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1. Introduction

Let us consider the following Cauchy problem of the incompressible micropolar fluid equations in
three-spatial dimensions :

∂tu + (u · ∇) u − ∆u + ∇π − ∇ × ω = 0,
∂tω − ∆ω − ∇(∇ · ω) + 2ω + (u · ∇)ω − ∇ × u = 0,
∇ · u = 0,
u(x, 0) = u0(x), ω(x, 0) = ω0(x),

(1.1)
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where u = u(x, t) ∈ R3, ω = ω(x, t) ∈ R3 and π = π (x, t) denote the unknown velocity vector field, the
micro-rotational velocity and the unknown scalar pressure of the fluid at the point (x, t) ∈ R3 × (0,T ),
respectively, while u0, ω0 are given initial data with ∇ · u0 = 0 in the sense of distributions.

Theory of micropolar fluid equations was first proposed by Eringen [11] in 1966, which have
important applications in fluid mechanics and material sciences and which enables to consider some
physical phenomena that cannot be treated by the classical Navier-Stokes equations for the viscous
incompressible fluids, for example of animal blood, liquid crystals and delute aqueous polymer
solutions, etc. (see [28, 29, 31]). If ω = 0, then (1.4) reduces to be the well-known Navier-Stokes
equations. Besides its physical applications, the Navier-Stokes equations are also mathematically
significant. Since Leray [24] and Hopf [23] constructed the so-called well-known Leray-Hopf weak
solution u(x, t) of the incompressible Navier-Stokes equation for arbitrary u0(x) ∈ L2(R3) with
∇ · u0(x) = 0 in last century, the problem on the uniqueness and regularity of the Leray-Hopf weak
solutions is one of the most challenging problem of the mathematical community. Later on, much
effort has been devoted to establish the global existence and uniqueness of smooth solutions to the
Navier-Stokes equations. Different criteria for regularity of the weak solutions have been proposed
and many interesting results were established (see e.g. [12–14, 22, 33] and references there in).

Due to the importance of both physics and mathematics, the question of smoothness and uniqueness
of weak solutions to (1.4) is one of the most challenging problems in the theory of PDE’s. Galdi and
Rionero [19], Łukaszewicz [26] considered the existence of weak solutions of the micropolar fluid
flows (1.4). While the existence of regular solutions is still open problem, there are many interesting
sufficient conditions which guarantee that a given weak solution is smooth (see [4, 9, 15–18, 32] and
references there in). In particular, as for the pressure criterion, Dong et al. [10] (see also Yuan [31])
showed that the weak solution becomes regular if the pressure satisfies

π ∈ Lq(0,T ; Lp,∞(R3)), for
2
q

+
3
p
≤ 2,

3
2
< p ≤ ∞,

or
π ∈ L1(0,T ;

·

B
0

∞,∞(R3)),

where Lp,∞ and
·

B
0

∞,∞ denote Lorents space and homogeneous Besov space. Later on, Jia et al. [20]
extended and improved Serrin’s regularity criterion to the largest critical Besov spaces as

π ∈ Lq(0,T ; Br
p,∞(R3)),

where 2
q + 3

p = 2 + r, 3
2+r < p < ∞ and −1 < r ≤ 1.

Besides, some interesting logarithmical pressure regularity criteria of micropolar fluid equations are
studied. In particular, in [21], Jia et al. refined this question by establishing a regularity criterion in
terms of the partial derivative of the pressure in the Lebesgue space. More precisely, they showed that
if the partial derivative of the pressure ∂3π satisfies∫ T

0

‖∂3π‖
p
Lq

1 + ln (e + ‖ω‖L4)
dt < ∞,

2
p

+
3
q

=
7
4

and
12
7
< q ≤ ∞, (1.2)

then the weak solution (u, ω) becomes a regular solution on (0,T ]. (see, for instance [1–3] and the
more recent papers [5–8] and the references therein).
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Here we would like to give an improvement of the anisotropic regularity criterion of (1.5). Before
giving the main result, we recall the definition of weak solutions for micropolar fluid equations (1.4)
(see [26, 27]).

Definition 1.1 (weak solutions). Let (u0, ω0) ∈ L2(R3) with ∇ · u0 = 0 in the sense of distribution and
T > 0. A measurable function (u(x, t), ω(x, t)) on R3 × (0,T ) is called a weak solution of (1.4) on [0,T )
if (u, ω) satisfies the following properties :

(i) (u, ω) ∈ L∞
(
(0,T ) ; L2(R3)

)
∩ L2

(
(0,T ) ; H1(R3)

)
;

(ii) ∇ · u = 0 in the sense of distribution;

(iii) (u, ω) verifies (1.4) in the sense of distribution.

