)

i to p(k)
i that satisfies

‖G̃′i(u
(k)
i) p̃(k)

i + G̃i(u
(k)
i)‖ ≤ η(k)

i ‖G̃i(u
(k)
i)‖, (3.7)

where η(k)
i � 1 is some convergence tolerance threshold.

The trust region algorithm generates a sequence of vectors of the form

u(k+1)
i = u(k)

i + d(k)
i , (3.8)

AIMS Mathematics Volume 5, Issue 1, 603–618.

609

where
d(k)

i = argmin
‖d‖≤δ(k)

i

Ψ
(k)
i (d), (3.9)

and where δ(k)
i > 0 and Ψ

(k)
i is defined by

Ψ
(k)
i (d) =

1
2
‖G̃i(u

(k)
i) + G̃′i(u

(k)
i)d‖2. (3.10)

It is easy to verify that

d(k)
i =


−(B(k)

i)−1∇hi(u
(k)
i) if ‖(B(k)

i)−1∇hi(u
(k)
i)‖ ≤ δ(k)

i ,

−(B(k)
i + µ(k)

i In)−1∇hi(u
(k)
i) if ‖(B(k)

i)−1∇hi(u
(k)
i)‖ > δ(k)

i ,

(3.11)

where B(k)
i = G̃′i(u

(k)
i)TG̃′i(u

(k)
i) and µ(k)

i ≥ 0. The matrix B(k)
i and the scalar µ(k)

i are related by

‖(B(k)
i + µ(k)

i In)−1∇hi(u
(k)
i)‖ = δ(k)

i . (3.12)

Note that d(k)
i is a descent direction of G̃i at u(k)

i and coincides with the Newton direction (3.6) when
‖(B(k)

i)−1∇hi(u
(k)
i)‖ ≤ δ(k)

i .
Two methods are commonly used to compute µ(k)

i : the hook step and the dogleg step. The former
finds µ(k)

i which provides an approximation of (3.12) and takes u(k+1)
i = u(k)

i − (B(k)
i + µ(k)

i In)−1∇hi(u
(k)
i),

while the latter makes a piecewise linear approximation to the curve µ → u(k)
i − (B(k)

i + µIn)−1∇hi(u
(k)
i)

and takes u(k+1)
i as the point on this approximation such that ‖u(k+1)

i − u(k)
i ‖ = δ(k)

i . Both methods require
the solution of large linear systems.

To reduce the cost of computing d(k)
i , we replace d(k)

i in (3.8) by

d(k)
i = Vic

(k)
i , (3.13)

where, as in (3.1), Vi is a matrix whose columns form an orthonormal basis of Vi, and c(k)
i solves the

lower-dimensional minimization problem

c(k)
i = argmin

‖c‖≤δ(k)
i

Ψ
(k)
i (Vic). (3.14)

Note that c(k)
i is cheap to compute and that Vic

(k)
i is a descent direction of Gi at u(k)

i . The condition for
accepting u(k+1)

i is still the Wolf condition (3.5), which can now be written

hi(u
(k+1)
i) ≤ hi(u

(k)
i) + α∇hi(u

(k)
i)T Vic

(k)
i . (3.15)

4. The main algorithm

In this section we describe an inexact Newton-type algorithm to compute the sequence {x̃i} that
satisfies (2.1). A template is given in Algorithm 2 and for the sake of clarity the line search and trust
region steps are given in Algorithms 3 and 4.

AIMS Mathematics Volume 5, Issue 1, 603–618.

610

Algorithm 2 Inexact Newton with Line Search or Trust Region

Input: parameters r, ε(i)
LS, ε(i)

TR, i=1,2, ε, kmaxLS, kmaxTR, kmaxIN, and initial solutions ỹ1, . . . , ỹq. It is
assumed that the ỹl

′s are given or computed with an appropriate scheme such that max1≤l≤q ‖ỹl −

yl‖ = O(ε) (see (2.4)).
Output: sequence (x̃i) that satisfies (2.1).

