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Abstract: This paper addresses the decentralized problem for marine surface vessels (MSVs) in the
presence of unknown unmodeled nonlinear dynamics, time-varying external disturbances and input
saturations. First, platoon formation is proceeded by using line-of-sight (LOS) guidance. Since each
marine vehicle can only acquire information from its immediate predecessor, a symmetric barrier
Lyapunov function (BLF) is employed to guarantee the formation errors constrained within a certain
range such that leaders and followers can preserve the predefined information structure and ensure the
correct steady-state regime. Next, due to the superior approximation capability of an adaptive neural
network (NN), we propose a BLF-based controller to deal with the model uncertainties. Further,
an auxiliary design system is introduced to compensate for the effect of input saturation. Finally,
the uniform ultimate boundedness of all the state errors can be proved and simulation examples are
presented to illustrate the effectiveness of the proposed method.
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1. Introduction

Formation control of multiple marine surface vessels (MSVs) is an important mission in military
applications, oceanographic surveys or rescue missions. It has recently attracted considerable
attention among researchers [1-3]. Formation problem is a task not only practically interesting but
also theoretically significant. From an economic and strategic perspective, marine vessels have to pass
some narrow shipping lanes in the world such as the Strait of Malacca, Panama Canal and so on.
Thus, platoon formation strategy for marine vessels has obvious benefits in higher efficiency and
reduced communication requirements. How to maintain a group of MSVs moving in a platoon
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architecture is a motivating example in formation control. Actually, the platoon formation is treated as
a decentralized control strategy. Due to the predefined geometry, each vessel can only receive
information from its header [4]. Although 1-D longitudinal controllers for linear vehicle models are
described in many research literature inherent nonlinearities and uncertainties are essential for most
marine vehicle dynamics in practical applications [5, 6].

Unmodeled nonlinear dynamics often exist in marine vehicle systems due to modeling errors,
parameter variations or environment disturbances such as wind, wave and ocean currents. Unmodeled
nonlinear dynamics are challenging issues because they may severely degrade the performance or
even lead to instability of the whole marine vehicle platoon. Therefore, researchers have tried to
mitigate the effects of unmodeled nonlinear dynamics. As neural networks have the capability to
approximate nonlinear functions, adaptive backstepping approximation-based control design has been
widely used for uncertain nonlinear systems [8]. Adaptive neural networks have been adopted to
approximate the unknown model parameters of a vessel in [9]. Such adaptive technique is proposed in
containment control to compensate for parametric uncertainties [7]. Relative formation applications
for this approach and their variants have been developed in [10-12]. Authors have developed the
leader-follower formation controller with neural network and dynamic surface control technique to
deal with uncertain dynamics in [10]. In [11], using neural networks to estimate the unknown terms,
the control schemes achieved distributed tracking for Euler-Lagrange systems. However, compared
with the existing literature on the formation with uncertainties, there are relatively few references
contributing to marine vessel platoon formation [12].

Another issue associated with a platoon for marine vessels is constraint-based design, such as output
constraints, input saturation and so on. Any violation of these constraints would cause the task to fail
and threaten marine security. To avoid collisions, a relatively safe space should be considered among
MSVs. Meanwhile, to keep effective communication, connectivity between two consecutive vehicles
should be maintained during the operation. Therefore, from the practically engineering point of view,
output constraints play an important role in formation stability. Artificial potential field [13], prescribed
performance [14, 15] and reference governors [16] are some of the existing schemes to handle output
constraints. A remarkable technique provided by Prof. Ge using the Barrier Lyapunov Fuction (BLF)
can effectively prevent any violation of output constraints in [18, 19] and marine vessels can be kept
moving in a reasonable distance based on BLF. Compared to other schemes, BLF needs less restrictive
on initial conditions and does not require the explicit system solution. It is therefore necessary to
transfer the constraints of line-of-sight (LOS) range and bearing angle into output constraints. To
deal with the connectivity preservation and collision avoidance problems, a linearly transformed error
surface was introduced in [20], and to prevent the violations of output constraints, a symmetric barrier
Lyapunov function was developed in [21] and trajectory tracking was realized with output constraints.
In this paper, the errors combined with BLF are directly used to design the information controller to
restrict the distance between two consecutive vehicles within the given zone.