(iv) (u, ω) satisfies the energy inequality, that is,

‖u(·, t)‖2L2 + ‖ω(·, t)‖2L2 + 2
∫ t

0
‖∇u(·, τ)‖2L2 dτ + 2

∫ t

0
‖∇ω(·, τ)‖2L2 dτ

≤ ‖u0‖
2
L2 + ‖ω0‖

2
L2 , for all t ∈ [0,T ].

We endow the usual Lebesgue space Lp(R3) with the norm ‖·‖Lp . We denote by ∂i = ∂
∂xi

the partial
derivative in the xi−direction. Recall that the anisotropic Lebesgue space consists on all the total
measurable real valued functions h = h(x1, x2, x3) with finite norm

∥∥∥∥‖h‖Lp
xi

∥∥∥∥
Lq

x j xk

=

(∫
R2

(
∫
R

|h(x)|p dxi)
q
p dx jdxk

) 1
q

,

where (i, j, k) belongs to the permutation group S =span{1, 2, 3}. Our main result is as follows:

Theorem 1.2. Let (u0, ω0) ∈ L2(R3) ∩ L4(R3) with ∇ · u0 = 0 in R3. Suppose that (u, ω) is a weak
solution of (1.4) in (0,T ). If the pressure satisfies the condition

∫ T

0

∥∥∥∥‖∂3π(·, t)‖Lγx3

∥∥∥∥q

Lαx1 x2

1 + ln (e + ‖ω(·, t)‖L4)
dt < ∞, (1.3)

where
1
γ

+
2
q

+
2
α

= λ ∈ [2, 3) and
3
λ
≤ γ ≤ α <

1
λ − 2

,

then the weak solution (u, ω) becomes a regular solution on (0,T ].

This allows us to obtain the regularity criterion of weak solutions via only one directional derivative
of the pressure. This extends and improve some known regularity criterion of weak solutions in term
of one directional derivative, including the notable works of Jia et al. [21].

Remark 1.1. Criterion (1.6) can be viewed as a generalization of the recent result (1.5) of Jia-Zhang-
Dong in [21]. Moreover, thanks to the fact that micropolar fluid equations (1.4) with ω = 0 reduce
to the 3D Navier-Stokes equations, we notice that our criterion (1.6) becomes the recent result of
Liu-Dai [25] for the Navier-Stokes equations.
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As an application of Theorem 1.5, we also obtain the following regularity criterion of weak
solutions.

Corollary 1.3. Let (u0, ω0) ∈ L2(R3)∩ L4(R3) with ∇ · u0 = 0 in the sense of distributions. Assume that
(u, ω) is a weak solution of (1.4) in (0,T ). If the pressure satisfies the condition∫ T

0

‖∂3π(·, t)‖qLα
1 + ln (e + ‖ω(·, t)‖L4)

dt < ∞,

where
2
q

+
3
α

= λ ∈ [2, 3) and
3
λ
≤ α <

1
λ − 2

,

then the weak solution (u, ω) becomes a regular solution on (0,T ].

Let us consider the following Cauchy problem of the incompressible micropolar fluid equations in
three-spatial dimensions :

∂tu + (u · ∇) u − ∆u + ∇π − ∇ × ω = 0,
∂tω − ∆ω − ∇(∇ · ω) + 2ω + (u · ∇)ω − ∇ × u = 0,
∇ · u = 0,
u(x, 0) = u0(x), ω(x, 0) = ω0(x),

(1.4)

where u = u(x, t) ∈ R3, ω = ω(x, t) ∈ R3 and π = π (x, t) denote the unknown velocity vector field, the
micro-rotational velocity and the unknown scalar pressure of the fluid at the point (x, t) ∈ R3 × (0,T ),
respectively, while u0, ω0 are given initial data with ∇ · u0 = 0 in the sense of distributions.

Theory of micropolar fluid equations was first proposed by Eringen [11] in 1966, which have
important applications in fluid mechanics and material sciences and which enables to consider some
physical phenomena that cannot be treated by the classical Navier-Stokes equations for the viscous
incompressible fluids, for example of animal blood, liquid crystals and delute aqueous polymer
solutions, etc. (see [28, 29, 31]). If ω = 0, then (1.4) reduces to be the well-known Navier-Stokes
equations. Besides its physical applications, the Navier-Stokes equations are also mathematically
significant. Since Leray [24] and Hopf [23] constructed the so-called well-known Leray-Hopf weak
solution u(x, t) of the incompressible Navier-Stokes equation for arbitrary u0(x) ∈ L2(R3) with
∇ · u0(x) = 0 in last century, the problem on the uniqueness and regularity of the Leray-Hopf weak
solutions is one of the most challenging problem of the mathematical community. Later on, much
effort has been devoted to establish the global existence and uniqueness of smooth solutions to the
Navier-Stokes equations. Different criteria for regularity of the weak solutions have been proposed
and many interesting results were established (see e.g. [12–14, 22, 33] and references there in).