1: k = 0, i = q + 1, k0 = min(q + 1, r).
2: Ri = [x̃i−1, . . . , x̃i−k0], Vi = orth(Ri)
3: while i ≤ N do
4: Compute an initial solution u(0)

i
Line Search - Trust Region:

5: Compute u(k+1)
i using Algorithms 3 or 4;

6: k := k + 1, x(0)
i = u(k)

i ;
7: if ‖G̃i(x(0)

i)‖ ≤ ε then
8: x̃i = x(0)

i , i := i + 1, go to 3;
9: end if

Inexact Newton:
10: k = 0;
11: while ‖G̃i(x(k)

i)‖ > ε and k ≤ kmaxIN do
12: Compute ŝ(k)

i via Petrov-Galerkin (see (3.1));
13: if ‖G̃i(x(k)

i + ŝ(k)
i)‖ ≤ ε then

14: x̃i = x(k)
i + ŝ(k)

i , i := i + 1, go to 3;
15: else if ŝ(k)

i satisfies (1.7) then
16: x(k+1)

i = x(k)
i + ŝ(k)

i , k := k + 1, go to 11;
17: else
18: Compute s̃(k)

i by GMRES starting with ŝ(k)
i ;

19: ŝ(k)
i = s̃(k)

i , go to 13;
20: end if
21: end while
22: x̃i = x(k)

i ;
23: k0 = rank(Ri);
24: if k0 < r then
25: Ri+1 = [Ri, x̃i];
26: else
27: Ri = [Ri(:, 2 : r), x̃i];
28: end if
29: Vi+1 = orth(Ri+1); i := i + 1;
30: end while

Algorithm 2 takes as input the desired number of columns r ofVi, convergence tolerance thresholds
and maximum number of iterations, ε(i)

LS, ε(i)
TR, i=1,2, ε, kmaxLS, kmaxTR, kmaxIN, for line search, trust region

and inexact Newton methods, and approximations ỹ1, . . . , ỹq of y1, . . . , yq (recall that the ỹl
′s and yl

′s
are related by (2.4)). The initial phase computes the matrix Vi whose columns form an orthonormal
basis of span{x̃i−1, . . . , x̃i−min(q+1,r)}. The notation orth denotes a column orthonormalization process.

AIMS Mathematics Volume 5, Issue 1, 603–618.

611

The main phase (steps 3 – 30) computes x̃q+1, . . . , x̃N . The line search or trust region methods provides
(steps 5–6) the initial guess x(0)

i . Then we check if x(0)
i satisfies the condition (2.1). If so, we set

x̃i = x(0)
i . Otherwise, we perform inexact Newton iterations (steps 11–21) until and acceptable x(k)

i is
found. Then, we set x̃i = x(k)

i and append it to the previous approximations to form the new matrix Vi+1.

Algorithm 3 Line Search

Input: vector u(0)
i and matrix Vi provided by Algorithm 2 at iteration i, k = 0.

parameters ε(1)
LS , ε(2)

LS , kmaxLS.
Output: vector u(k)

i obtained by Line Search at iteration k.
1: while ‖G̃i(u

(k)
i)‖ > ε(1)

LS & k ≤ kmaxLS do
2: Compute the initial guess p̂(k)

i for the system (3.6) by applying the Petrov-Galerkin process on
range(Vi);

3: if p̂(k)
i satisfies (3.7) then

4: p̃(k)
i = p̂(k)

i ;
5: else
6: Starting GMRES with p̂(k)

i , compute an approximation p̃(k)
i to (3.6) such that (3.7) holds;

7: end if
8: Compute the scalar λk by the backtracking method such that (3.5) holds;
9: u(k+1)

i = u(k)
i + λk p̃(k)

i ;
10: Stop if

∣∣∣‖G̃i(u
(k+1)
i)‖ − ‖G̃i(u

(k)
i)‖

∣∣∣ ≤ ε(2)
LS ;

11: k := k + 1;
12: end while

Algorithm 4 Trust Region

Input: vector u(0)
i and matrix Vi provided by Algorithm 2 at iteration i, k = 0.

parameters ε(1)
TR, ε(2)

TR, kmaxTR.
Output: vector u(k)

i obtained by Trust Region at iteration k.
1: while ‖G̃i(u

(k)
i)‖ > ε(1)

TR & k ≤ kmaxTR do
2: Compute an approximation c(k)

i to (3.14) using hook step or dogleg step;
3: Compute u(k+1)

i = u(k)
i + Vic

(k)
i satisfying (3.15);

4: Stop if
∣∣∣‖G̃i(u

(k+1)
i)‖ − ‖G̃i(u

(k)
i)‖

∣∣∣ ≤ ε(2)
TR;

5: k := k + 1;
6: end while

5. Numerical tests

We present numerical results that illustrate the efficiency of the proposed approach. We consider
the system of PDEs with unknowns u = u(x, t) and v = v(x, t) ∂u

∂t = − sin(2uv)∂u
∂x + µ(∂

2u
∂x2 + ∂2v

∂x2)u2v,
0 = t ∂v

∂x + ∂2v
∂x2 + t2v + t2 sin(tx),

AIMS Mathematics Volume 5, Issue 1, 603–618.