It is noted that input saturation is unavoidable in real applications because of the limited capability
of physical actuators. When MSVs maneuver at high speed or suffer from bad sea conditions, drastic
changes of control authority often cause saturations which may significantly affect the behaviors of
platoons [22,23]. To deal with this problem, it is necessary to consider input constraints in control
design. Many effective methods have been developed to deal with input saturation, such as adaptive
compensation [24, 25], model predictive control [26, 27], etc. In some applications, especially

AIMS Mathematics Volume 5, Issue 1, 587-602.



589

combined with online approximation-based control, tracking the desired performance tends to be
controversial. The MPC approach suffers from a heavy computational load. The smooth hyperbolic
function and the Nussbaum function are also exploited in [28] to handle the input saturation.
However, the derivative of the approximate function leads to challenges in control design and stability
analysis. Dealing with the control problem for platoon in the presence of actuator saturation still
remains an open problem. In [29], both input saturation and output constraint are dealt with uncertain
nonstrict-feedback systems. A fuzzy logic system is employed into the adaptive backstepping
technique. In [30], adaptive fuzzy control method is proposed for a class of single-input-single-output
(SISO) uncertain nonlinear systems subject to output constraint and input saturation. The unmeasured
states are estimated by a fuzzy state observer. In [31], spacecraft rendezvous and proximity operations
have been developed with input saturation and full-state constraint. However, relative attitude and
position controllers are designed independently and not implemented as an integrated system.
Furthermore, although there exist results on input saturation and output constraints, these developed
control schemes are seldom applied to the platoon formation problem, especially
multiple-input-multiple-output (MIMO) marine vessels.

Motivated by the above considerations, the problem of distributed control design for marine
vehicle platoon with unknown external disturbances, output constraints and input saturation is
investigated. The intent of this research is motivated by the platooning problem to develop a
constraints scheme that provides benefits for MSVs with performance requirements and to design
efficient methods such that the cooperating MSVs can maintain the desired platoon architecture and
achieve the required performance of the multi-agent systems. The rigorous theoretically handing of
input and output constraints in platoon formation control for marine vessels is the main difficulty of
the techniques. Constraints on collision avoidance and connectivity maintenance are designed on the
performance specification of LOS range and angle. The main contributions of the proposed schemes
are highlighted as follows.

[1] The line-of-sight (LOS) range and angle between the multiple marine vessels are constrained to
satisfy the formation system specifications or safety requirements. By employing the BLF technique
in our platoon control algorithms, the output behavior of MSVs effectively meets the collision and
connectivity constraints.

[ii]] Adaptive neural network is employed as an effective method for the platoon formation control
scheme, which compensates for unmodeled nonlinear dynamics and unknown uncertainties of MSVs,
while most of existing works require the ‘linearity-in-parameters’ assumption on MSV systems to
handle with the parametric uncertainties.

[iii] The platooning with the effects of saturating nonlinearities has received attention in this paper.
Compared with cooperative path following of marine surface in [32], singularity can be avoided in
dealing with input saturation. The proposed control schemes can guarantee the string stability of the
overall platoon and the uniform ultimate boundedness of all signals.
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2. Preliminaries and problem description

2.1. Preliminaries

Lemma 1. [2]] For any constant x € R", if |x| < k, k is a constant, then the following inequality holds

K’ X2
s < 2.1

Lemma 2. [33] The structure of the neural network is shown in Figure 1. The approximate ability of
neural networks had been proved by many researchers. In this work, a class of neural networks with
radius basis functions (RBF) is introduced with x € R", x is the input vector, H(x) = [hi(x), - - -, hu(x)]"
(B2
20
width of the neural cell in the hidden layer. If j is chosen large enough, radius basis functions neural
network (RBFNN) can approximate any continuous function to an arbitrary accuracy. RBF optimal

is the output of hidden layer and h; = exp(— ),j = 1,2,---,m, c; is the center and b; is the

T
weight vector is W* = [w’f, e w;"n] . The weight vector of W* is calculated by

W* = arg minfsup |£(x) - WTH(0),
WeR! yeQ

where node number in the neural network | > 1 and WYH(x) can approximate any continuous function
f(x) to any desired accuracy over a compact set £ C R". Then the output of RBFNN is

fx) = WTH(x) + e(x),

where &(x) denotes the approximate error satisfying £(x) < &, and & is an arbitrary small positive
constant.