Due to the importance of both physics and mathematics, the question of smoothness and uniqueness
of weak solutions to (1.4) is one of the most challenging problems in the theory of PDE’s. Galdi and
Rionero [19], Łukaszewicz [26] considered the existence of weak solutions of the micropolar fluid
flows (1.4). While the existence of regular solutions is still open problem, there are many interesting
sufficient conditions which guarantee that a given weak solution is smooth (see [4, 9, 15–18, 32] and
references there in). In particular, as for the pressure criterion, Dong et al. [10] (see also Yuan [31])
showed that the weak solution becomes regular if the pressure satisfies

π ∈ Lq(0,T ; Lp,∞(R3)), for
2
q

+
3
p
≤ 2,

3
2
< p ≤ ∞,
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or

π ∈ L1(0,T ;
·

B
0

∞,∞(R3)),

where Lp,∞ and
·

B
0

∞,∞ denote Lorents space and homogeneous Besov space. Later on, Jia et al. [20]
extended and improved Serrin’s regularity criterion to the largest critical Besov spaces as

π ∈ Lq(0,T ; Br
p,∞(R3)),

where 2
q + 3

p = 2 + r, 3
2+r < p < ∞ and −1 < r ≤ 1.

Besides, some interesting logarithmical pressure regularity criteria of micropolar fluid equations are
studied. In particular, in [21], Jia et al. refined this question by establishing a regularity criterion in
terms of the partial derivative of the pressure in the Lebesgue space. More precisely, they showed that
if the partial derivative of the pressure ∂3π satisfies∫ T

0

‖∂3π‖
p
Lq

1 + ln (e + ‖ω‖L4)
dt < ∞,

2
p

+
3
q

=
7
4

and
12
7
< q ≤ ∞, (1.5)

then the weak solution (u, ω) becomes a regular solution on (0,T ].
Here we would like to give an improvement of the anisotropic regularity criterion of (1.5). Before

giving the main result, we recall the definition of weak solutions for micropolar fluid equations (1.4)
(see [26]).

Definition 1.4 (weak solutions). Let (u0, ω0) ∈ L2(R3) with ∇ · u0 = 0 in the sense of distribution and
T > 0. A measurable function (u(x, t), ω(x, t)) on R3 × (0,T ) is called a weak solution of (1.4) on [0,T )
if (u, ω) satisfies the following properties :

(i) (u, ω) ∈ L∞
(
(0,T ) ; L2(R3)

)
∩ L2

(
(0,T ) ; H1(R3)

)
;

(ii) ∇ · u = 0 in the sense of distribution;

(iii) (u, ω) verifies (1.4) in the sense of distribution.

(iv) (u, ω) satisfies the energy inequality, that is,

‖u(·, t)‖2L2 + ‖ω(·, t)‖2L2 + 2
∫ t

0
‖∇u(·, τ)‖2L2 dτ + 2

∫ t

0
‖∇ω(·, τ)‖2L2 dτ

≤ ‖u0‖
2
L2 + ‖ω0‖

2
L2 , for all t ∈ [0,T ].

We endow the usual Lebesgue space Lp(R3) with the norm ‖·‖Lp . We denote by ∂i = ∂
∂xi

the partial
derivative in the xi−direction. Recall that the anisotropic Lebesgue space consists on all the total
measurable real valued functions h = h(x1, x2, x3) with finite norm

∥∥∥∥‖h‖Lp
xi

∥∥∥∥
Lq

x j xk

=

(∫
R2

(
∫
R

|h(x)|p dxi)
q
p dx jdxk

) 1
q

,

where (i, j, k) belongs to the permutation group S =span{1, 2, 3}. Our main result is as follows:
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Theorem 1.5. Let (u0, ω0) ∈ L2(R3) ∩ L4(R3) with ∇ · u0 = 0 in R3. Suppose that (u, ω) is a weak
solution of (1.4) in (0,T ). If the pressure satisfies the condition

∫ T

0

∥∥∥∥‖∂3π(·, t)‖Lγx3

∥∥∥∥q

Lαx1 x2

1 + ln (e + ‖ω(·, t)‖L4)
dt < ∞, (1.6)

where
1
γ

+
2
q

+
2
α

= λ ∈ [2, 3) and
3
λ
≤ γ ≤ α <

1
λ − 2

,

then the weak solution (u, ω) becomes a regular solution on (0,T ].

This allows us to obtain the regularity criterion of weak solutions via only one directional derivative
of the pressure. This extends and improve some known regularity criterion of weak solutions in term
of one directional derivative, including the notable works of Jia et al. [21].

Remark 1.2. Criterion (1.6) can be viewed as a generalization of the recent result (1.5) of Jia-Zhang-
Dong in [21]. Moreover, thanks to the fact that micropolar fluid equations (1.4) with ω = 0 reduce
to the 3D Navier-Stokes equations, we notice that our criterion (1.6) becomes the recent result of
Liu-Dai [25] for the Navier-Stokes equations.

As an application of Theorem 1.5, we also obtain the following regularity criterion of weak
solutions.

Corollary 1.6. Let (u0, ω0) ∈ L2(R3)∩ L4(R3) with ∇ · u0 = 0 in the sense of distributions. Assume that
(u, ω) is a weak solution of (1.4) in (0,T ). If the pressure satisfies the condition∫ T

0

‖∂3π(·, t)‖qLα
1 + ln (e + ‖ω(·, t)‖L4)

dt < ∞,

where
2
q

+
3
α

= λ ∈ [2, 3) and
3
λ
≤ α <

1
λ − 2

,

then the weak solution (u, ω) becomes a regular solution on (0,T ].