612

for 0 < x < 1, 0 < t < 1 with the initial conditions

u(0, x) = u(1, x) = π − 2πx, u(t, 0) = π, u(t, 1) = −π,

v(0, x) = 1, v(1, x) = cos(x), v(t, 0) = 1, v(t, 1) = cos(t).

The second partial derivatives are discretized using centered finite differences with step size ∆x =

1/(N + 1) so that the size of the resulting system of nonlinear DAEs equals 2N. The first partial
derivatives are discretized using right finite differences. We present numerical results with N = 5000,
two values of the parameter µ (µ = 10−2 and µ = 1) and when the differential equation is solved by the
implicit Euler scheme (see, e.g., [5, p. 41])

f
(
ti, yi,

yi − yi−1

h

)
= 0 (5.1)

and the Crank-Nicolson scheme(see, e.g., [5, p. 72])

f
(ti−1 + ti

2
,

yi−1 + yi

2
,

yi − yi−1

h

)
= 0, (5.2)

with h = 1/100.

The nonlinear systems arising in these schemes are solved by Inexact Newton (Algorithm 1), and
the initial guesses are obtained via line-search and trust-region (Algorithms 2, 3,4).

The parameters used in Algorithm 1 are as follows: the number of vectors in the matrix Ri is given
by r = 20; the tolerance thresholds ε and η(k)

i (used in (2.1) and (3.7)) are respectively fixed at 10−5 and
10−2; the initial guess u(0)

i for line search and trust region algorithms is chosen so that

‖G0(u(0)
0)‖ = min(‖G0(0)‖, ‖G0(−y(0)/h)‖),

‖Gi(u
(0)
i)‖ = min(‖Gi(0)‖, ‖Gi(xi−1)‖), i ≥ 1.

Tests with line search. The parameters used in Algorithm 3 are as follows: ε(1)
LS = 1, ε(2)

LS = 10−6,
kmaxLS = 15, and the parameter α in the Wolfe condition (3.5) is fixed at 10−4.

Tables 1 and 2 show the residual norm ‖Gi(x(k)
i + ŝ(k)

i)‖ of the approximate solution ŝ(k)
i and the

relative residual norm ‖G′i(u
(k)
i)p̂(k)

i + Gi(u
(k)
i)‖/‖Gi(u

(k)
i)‖ of the initial guess p̂(k)

i using implicit Euler
and Crank-Nicolson schemes. The tables also show the residual norm ‖Gi(x(k+1)

i)‖. These results are
illustrated for some iterations k of Algorithm 3. From iterations i = 10, 20, 75, 99, we see that only one
iteration of line search is used.

Figures 1, 2 show the nonlinear residual norm ‖Gi(x(0)
i)‖, the run time in seconds required at each

iteration of implicit euler and Crank-Nicolson schemes, and the number of GMRES iterations required
at each iteration of the scheme for computing xi. Figure 1 shows that ‖Gi(x(0)

i)‖ ≤ 10−4, which means
that a good descent direction is obtained from the subspace Vi. Also, it shows that, as the iteration i
increases, the run time decreases from about 1000 seconds to approximately 5 seconds. The Figure 2
shows that the number of GMRES iterations required at each iteration of the scheme for computing
xi. Here also we see that as the iteration i increases, the number of GMRES iterations decreases.
These results show that the subspaceVi leads to a significant acceleration of implicit Euler and Crank-
Nicolson schemes.

AIMS Mathematics Volume 5, Issue 1, 603–618.

613

Table 1. Algorithm 2 with line-search (implicit Euler scheme is used).