Figure 1. The structure of neural network.
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2.2. Problem description

We consider n + 1 marine surface vehicles labeled as O to n. The formation pattern of this class
multiagent system is shown in Figure 2. The kinematics and dynamics of the i-th MSV can be modeled
as follows

ni = Ji(nvi, (2.2)
M, = —=Ci(vi)v; — Di(vi)v; + w; + A; + 1, (2.3)

where 1; = [x;, yi,wi]T denotes the MSV position and yaw angle with respect to an earth-fixed frame,
and v; = [u;,v;,r;]" represents the orientation known as surge, sway and yaw velocities in the body-
fixed frame, w; is external disturbances induced by wind, wave, and ocean currents, etc, A; represents
the unmodeled dynamics, 7.; denotes the actual control inputs of the i-th MSV, J; () is a nonsingular
transformation matrix defined as

cos(¥;) —sin(y;) O
Ji() = | sin(y;) cos(y) O (2.4)
0 0 1

M; € R¥3 is a symmetric positive definite inertia matrix specified as

nmiy; O O
Mi=| 0 my my (2.5)
0 mszp;  M33;

where myy; = m; — Xm,ngi =m; — Yw-,m23,- = M3p; = MiXg; — Yﬁ,m?,gi = IZ,' - N,u,', the mass of the i-th
marine vehicle is m; and the i-th marine vehicle’s inertia matrix in the body-fixed frame is I.;. D; (v;) is
hydrodynamic damping matrix specified as

di; O 0
Div)=| 0 dyi di (2.6)
0 dzi ds;
where

dlli (vl) = _(Xu,- + Xlu,-lu,- |ul| + Xuiuiuiu%) (2‘7)

d22i(via ri) = _(Yv,- + Y\v,-lvi |Vi| + Y|"i|Vi |ri|) (28)

d23i(via ri) = _(Yri + Ylvilr; |Vi| + erilr,- |ri|) (29)

d3i(vi,ri) = —(N,, + Ny, Vil + Ny, |1il) (2.10)

d33i(vi,ri) = =Ny + Ny, Vil + Ny, |1il) (2.11)

C; (v;) is the matrix of Coriolis and centripetal terms specified as

0 0 —MiV; — M3l
C,’(U,’) = O 0 miiu; (212)
MU + M3t —My il 0
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where the parameters have been shown above. From a practical point of view, the control forces
and moments of the marine vessels are limited by the physical properties of thrusters. The saturation
nonlinearities can be described as

Timax>s 1f Tei > Timax
Ti = Teis if Timin < Tei < Timax (2.13)

Timin» if Tei < Timin

where T;ni, and T;m., respectively stand for the minimum and maximum control forces or moments of
vessels’ propulsion systems. 7.; is the commanded control signals to be designed later.
]T

Assumption 2.1. The desired reference trajectory 19 = [xo, Yo, Yol and its first time derivative 1 are

bounded functions.

Assumption 2.2. There exist known bounded constants t,,; for the disturbance term w; of each vessel
such that
W < Ty, i=0,1,---,n (2.14)

=Y

Figure 2. MSVs formation configuration.

2.3. Formation control with output constraints

In this section, we consider the communications among n+1 MSVs. In each pair of marine vehicles,
the follower tries to maintain its LOS range and angle to a desired range and angle relative to its paired-
leader. LOS range, d;, and angle, ¢;, between two MSVs are defined as

di = i = 50+ (it — 3, (2.15)
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@; = arctan 2(y;_1 — yi, Xi-1 — X;). (2.16)

The formation errors of MSVs are designed [21]:
eqi = di — d; ges>
eyi = Yio1 — i,

where d; 4., 1s a desired distance between two MSVs. In order to avoid collision avoidance and
connectivity maintenance among vehicles, the desired distance during the whole moving process must
satisfy the following equations:

(2.17)

0 < di,mincnl < di < di,max coms (218)

where d; min o1 TEpresents the minimum safety distance and d; max com represents the maximum effective
communication distance. For convenience, we define €,(f) = d;comin — diqes as the minimum error
distance and €,,(t) = d;conmax — diges @s the maximum error distance. The bounds of yaw angle errors
are defined as e,,; and ¢,;. The constraints of the errors are given as follows:

—€4i < edi < €qj

_9/”. < ey < él/,,‘. (219)

To guarantee the output constraints, it is necessary to ensure that the errors defined in (2.17) are not
violated and all signals are bounded.