2. Preliminaries

Before to prove our main result, we first recall the following result proved in [30].

Lemma 2.1. Let n ≥ 2 be a natural number, γi, ti ≥ 0, pi ∈ (1,+∞), i = 1, 2, 3, ..., n and suppose that

n∑
i=1

γi = 1,
n∑

i=1

1
pi
> 1 and δ =

1 + ti

γi(n − 1) − 1 + 1
pi

> 0.

Then there exists C > 0 such that for every f ∈ C∞ ∩ L2

(∫
| f (x)|δ dx

)( n∑
i=1

1
pi

)
−1

≤ C
n
Π
i=1

(∫
| f (x)|ti pi |∂i f (x)|pi dx

) 1
pi

.
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Next, we recall the following Gagliardo-Nirenberg interpolation inequality in R1.

Lemma 2.2. Let 1 ≤ κ, µ, ν < ∞ satisfy

1
κ

= (
1
ν
− 1)θ +

1 − θ
µ

for some θ ∈ [0, 1].

Assume that ϕ ∈ H1(R3). Then there exists a constant C > 0 such that

‖ϕ‖Lκx3
≤ C ‖∂3ϕ‖

θ
Lνx3
‖ϕ‖(1−θ)

Lµx3
. (2.1)

The crucial tool in this paper is the following result, which plays important role in proving our main
result.

Lemma 2.3. Let r > 1 and 1 < γ ≤ α < ∞. Then for f , g, ϕ ∈ C∞0 (R3), we have∣∣∣∣∣∫
R3

f gϕdx1dx2dx3

∣∣∣∣∣
≤ C

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ 1
r

Lαx1 x2

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ θ(r−1)
r

Laθ(r−1)
x1 x2

∥∥∥∥‖ϕ‖Lβx3

∥∥∥∥ (1−θ)(r−1)
r

Lb(1−θ)(r−1)
x1 x2

× ‖ f ‖
r−1

r

L2 ‖∂1 f ‖
1
2r

L2 ‖∂2 f ‖
1
2r

L2 ‖g‖
r−1

r

L2 ‖∂1g‖
1
2r

L2 ‖∂2g‖
1
2r

L2 .

where 0 ≤ θ ≤ 1 satisfying
1
a

+
1
b

=
α − 1
α

, (2.2)

and
1

γ(r − 1)
+
θ

γ
=

1 − θ
β(γ − 1)

. (2.3)

and C is a constant independent of f , g, ϕ.

Proof: Invoking Hölder’s inequality and Fubini’s theorem, we obtain∫
R3
| f gϕ| dx1dx2dx3

≤

∫
R2

max
x3∈R
|ϕ|

(∫
R

| f |2 dx3

) 1
2
(∫
R

|g|2 dx3

) 1
2
 dx1dx2

≤

{∫
R2

(
max
x3∈R
|ϕ|

)r

dx1dx2

} 1
r

×


∫
R2

(∫
R

| f |2 dx3

) r
r−1

dx1dx2


r−1
2r

×


∫
R2

(∫
R

|g|2 dx3

) r
r−1

dx1dx2


r−1
2r

.

Notice that
max
x3∈R
|ϕ|r ≤ r

∫
R

|∂3ϕ| · |ϕ|
r−1 dx3.
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Moreover, by Hölder’s inequality and (2.1), we obtain

{∫
R2

(
max
x3∈R
|ϕ|

)r

dx1dx2

} 1
r

≤ r
1
r


∫
R2

∫
R

|∂3ϕ| · |ϕ|
r−1 dx3dx1dx2


1
r

≤ r
1
r

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ 1
r

Lαx1 x2

∥∥∥∥∥∥∥∥∥|ϕ|r−1
∥∥∥

L
γ
γ−1
x3

∥∥∥∥∥∥
1
r

L
α
α−1
x1 x2

≤ r
1
r

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ 1
r

Lαx1 x2

∥∥∥∥∥‖∂3ϕ‖
θ(r−1)
Lγx3

‖ϕ‖(1−θ)(r−1)

Lβx3

∥∥∥∥∥ 1
r

L
α
α−1
x1 x2

≤ r
1
r

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ 1
r

Lαx1 x2

∥∥∥∥∥‖∂3ϕ‖
θ(r−1)
Lγx3

∥∥∥∥∥ 1
r

La
x1 x2

∥∥∥∥∥‖ϕ‖(1−θ)(r−1)

Lβx3

∥∥∥∥∥ 1
r

Lb
x1 x2

≤ r
1
r

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ 1
r

Lαx1 x2

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ θ(r−1)
r

Laθ(r−1)
x1 x2

∥∥∥∥‖ϕ‖Lβx3

∥∥∥∥ (1−θ)(r−1)
r

Lb(1−θ)(r−1)
x1 x2

,

where we use the interpolation theorem

1
a

+
1
b

=
α − 1
α

, (2.4)

and
1

γ(r − 1)
+
θ

γ
=

1 − θ
β(γ − 1)

.