Iteration (i,k) ‖G̃i(x(k)
i + ŝ(k)

i)‖ ‖G̃′i(u
(k)
i) p̂(k)

i + G̃i(u
(k)
i)‖/‖G̃i(u

(k)
i)‖ ‖G̃i(x(k+1)

i)‖
(0,0) 1.772 × 103 9.866 × 10−1 10.0176
(0,1) 1.772 × 103 1 1.0007 × 10−1

(0,2) 1.772 × 103 1.7542 1.0007 × 10−3

(0,3) 1.772 × 103 1.0025 × 10−5

(0,4) 1.772 × 103 9.9857 × 10−6

(1,0) 8.0885 × 103 2.2826 × 10−1 8.8481
(1,1) 8.0885 × 103 9.9999 × 10−1 8.8544 × 10−2

(1,2) 8.0885 × 103 9.9999 × 10−1 8.8543 × 10−4

(1,3) 8.0885 × 103 9.9874 × 10−6

(10,0) 7.8958 × 10−5 2.1328 × 10−8 7.8958 × 10−5

(20,0) 1.9882 × 10−5 5.7646 × 10−9 1.9882 × 10−5

(20,1) 1.9908 × 10−5 9.8338 × 10−6

(75,0) 2.4432 × 10−5 9.1764 × 10−9 2.4432 × 10−5

(75,1) 2.4170 × 10−5 9.9932 × 10−6

(99,0) 1.5471 × 10−5 8.0693 × 10−9 1.5471 × 10−5

(99,1) 1.5482 × 10−5 9.9691 × 10−6

Table 2. Algorithm 2 with line-search (Crank Nicolson scheme is used).

Iteration (i,k) ‖G̃i(x(k)
i + ŝ(k)

i)‖ ‖G̃′i(u
(k)
i) p̂(k)

i + G̃i(u
(k)
i)‖/‖G̃i(u

(k)
i)‖ ‖G̃i(x(k+1)

i)‖
(0,0) 5.3741 × 102 9.9085 × 10−1 3.9087
(0,1) 5.3741 × 102 1 3.9078 × 10−2

(0,2) 5.3741 × 102 1.3592 3.9078 × 10−4

(0,3) 5.3741 × 102 9.9861 × 10−6

(1,0) 1.7559 × 103 6.5815 × 10−1 1.8753 × 101

(1,1) 1.7559 × 103 9.9999 × 10−1 1.8763 × 10−1

(1,2) 1.7559 × 103 9.9999 × 10−1 1.8763 × 10−3

(1,3) 1.7559 × 103 1.8773 × 10−5

(1,4) 1.7559 × 103 9.9840 × 10−6

(20,0) 2.7249 × 10−5 3.2071 × 10−8 2.7249 × 10−5

(20,1) 2.7248 × 10−5 9.9286 × 10−6

(75,0) 1.7721 × 10−5 8.1385 × 10−9 1.7721 × 10−5

(75,1) 1.7687 × 10−5 9.8056 × 10−6

(99,0) 2.2422 × 10−5 1.2082 × 10−8 2.2422 × 10−5

(99,1) 2.2378 × 10−5 9.9807 × 10−6

Tests with trust region. The parameters used in Algorithm 4 are (the same as in Algorithm 3) :
ε(1)

TR = 1, ε(2)
TR = 10−6, kmaxLS = 15.

AIMS Mathematics Volume 5, Issue 1, 603–618.

614

Iteration i of the scheme

0 10 20 30 40 50 60 70 80 90 100

N
o

rm
 o

f
th

e
 i
n

it
ia

l
g

u
e

s
s

10-6

10-4

10-2

100

102

104

Crank-Nicolson

Implicit Euler

Iteration i of the scheme

0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 s

e
c
o

n
d
s

10-1

100

101

102

103

104

Crank Nicolson

Implicit Euler

Figure 1. Residual norm of initial guess (left) and run time (right) - Algorithm 2 with line
search.

Iteration i of the scheme

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

G
M

R
E

S
 i
te

ra
ti
o

n
s

101

102

103

104

105

Crank Nicolson

Implicit Euler

Figure 2. Number of GMRES iterations - Algorithm 2 with line search.

Tables 3 and 4 show the residual norm ‖Gi(x(k)
i + ŝ(k)

i)‖ of the approximate solution ŝ(k)
i and the

residual norm ‖Gi(x(k+1)
i)‖ using implicit Euler and Crank-Nicolson schemes with trust-region (hook

step and dogleg step methods). The results are illustrated for some iterations k of the trust region
algorithm. Figures 3 shows the nonlinear residual norm ‖Gi(x(0)

i)‖ and Figure 4 shows the run time
in seconds required at each iteration of the used schemes. Figure 5 shows the number of GMRES
iterations required at each iteration of the scheme for computing xi. Similar comments apply as in the
case of line search.