The objective of this paper is to design a control strategy for each vessel described by systems (2.2)
and (2.3) to achieve the satisfied distance and angle among MSVs. The followers track the leader’s
trajectory in platoon formation subject to collision and connectivity constraints. All signals of the
closed-loop system in the presence of input saturation are bounded.

3. Control design with barrier Lyapunov function

We shall present here an analysis based on the obtained platoon controller structure, and derive an
additional set of constraints aimed at satisfying platoon objectives. Let z;; = (2115 212" = [eais ewi]T,
and z; = vi—a; = [221i» 221> 22311 1, Where @; = [ay;, @i, @3;]" is a stabilizing function to be designed later.
The LOS range should be maintained within the predefined regions between each marine vehicle while
the connected platoons track the trajectory. To handle collision avoidance and connectivity between
two consecutive agents, BLF is employed to prevent constraint violation in this paper. Consider the
symmetric barrier Lyapunov function candidate as

yoo b K 1k

n —2
2 2 2 _ 2>
2 ky—ey 20k, €yi

3.1

where k, and k;; are positive constants used to constraint ey and ey;, i.e., leq| < kg, leyil < kpi,
respectively. Differentiating of V,; with respect to time we have

. eqi€i €yiCyi
Vii =

T2 2 )
ki —es ki €yi

. (3.2)

According to (2.17), differentiating e,; and ey; with respect to time, we can obtain

egi = — (210 + @) cos (Y — @) + Yim1 Sing; + (222 + @2;) sin (Y; — ;) + X1 COS @,
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byi = Wio — (23 + a3). (3.3)

The virtual control «; is designed as follows:

ay; = cos(W; — ¢))kaeai(kZ; — €3) + Xi1 oS @; + Yi_y sing;],

@y = —sin(y; — @) lkaieqi(k2; — €3) + xi_1 oS ¢; + Yi_y sing;],
Substituting (3.3) and (3.4) into (3.2) yields
Vi = —kdiefl,- - kwieii + 0y, 3.5)

where .
eqi (—221; €08 (i — ;) + Zoz; SIn (Y; — ;) L G (—223)
2 2 2 _ 2 ¢
ki — ey ki = €y,
The continuous nonlinear function related to the speed D;(v;)v; and the unmodeled dynamics of the
MSV are all unknown. To solve these problems, RBFNN is used to estimate the unknown dynamics

and hydrodynamic damping terms. Let

0, = (3.6)

WTHA(Z) + £(Z) = =Di(v)v; + A;. (3.7)

Z; = v; is the inputs of the neural network (NN), W’ is the true constant weight value, H; (Z;) is the
radial basis function, €; (Z;) < &; is the approximate error, & > 0 is an unknown arbitrary small constant.
Wl.TH,-(Z,-) is used to approximate W;T Hy(Z;). The adaptive update law is designed as follows:

Wi = T(HiZy)ooi = ailaad W), i = 1,23, (38)
where I'; = I'T > 0 is an adaptive gain matrix and o is a positive constant.

Consider the Lyapunov function candidate Vy;

"W, (3.9)

3
1 1 -
Voi=Vii+ EZ;'MiZzi + Z wiT

where W, = W, — W. Then the derivation of V5; is

y 2 2 T T
V2i = - kd,-edi - kl,,ied/i + Z2i®2 + ZZi[Ti - C,‘(V,‘)V,‘
3 .
= Midv; + 7y + W,THAZ) + &:Z)1+ ) WIT;'W,. (3.10)
i=1
where T
—ediCoS(Yi—¢i i Sin(Yi—gi) —eyi
oy = | e wpten o | (3.11)

Due to extreme or varying environments, the external forces such as wind, wave and current are
involved in the motion of marine vessels. The saturation of the thrusters needs to be considered and an
auxiliary dynamic system is introduced as

|le.(n)AT,-| + O.SAT;FAT,-
—Ke i — = T &+ Aty I >

0, il < i

& = (3.12)
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where &; is the state vector of the auxiliary dynamic system, Ar; = 7; — 7.;, and the parameter y; is a
positive constant designed appropriately according to the requirement. The adaptive neural network
control law is proposed as follows:

Tie = (Z21)+ ( kdledé _ ksze ) + Ci(v)v; — Oy
bi
+Mia; — 7, — Kyi(z0i — &) — W,'THi (Z), (3.13)

where ()" is the Moore-Penrose pseudoinverse of (%), K»; € R¥? > 0.
Case 1: When [|&]| > w;, the overall Lyapunov function is

1
Vii= Vo + Efini (3.14)
Taking the time derivative of V3; yields

Vg,‘ = —kdief,i - kw-efm- + Z2Ti®2 + Zgi[T,' - C,‘(V[)
—M;q; + 7, + W;THi(Zi) + &i(Z))]
3
1 - A
~&"(Ke, ~ 5D& ~ |z A+ ) Wi W,

i=1
From Lemma 2, we can know that

Wil =

(3.15)

Substituting the control law (3.13), then according to the Young inequality and Lemma 1, we have

2 2
V3,' <- kd,' In 5 kw In k2 —
ai di l//l

+ 20 Kb — 25 (Ko — 1) 20; + Eusi )\

— &/ (Kg ~ —1)&

+Z—(||W I+ 2 w = 21W; IPIIWiII*)

2 k2 1
—kaln 52— —kyiln —2— + —|l&; (Z)I
gi - e?zi kii - eii 2
Amin(K 1K) lng 31 (K») - 1|22
min\ £\ ¢; D) 2i ) i Si ) min\ {22} 29ik2i
2
+ Z (IIW I+ 2 —a! = 2WrIPIWIP). (3.16)
So we can obtain

Vs < —pV3 + C, (3.17)
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where

; 3min(Ka)=2 _TIWIP 1
p = I‘nlIl{dez, ka“ /lmdf((;l)) ) 2/lmax(rfl), 2/lmm(K§I - EKZI) — 1}’

= slI&I* + Z( IIW*II + W)

In this paper, the minimum and maximum eigenvalues of matrix * are denoted by A, (%) and Ayax (%),
respectively.
Case 2: When ||&|| < w;,
=0 (3.18)

The time derivative of Vs; becomes

' 2 2
Vi < — kgiln —— — ky; In
ke — ey, i

2
Wi

1
— 2 (Ko = Dz + —||8i (Zi)||2 + 20, AT + 25, K0ié

—e

+Z—(||W I+ 2 w = 21W; IPIIWiII*)

k2 2
—kgiln —— —ky;In kz

ai di

1 3
— 25 (Kyi = D 20 + §||8i DI + 3

1 1
+ —||ATi||2 - _‘fiTK;FiKZi'fi + 11| Ko Kol

T
Z9i%2i

+Z—(||W 1+ 2 w = 2W;IPIWP)

< —pV3i+C (3.19)

where

DAmin(K2i=5)  TAAIWEI?
2Amin(K>i—5) ( T Ky}

p= mll’l{dei, 2k¢,‘, Amax(Mi)° 2/1max(r;1)’ min

3 2 2
1=z g; 14 g; 1
= 2lEl* + 21 (ZIW: I + F@)) + SIATIP + 1K Kol
i=

It is obvious that for all V(0) < By, By being any positive constant, all signals are guaranteed to be
uniformly ultimately bounded [34, 35]. Therefore, there is the following theorem

Theorem 1. Consider a string of n + 1 MSVs in (2.2)—(2.3) with unmodeling uncertainties, external
disturbance and input saturations under Assumption 2.1 and 2.2, the virtual control (3.4), the robust
control law (3.13), the adaption law (3.7) and the auxiliary dynamic system (3.12), such that all
signals in the closed-loop system under the initial condition V(0) can be guaranteed to be uniformly
ultimately bounded while collision avoidance and connectivity maintenance satisfy the constrains by
appropriately adjusting the design parameters.
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4. Simulation examples

In this section, a string of 4 MSVs are used in numerical simulations to demonstrate the effectiveness
of the proposed method. The communication relationship of 4 MSVs is shown in Figure 3.

CODD

Figure 3. Communication graph among the MSVs.