We can use Lemma 2.1, where we put n = 2, δ = 2r
r−1 , p1 = p2 = 2

r , γ1 = γ1 = 1
2 , t1 = t2 = r − 1 and

estimate by applying Hölder’s inequality

(∫
R2
| f |

2r
r−1 dx1dx2

) r−1
r

=


(∫
R2
| f |

2r
r−1 dx1dx2

)r−1


1
r

≤

 2
Π
i=1

(∫
R2
| f |

2(r−1)
r |∂i f |

2
r dx1dx2

) r
2


1
r

≤

 2
Π
i=1

(∫
R2
| f |2 dx1dx2

) r−1
2

(∫
R2
|∂i f |2 dx1dx2

) 1
2


1
r

=

(∫
R2
| f |2 dx1dx2

) r−1
r

(∫
R2
|∂1 f |2 dx1dx2

) 1
r
(∫
R2
|∂2 f |2 dx1dx2

) 1
r

= ‖ f ‖
2(r−1)

r

L2(R2) ‖∂1 f ‖
1
r

L2(R2) ‖∂2 f ‖
1
r

L2(R2)

So by applying Minkowski’s inequality, we obtain


∫
R2

(∫
R

| f |2 dx3

) r
r−1

dx1dx2


r−1
2r

≤


∫
R

(∫
R2
| f |

2r
r−1 dx1dx2

) r−1
r

dx3


1
2
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≤

{∫
R

‖ f ‖
2(r−1)

r

L2(R2) ‖∂1 f ‖
1
r

L2(R2) ‖∂2 f ‖
1
r

L2(R2) dx3

} 1
2

≤ ‖ f ‖
r−1

r

L2 ‖∂1 f ‖
1
2r

L2 ‖∂2 f ‖
1
2r

L2 .

Similarly, we have 
∫
R2

(∫
R

|g|2 dx3

) r
r−1

dx1dx2


r−1
2r

≤ ‖g‖
r−1

r

L2 ‖∂1g‖
1
2r

L2 ‖∂2g‖
1
2r

L2 .

Thus, ∫
R3
| f gϕ| dx1dx2dx3

≤ C
∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ 1
r

Lαx1 x2

∥∥∥∥‖∂3ϕ‖Lγx3

∥∥∥∥ θ(r−1)
r

Lθ(r−1)a
x1 x2

∥∥∥∥‖ϕ‖Lβx3

∥∥∥∥ (1−θ)(r−1)
r

L(1−θ)(r−1)b
x1 x2

× ‖ f ‖
r−1

r

L2 ‖∂1 f ‖
1
2r

L2 ‖∂2 f ‖
1
2r

L2 ‖g‖
r−1

r

L2 ‖∂1g‖
1
2r

L2 ‖∂2g‖
1
2r

L2 .

�

We recall the following result according to Dong et al. [10], that will be used in the proof of
Theorem 1.5.

Lemma 2.4. Suppose (u0, ω0) ∈ Ls(R3), s > 3 with ∇ · u0 = 0 in R3. Then there exists T > 0 and a
unique strong solution (u, ω) of the 3D micropolar fluid equations (1.4) such that

(u, ω) ∈ (L∞ ∩C)
(
[0,T ); Ls(R3)

)
.

Moreover, let (0,T0) be the maximal interval such that (u, ω) solves (1.4) in C
(
(0,T0); Ls(R3)

)
, s > 3.

Then, for any t ∈ (0,T0),

‖(u, ω)(·, t)‖Ls ≥
C

(T0 − t)
s−3
2s

with the constant C independent of T0 and s.

By a strong solution we mean a weak solution (u, ω) such that

(u, ω) ∈ L∞
(
(0,T ) ; H1(R3)

)
∩ L2

(
(0,T ) ; H2(R3)

)
.

It is well-known that strong solution are regular (say, classical) and unique in the class of weak
solutions.

3. Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5.
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Proof: First, we multiply both sides of the equation (1.4)1 by u |u|2 , and integrate over R3. After
suitable integration by parts, we obtain

1
4

d
dt
‖u(·, t)‖4L4 +

∫
R3
|∇u|2 |u|2 dx +

1
2

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx

≤

∣∣∣∣∣∫
R3
∇π · (|u|2u)dx

∣∣∣∣∣ +

∫
R3
|ω| |u|2 |∇u| dx, (3.1)

where we used the following identities due to divergence free condition:∫
R3

(u · ∇u) · |u|2 udx =
1
4

∫
R3

u · ∇ |u|4 dx = 0,∫
R3

(∆u) · |u|2 udx = −

∫
R3
|∇u|2 |u|2 dx − 2

∫
R3
|∇ |u||2 |u|2 dx

= −

∫
R3
|∇u|2 |u|2 dx −

1
2

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx,∫
R3
∇ × ω · |u|2 udx = −

∫
R3
|u|2 ω · ∇ × udx −

∫
R3
ω · ∇ |u|2 × udx.

Note that
|∇ × u| ≤ |∇u| , |∇ |u|| ≤ |∇u| .