AIMS Mathematics Volume 5, Issue 1, 603–618.

615

Table 3. Algorithm 2 with trust region (implicit Euler is used).

iteration Inexact Newton & dogleg step Inexact Newton & hook step
(i,k) ‖G̃i(x(k)

i + ŝ(k)
i)‖ ‖G̃i(x(k+1)

i)‖ ‖G̃i(x(k)
i + ŝ(k)

i)‖ ‖G̃i(x(k+1)
i)‖

(0,0) 9.3906 × 102 9.1889 9.3906 × 102 9.1889
(0,1) 9.3906 × 102 9.2035 × 10−2 9.3906 × 102 9.2031 × 10−2

(0,2) 9.3906 × 102 9.2035 × 10−4 9.3906 × 102 9.2031 × 10−4

(0,3) 9.3906 × 102 9.9958 × 10−6 9.3906 × 102 9.9873 × 10−6

(1,0) 6.0649 × 102 9.4309 6.0649 × 102 9.4310
(1,1) 6.0649 × 102 9.4096 × 10−2 6.0649 × 102 9.4097 × 10−2

(1,2) 6.0649 × 102 9.4087 × 10−4 6.0649 × 102 9.4086 × 10−4

(1,3) 6.0649 × 102 9.9998 × 10−6 6.0649 × 102 9.9790 × 10−6

(20,0) 7.7952 × 10−5 7.7952 × 10−5 8.3291 × 10−5 8.3291 × 10−5

(20,1) 7.7952 × 10−5 9.9559 × 10−6 8.3292 × 10−5 9.9779 × 10−6

(75,0) 2.9284 × 10−5 2.9284 × 10−5 5.3112 × 10−5 5.3112 × 10−5

(75,1) 2.1296 × 10−5 9.9642 × 10−6 4.0032 × 10−5 9.9035 × 10−6

(99,0) 4.532 × 10−5 4.5320 × 10−5 8.7240 × 10−5 8.7240 × 10−5

(99,1) 4.3849 × 10−5 9.9973 × 10−6 7.1705 × 10−5 9.9775 × 10−6

Table 4. Algorithm 2 with trust region (Crank Nicolson is used).

iteration Inexact Newton & dogleg step Inexact Newton & hook step
(i,k) ‖G̃i(x(k)

i + ŝ(k)
i)‖ ‖G̃i(x(k+1)

i)‖ ‖G̃i(x(k)
i + ŝ(k)

i)‖ ‖G̃i(x(k+1)
i)‖

(0,0) 384.2226 3.7436 3.8422 × 102 3.7437
(0,1) 384.2226 3.7425 × 10−2 3.8422 × 102 3.7420 × 10−2

(0,2) 384.2226 3.7424 × 10−4 3.8422 × 102 3.7420 × 10−4

(0,3) 384.2226 9.985 × 10−6 3.8422 × 102 9.9966 × 10−6

(1,0) 1.0915 × 103 1.1607 × 101 1.0915 × 103 1.1606 × 101

(1,1) 1.0915 × 103 1.1623 × 10−1 1.0915 × 103 1.1611 × 10−1

(1,2) 1.0915 × 103 1.1623 × 10−3 1.0915 × 103 1.1611 × 10−3

(1,3) 1.0915 × 103 1.1624 × 10−5 1.0915 × 103 1.1613 × 10−5

(1,4) 1.0915 × 103 9.9837 × 10−6 1.0915 × 103 9.9936 × 10−6

(20,0) 1.9537 × 10−4 1.9537 × 10−4 1.9529 × 10−4 1.9529 × 10−4

(20,1) 1.39537 × 10−4 9.9821 × 10−6 1.9529 × 10−4 9.9962 × 10−6

(75,0) 4.6947 × 10−5 4.6947 × 10−5 4.0956 × 10−5 4.0956 × 10−5

(75,1) 4.641 × 10−5 9.9951 × 10−6 3.9277 × 10−5 9.6282 × 10−6

(99,0) 5.0128 × 10−5 5.0128 × 10−5 6.4960 × 10−5 6.4960 × 10−5

(99,1) 4.9969 × 10−5 9.8921 × 10−6 6.3409 × 10−5 9.9078 × 10−6

AIMS Mathematics Volume 5, Issue 1, 603–618.