The marine vehicle model used for simulation in this work is Cybership-1I, which is a 1:70 scale
supply vessel replica built in a marine control laboratory in the Norwegian University of Science and
Technology [36]. For the sake of convenience in comparison, the desired reference trajectory is chosen
the same as that in [12], where 7. > 0 is a time constant and ¢ = 0.02(¢ — ¢.). The desired distance
between the follower and the leader is considered as Sm. The initial states of the MSVs are given as
1m0 = [0,0,017, ; = [0,5,0]", %, = [0,10,0]", 55 = [0,15,0]"and v; = v, = v3 = [0,0,0]". The time
constant 7. = 200 s. Figure 3 shows the validity of the position and velocity information among the
MSVs. The minimum collision distance is set at 4m and the maximum connectivity distance is chosen
as 6m. So the distance error should satisfy following constraints:

di,colrnin < di < di,conmax’i = 1’ 2, 3.

If the inequality satisfies the constraints during the whole moving process, it means that the collision
distance and effective connectivity distance will not be violated, so the output constraints can be
guaranteed.

Simulation parameters are chosen as follows: k;; = 11,kp» = kg3 = 3,ky1 = 1,kyo = ky3 = 0.5,
ka1 = koo = ki3 = 1 and k; = kyp = kp3 = 0.5. The control gains are set as diag{6, 6,4}. The neural
network inputs are chosen as Z;; = u; and Zp = Z5 = [v;, r)%,i = 1,2,3. In the simulation section,
we construct RBFNN WlTiS 1/(Z1;) using 27 nodes, with centers evenly spaced on [0, 2.4] and width
being 0.1, WZTiS 2i(Z;) using 49 nodes, with centers evenly spaced on [-2, 2]*[-2, 2] and width being
0.1, VAV;.S 3i(Z3;) using 49 nodes, with centers evenly spaced on [—1.5, 1.5]*[—1.5, 1.5] and width being
0.2. From Figure 4, it is obvious that the MSV's can move in a desired formation pattern. Each marine
vehicle follows its preceding surface vessel’s trajectory under the external disturbance and unknown
dynamics. Figure 5 shows that though the hydrodynamic damping matrix D; is unknown to input 7;,
through NN learning LOS range d; converges to a small neighborhood of the desired distance and
the error satisfies the predefined boundary restriction, which means that during the whole process the
distance between the successive vehicles does not violate the collision and connectivity constraints.
We can observe from Figure 6, the distance between the successive vehicles is limited within 4 m
(collision avoidance distance) to 6 m (the maximum connection distance) during the whole moving
process. So the distance error constraints satisfy the design requirement —k,; < ey < ky,i = 1,2,3.
Figure 7 shows that the control inputs of each marine vehicle achieve satisfied control performances.
Adaptive neural network based formation control scheme for autonomous marine surface vehicles is
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developed in [12]. The simulation result is shown in Figure 2(a), where the tracking trajectories for
five unmanned surface vehicles along with the desired reference trajectory. Compared with the adaptive
control technique in [12], the performance of the proposed technique shown in Figure 4 is better than
the one in [12]. In addition, the input and output constraints of the platoon formation are guaranteed
at the same time in the simulation example. The simulation results illustrate the effectiveness of the
proposed adaptive control method in platoon formation.

1201 ———i=0 .
———i=1 -

1008 s :
———i=3

80 !

201 '

0 50 100 150 200 250 300
X (m)

Figure 4. The north-east position of the 4 MSVs under NN adaptive control.
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Figure 5. NN estimate value.
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Figure 6. LOS range d;, the maximum connectivity distance and minimum collision distance.
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Figure 7. Control Input.
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5. Conclusions

In this paper, a formation control scheme for autonomous marine surface vehicles with model
uncertainties and constraints has been addressed by combing the BLF technique and adaptive NN.
Collision avoidance and connectivity maintenance have been transferred into the LOS range and
angle error constraints. To prevent any violation of constraints, the proposed algorithm based on BLF
was designed by backstepping control. The adaptive NN was presented to approximate uncertain
model dynamics. Input saturation was considered for marine vessels and a compensated control law
was adopted in the control design. The uniform ultimate boundedness of all the state errors have been
proven by stability analysis. Simulation studies have been carried out to illustrate the feasibility of the
proposed approach. In the future, more practical research will be considered, such as the effect of
measurement noise, the communication constraints, and so on.
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