Multiplying the second equation of (1.4) by ω |ω|2 , then integrating the resulting equation with respect
to x over R3 and using integrating by parts, we obtain

1
4

d
dt
‖ω(·, t)‖4L4 +

∫
R3
|∇ω|2 |ω|2 dx +

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx

+
1
2

∫
R3
|∇ × ω|2 |ω|2 dx + 2

∫
R3
|ω|4 dx

=

∫
R3
∇ × u · |ω|2 ωdx, (3.2)

where we have used the fact that ∇divω = ∇ × (∇ × ω) + ∆ω yields

−

∫
R3
∇divω · |ω|2 ωdx

= −

∫
R3

(∇ × (∇ × ω) + ∆ω) · |ω|2 ωdx

=

∫
R3
|∇ × ω|2 |ω|2 dx +

∫
R3
∇ × ω · ∇ |ω|2 × ωdx +

∫
R3
|∇ω|2 |ω|2 dx +

1
2

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx

≥

∫
R3
|∇ × ω|2 |ω|2 dx −

1
2

∫
R3

(|∇ × ω|2 |ω|2 +
∣∣∣∇ |ω|2∣∣∣2)dx +

∫
R3
|∇ω|2 |ω|2 dx +

1
2

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx

= −
1
2

∫
R3
|∇ × ω|2 |ω|2 dx +

1
2

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx.

Combining (3.1) and (3.2) together, it follows that

1
4

d
dt

(
‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

)
+

∫
R3
|∇u|2 |u|2 dx +

1
2

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx
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+

∫
R3
|∇ω|2 |ω|2 dx +

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx + 2
∫
R3
|ω|4 dx

≤

∣∣∣∣∣∫
R3
∇π · (|u|2u)dx

∣∣∣∣∣ +

∫
R3
|ω| |u|2 |∇u| dx +

∫
R3
|u| |ω|2 |∇ω| dx

= A1 + A2 + A3. (3.3)

With the use of Hölder’s inequality and Young’s inequality, the first two terms on the right-hand side
of (3.3) is bounded by ∫

R3
|ω| |u|2 |∇u| dx +

∫
R3
|u| |ω|2 |∇ω| dx

≤ ‖|ω||u|‖L2 ‖|u||∇u|‖L2 + ‖|ω||u|‖L2 ‖|ω||∇ω|‖L2

≤
1
2
‖|u||∇u|‖2L2 +

1
2
‖|ω||u|‖2L2 +

1
2
‖|ω||∇ω|‖2L2 +

1
2
‖|ω||u|‖2L2

≤
1
2
‖|u||∇u|‖2L2 +

1
2
‖|ω||∇ω|‖2L2 + ‖u‖2L4 ‖ω‖

2
L4

≤
1
2
‖|u||∇u|‖2L2 +

1
2

(
‖u‖4L4 + ‖ω‖4L4

)
. (3.4)

Let us now estimate the integral A1. The Cauchy inequality implies that

A1 =

∣∣∣∣∣∫
R3
∇π · (|u|2u)dx

∣∣∣∣∣ =

∣∣∣∣∣∫
R3
π · div(|u|2u)dx

∣∣∣∣∣
≤ 2

∫
R3
|π| |u|2 |∇u| dx ≤ 2 ‖πu‖L2 ‖|u||∇u|‖L2

≤ C
∫
R3
|π|2 |u|2 dx +

1
2
‖|u||∇u|‖2L2 . (3.5)

Let us estimate the integral

I =

∫
R3
|π|2 |u|2 dx

on the right-hand side of (3.5). Before turning to estimate I, it is well-known that for the micropolar
fluid equations in R3, we have the following relationship between π and u and Calderón-Zygmund
inequality

−∆π = div (u · ∇u) =

3∑
i, j=1

∂i∂ j(uiu j),

‖π‖Lq ≤ C ‖u‖2L2q , 1 < q < ∞.

We select that a =
α(γ+αγ−α)

α−γ
and b =

γ+αγ−α

α(γ−1) in Lemma 2.3, then the selected a and b satisfy (2.4). Then
we can estimate I as follows

I =

∫
R3
|π| |π| |u|2 dx1dx2dx3

≤ C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ γ
γ+β(γ−1)

Lαx1 x2

‖π‖
β(γ−1)
γ+β(γ−1)

Lβ ‖π‖
α−γ+αβ(γ−1)
α(γ+β(γ−1))

L2 ‖∂1π‖
γ+αγ−α

2α(γ+β(γ−1))

L2 ‖∂2π‖
γ+αγ−α

2α(γ+β(γ−1))

L2
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×
∥∥∥|u|2∥∥∥ α−γ+αβ(γ−1)

α(γ+β(γ−1))

L2

∥∥∥∂1 |u|2
∥∥∥ γ+αγ−α

2α(γ+β(γ−1))

L2

∥∥∥∂2 |u|2
∥∥∥ γ+αγ−α

2α(γ+β(γ−1))

L2

≤ C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ γ
γ+β(γ−1)

Lαx1 x2

‖π‖
β(γ−1)
γ+β(γ−1)

Lβ ‖u‖
4(α−γ+αβ(γ−1))
α(γ+β(γ−1))

L4 ‖∇π‖
γ+αγ−α

α(γ+β(γ−1))