616

Iteration i of the scheme--Hook step method

0 10 20 30 40 50 60 70 80 90 100

N
o
rm

 o
f
th

e
 i
n
it
ia

l
g
u
e
s
s

10-6

10-4

10-2

100

102

104

Crank-Nicolson

Implicit Euler

Iteration i of the scheme-Dogleg step method

0 10 20 30 40 50 60 70 80 90 100

N
o
rm

 o
f
th

e
 i
n
it
ia

l
g
u
e
s
s

10-6

10-4

10-2

100

102

104

Crank-Nicolson

Implicit Euler

Figure 3. Residual norm of initial guess - Algorithm 2 with trust-region.

Iteration i of the scheme-- Hook step method

0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 s

e
c
o
n
d
s

100

101

102

103

104

105

Crank-Nicolson

Implicit Euler

Iteration i of the scheme-- Dogleg step method

0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 s

e
c
o
n
d
s

100

101

102

103

104

105

Crank-Nicolson

Implicit Euler

Figure 4. Run time - Algorithm 2 with trust-region.

Iteration i of the scheme -- Hook step method
0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 G

M
R

E
S

 it
er

at
io

ns

102

103

104

105

Crank Nicolson
Implicit Euler

Iteration i of the scheme -- Dogleg step method
0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 G

M
R

E
S

 it
er

at
io

ns

102

103

104

105

Crank-Nicolson
Implicit Euler

Figure 5. Number of iterations required for each iteration of the scheme - Algorithm 2 with
trust-region.

AIMS Mathematics Volume 5, Issue 1, 603–618.

617

6. Conclusion

We have shown theoretically and numerically that the subspace Vi (see (2.7), (2.11)) leads to a
significant acceleration of the nonlinear systems that occur when solving large systems of nonlinear
DAEs by a general class of implicit schemes. Our take focused only on finding good initial solutions
for these systems. For further acceleration, a suitable preconditioning technique should be used in step
18 of algorithm 2. The potential user can adapt the present work to more specific schemes.

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

References

1. U. M. Ascher, L. R. Petzold, Computer methods for ordinary differential equations and differential-
algebraic equations, SIAM, Philadelphia, PA, 1998.

2. M. Al Sayed Ali, M. Sadkane, Acceleration of implicit schemes for large systems of nonlinear
ODEs, Electron. T. Numer. Anal., 35 (2009), 104–117.

3. M. Al Aayed Ali, M. Sadkane, Improved predictor schemes for large systems of linear ODEs,
Electron. T. Numer. Anal., 39 (2012), 253–270.

4. H. Asgharzadeh, I. Borazjani, A Newton-Krylov method with an approximate analytical Jacobian
for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with
immersed boundaries, J. Comput. Phys., 331 (2017), 227–256.

5. K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical solution of initial-value problems in
differential-algebraic equations, SIAM, Philadelphia, PA, 1989.

6. P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J.
Optimiz., 4 (1994), 297–330.

7. P. N. Brown, A. C. Hindmarsh, L. R. Petzold, Using Krylov Methods in the solution of Large-Scale
Differential-Algebraic Systems, SIAM J. Sci. Comput., 15 (1994), 1467–1488.

8. M. Burger, M. Gerdts, A survey on numerical methods for the simulation of initial value problems
with DAEs. In: Ilchmann A., Reis T. (eds) Surveys in differential-algebraic equations IV, Differ.-
Algebr. Equ. Forum, Springer, Cham, (2017), 221–300.

9. P. J. Davis, Interpolation and approximation, Blaisdell, New York, 1963.

10. R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19
(1982), 400–408.

11. J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear
equations, SIAM, Philadelphia, PA, 1996.

12. S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J. Optimiz.,
4 (1994), 393–422.

13. C. T. Kelley, Iterative methods for optimization, Frontiers in Applied Mathematics, 1999.

AIMS Mathematics Volume 5, Issue 1, 603–618.

618

14. P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution,
EMS Publishing House Zurich, 2006.

15. R. Lamour, R. März, E. Weinmüler, Boundary value problems for differential-algebraic equations:
a survey. In: Surveys in differential-algebraic equations III, Differ.-Algebr. Equ. Forum, Springer,
Cham, (2015), 177–309.

16. H. Podhaisky, R. Weiner and B. A. Schmitt, Numerical experiments with Krylov integrators, Appl.
Numer. Math., 28 (1998), 413–425.

17. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 1, 603–618.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Acceleration of implicit scheme
	 Petrov-Galerkin, line search and trust region
	The main algorithm
	Numerical tests
	Conclusion