L2

∥∥∥∇ |u|2∥∥∥ γ+αγ−α
α(γ+β(γ−1))

L2

≤ C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ γ
γ+β(γ−1)

Lαx1 x2

‖π‖
β(γ−1)
γ+β(γ−1)

Lβ ‖u‖
4(α−γ+αβ(γ−1))
α(γ+β(γ−1))

L4 ‖|u| |∇u|‖
γ+αγ−α

α(γ+β(γ−1))

L2

∥∥∥∇ |u|2∥∥∥ γ+αγ−α
α(γ+β(γ−1))

L2

≤ C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ αγ
α−γ+αβ(γ−1)

Lαx1 x2

‖π‖
αβ(γ−1)

α−γ+αβ(γ−1)

Lβ ‖u‖4L4 +
1
4

(
‖|u| |∇u|‖2L2 +

∥∥∥∇ |u|2∥∥∥2

L2

)
,

where α, β, r and θ satisfy the following identities
α = θ(r − 1)a,

β = (1 − θ)(r − 1)b,
r =

αγ+αβ(γ−1)
γ+αγ−α

θ =
α−γ

αβ(γ−1)+α−γ .

(3.6)

Using the fact that 2 ≤ λ < 3, we choose r =
(4−λ)αγ
γ+αγ−α

, then it follows from (3.6)3 that β =
(3−λ)γ
γ−1 . Now,

on the one hand, observe that

γ <
1

λ − 2
⇔ λγ − 3 < 2(3 − λ)γ

⇔ λαγ − 3α < 2(3 − λ)αγ
⇔ λαγ − α − 2γ < 2(3 − λ)αγ − 2γ + 2α

⇔
λαγ − α − 2γ

2[(3 − λ)αγ − γ + α]
< 1.

On the other hand, since

γ ≥
3
λ
⇔ λαγ ≥ 3α⇔ λαγ − α − 2γ ≥ 2α − 2γ

and since α ≥ γ, we get
λαγ − α − 2γ ≥ 0.

But you know, λ must be less than 3, hence{
(3 − λ)αγ > 0
α − γ ≥ 0

which implies that (3 − λ)αγ + (α − γ) > 0. Gathering these estimates together, we obtain

0 ≤
λαγ − α − 2γ

2[(3 − λ)αγ − γ + α]
< 1,

and it is clear that
λαγ − α − 2γ

2[(3 − λ)αγ − γ + α]
+

2(3 − λ)αγ − α(λγ − 3)
2[(3 − λ)αγ − γ + α]

= 1,
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Now using Hölder inequality with exponents λαγ−α−2γ
2[(3−λ)αγ−γ+α] and 2(3−λ)αγ−α(λγ−3)

2[(3−λ)αγ−γ+α] , I can be further estimated
as

I ≤
1
4

(
∥∥∥∇ |u|2∥∥∥2

L2 + ‖|u| ∇ |u|‖2L2) + C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ 1
3−λ

Lαx1 x2

‖π‖L3 ‖u‖4L4

≤
1
4

(
∥∥∥∇ |u|2∥∥∥2

L2 + ‖|u| ∇ |u|‖2L2) + C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ 1
3−λ

Lαx1 x2

‖u‖2L6 ‖u‖4L4

≤
1
4

(
∥∥∥∇ |u|2∥∥∥2

L2 + ‖|u| ∇ |u|‖2L2) + C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ 1
3−λ

Lαx1 x2

‖∇u‖2L2 ‖u‖4L4 ,

when λαγ−α−2γ
2[(3−λ)αγ−γ+α] = 0 (i.e. α = γ = 3

λ
) or

I ≤
1
4

(
∥∥∥∇ |u|2∥∥∥2

L2 + ‖|u| ∇ |u|‖2L2) + C
(∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ 2αγ
λαγ−α−2γ

Lαx1 x2

+ ‖π‖
2γ(3−λ)

2γ(3−λ)−3(γ−1)

Lβ

)
‖u‖4L4

≤
1
4

(
∥∥∥∇ |u|2∥∥∥2

L2 + ‖|u| ∇ |u|‖2L2) + C
(∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ 2αγ
λαγ−α−2γ

Lαx1 x2

+ ‖u‖
4γ(3−β)

2γ(3−λ)−3(γ−1)

L2β

)
‖u‖4L4 ,

when 0 < λαγ−α−2γ
2[(3−λ)αγ−γ+α] < 1 (i.e. 3

λ
< γ ≤ α < 1

λ−2 ) and β =
(3−λ)γ
γ−1 .

Combining all the estimates from above, we get

d
dt

(
‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

)
≤



C
∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ 1
3−λ

Lαx1 x2

‖∇u‖2L2 ‖u‖4L4 + C
(
‖u‖4L4 + ‖ω‖4L4

)
,

if γ = α = 3
λ
,(∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥ 2αγ
λαγ−α−2γ

Lαx1 x2

+ ‖u‖
4γ(3−λ)

2γ(3−λ)−3(γ−1)

L2β

)
‖u‖4L4

+C
(
‖u‖4L4 + ‖ω‖4L4

)
,

if 3
λ
< γ ≤ α < 1

λ−2 .

(3.7)

Defining
H(t) = e + ‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4 ,

and thanks to

1 + ln(1 + ‖ω‖L4) ≤ 1 + ln(e + ‖ω‖4L4)
≤ 1 + ln(e + ‖u‖4L4 + ‖ω‖4L4),

inequality (3.7) implyes that

d
dt

H(t) ≤



C

∥∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥∥ 1
3−λ

Lαx1 x2
1+ln(1+‖ω‖L4 ) ‖∇u‖2L2 H(t)(1 + ln H(t)),

if γ = α = 3
λ
,

∥∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥∥ 2αγ
λαγ−α−2γ

Lαx1 x2
1+ln(1+‖ω‖L4 ) + ‖u‖

4γ(3−λ)
2γ(3−λ)−3(γ−1)

L2β

 H(t)(1 + ln H(t)),

if 3
λ
< γ ≤ α < 1

λ−2 ,
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and hence

d
dt

(1 + ln H(t) ≤


C

∥∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥∥ 1
3−λ

Lαx1 x2
1+ln(1+‖ω‖L4 ) ‖∇u‖2L2 (1 + ln H(t)), if γ = α = 3

λ
,

∥∥∥∥∥‖∂3π‖Lγx3

∥∥∥∥∥ 2αγ
λαγ−α−2γ

Lαx1 x2
1+ln(1+‖ω‖L4 ) + ‖u‖

4γ(3−λ)
2γ(3−λ)−3(γ−1)

L2β

 (1 + ln H(t)), if 3
λ
< γ ≤ α < 1

λ−2 .

Thanks to (u, ω) is a weak solution of the 3D micropolar equations (1.4), that is

u ∈ L∞(0,T ; L2(R3)) ∩ L2(0,T ; H1(R3)), (3.8)

together with the interpolation inequality yields that

u ∈ Ls(0,T ; Lr(R3)) with
2
s

+
3
r

=
3
2

and 2 ≤ r ≤ 6.

On the other hand, since

γ <
1

λ − 2
⇔ 3γ − λγ > γ − 1⇔

(3 − λ)γ
γ − 1

> 1

and
γ >

3
λ
⇔ 3γ − λγ < 3γ − 3⇔

(3 − λ)γ
γ − 1

< 3,

it is easy to see that

2 <
2(3 − λ)γ
γ − 1

< 6 if
3
λ
< γ ≤ α <

1
λ − 2

and consequently

2
4γ(3−λ)

2(3−λ)γ−3(γ−1)

+
3

2γ(3−λ)
γ−1

=
2(3 − λ)γ − 3(γ − 1)

2γ(3 − λ)
+

3(γ − 1)
2γ(3 − λ)

=
3
2

.

Hence, one has

u ∈ L
4γ(3−λ)

2(3−λ)γ−3(γ−1) (0,T ; L
2γ(3−λ)
γ−1 (R3)), if

3
λ
< γ ≤ α <

1
λ − 2

. (3.9)

Applying the Gronwall inequality yields that

ln(H(t)) ≤ C(T, u0, ω0)



exp

C sup
0≤t≤T


∥∥∥∥∥‖∂3π(·,t)‖Lγx3

∥∥∥∥∥ 1
3−λ

Lαx1 x2
1+ln(1+‖ω(·,t)‖L4 )

 ∫ t

0
‖∇u(·, τ)‖2L2 dτ

 ,
if γ = α = 3

λ
,

exp


∫ t

0


∥∥∥∥∥‖∂3π(·,τ)‖Lγx3

∥∥∥∥∥ 2αγ
λαγ−α−2γ

Lαx1 x2
1+ln(1+‖ω(·,τ)‖L4 ) + ‖u(·, τ)‖

4γ(3−λ)
2γ(3−k)−3(γ−1)

L2β

 dτ

 ,
if 3

λ
< γ ≤ α < 1

λ−2 .

(3.10)
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Now, we are in a position to complete the proof of Theorem 1.5. From Lemma 2.4, it follows that
there exists T0 > 0 and the smooth solution (̃u, ω̃) of (1.4) satisfying

(̃u, ω̃)(t) ∈ (L∞ ∩C)([0,T0); L4(R3)), (̃u, ω̃)(0) = (u0, ω0).

Since the weak solution (u, ω) satisfies the energy inequality, we may apply Serrin’s uniqueness
criterion to conclude that

(u, ω) ≡ (̃u, ω̃) on [0,T0).

Thus, it is sufficient to show that T0 = T . Suppose that T0 < T . Without loss of generality, we may
assume that T0 is the maximal existence time for (̃u, ω̃)(t). By lemma 2.4 again, we find that

‖u(·, t)‖L4 + ‖ω(·, t)‖L4 ≥
C

(T0 − t)
1
8

for any t ∈ (0,T0). (3.11)

On the other hand, from (3.10), we know that

sup
0≤t≤T0

(
‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

)
≤ C(T, u0, ω0) (3.12)

which contradicts with (3.11). Thus, T0 = T . This completes the proof of Theorem 1.5. �
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