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1. Introduction

Recently, several extensions and generalizations have been considered for classical convexity.
Strongly convex functions were introduced and studied by Polyak [45], which play an important part
in the optimization theory and related areas. Karmardian [15] used the strongly convex functions to
discuss the unique existence of a solution of the nonlinear complementarity problems. Strongly
convex functions are used to investigate the convergence analysis for solving variational inequalities
and equilibrium problems, see Zu and Marcotte [51]. See also Nikodem and Pales [20] and Qu and
Li [46]. Awan et al. [7–9] have derived Hermite-Hadamard type inequalities, which provide upper and
lower estimate for the integrand. For more applications and properties of the strongly convex
functions. See, for example, [1, 2, 4, 9, 10, 14–16, 18–20, 25, 29, 30, 33–35, 40, 42, 45, 46, 52].

Hanson [13] introduced the concept of invex function for the differentiable functions, which played
significant part in the mathematical programming. Ben-Israel and Mond [11] introduced the concept
of invex set and preinvex functions. It is known that the differentiable preinvex function are invex
functions. The converse also holds under certain conditions, see [17]. Noor [22] proved that the
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minimum of the differentiable preinvex functions on the invex set can be characterized the variational-
like inequality. Noor [26–28] proved that a function f is preinvex function, if and only if, it satisfies the
Hermite-Hadamard type integral inequality. Noor et al. [29–31,37–39] investigated the applications of
the strongly preinvex functions and their variant forms. See also [48–50] and the references therein.

It is known that more accurate and inequalities can be obtained using the logarithmically convex
functions than the convex functions. Closely related to the log-convex functions, we have the concept
of exponentially convex(concave) functions, the origin of exponentially convex functions can be
traced back to Bernstein [12]. Avriel [6] introduced and studied the concept of r-convex functions,
where as the (r, p)-convex functions were studied by Antczak [3]. For further properties of the
r-convex functions, see Zhao et al. [51] and the references therein. Exponentially convex functions
have important applications in information theory, big data analysis, machine learning and statistic.
See [2, 3, 5, 6, 41] and the references therein. Noor and Noor [32–34] considered the concept of
exponentially convex functions and discussed the basic properties. It is worth mentioning that these
exponentially convex functions [13–15] are distinctly different from the exponentially convex
functions considered and studied by Bernstein [12], Awan et al. [7] and Pecaric et al. [43, 44]. We
would like to point out that The definition of exponential convexity in Noor and Noor [32–34] is quite
different from Bernstein [12]. Noor and Noor [36] studied the properties of the exponentially preinvex
functions and their variant forms. They have shown that the exponentially preinvex functions enjoy
the same interesting properties which exponentially convex functions have. See [32–34] and the
references therein for more details.

Inspired by the research work going in this field, we introduce and consider some new classes
of nonconvex functions with respect to an arbitrary non-negative function and arbitrary bifunction,
which is called the strongly exponentially generalized preinvex functions. Several new concepts of
monotonicity are introduced. We establish the relationship between these classes and derive some new
results under some mild conditions. Optimality conditions for differentiable strongly exponentially
generalized preinvex functions are investigated. As special cases, one can obtain various new and
refined versions of known results. It is expected that the ideas and techniques of this paper may
stimulate further research in this field.

2. Preliminary results

Let Kη be a nonempty closed set in a real Hilbert space H. We denote by 〈·, ·〉 and ‖ · ‖ be the inner
product and norm, respectively. Let F : Kη → R be a continuous function and η(., .) : Kη × Kη → R be
an arbitrary continuous bifunction. Let ξ(.) be a non-negative function.

Definition 2.1 ( [11]). .The set Kη in H is said to be invex set with respect to an arbitrary bifunction
η(·, ·), if

u + λη(v, u) ∈ Kη, ∀u, v ∈ Kη, λ ∈ [0, 1].

The invex set Kη is also called η-connected set. If η(v, u) = v − u, then the invex set Kη is a convex
set, but the converse is not true. For example, the set Kη = R − (−1

2 ,
1
2 ) is an invex set with respect to η,

where

η(v, u) =

{
v − u, for v > 0, u > 0 or v < 0, u < 0
u − v, for v < 0, u > 0 or v < 0, u < 0.
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It is clear that Kη is not a convex set.
We now introduce some new classes of strongly exponentially preinvex functions.

Definition 2.2. The function F on the invex set Kη is said to be strongly exponentially generalized
preinvex with respect to the bifunction ξ(.), if there exists a constant µ > 0, such that

eF(u+λη(v,u)) ≤ (1 − λ)eF(u) + λeF(v) − µλ(1 − λ)ξ(η(v, u)), ∀u, v ∈ Kη, λ ∈ [0, 1].

The function F is said to be strongly exponentially generalized preconcave, if and only if, −F is
strongly exponentially generalized preinvex. Note that every strongly exponentially generalized convex
function is a strongly exponentially generalized preinvex, but the converse is not true.

We now discuss some special cases of the strongly exponentially preinvex functions:
I. If h(η(v, u)) =‖ η(v, u) ‖2, then the strongly exponentially generalized preinvex function becomes
strongly generalized preinvex functions, that is,

eF(u+λη(v,u)) ≤ (1 − λ)eF(u) + λeF(v) − µλ(1 − λ) ‖ η(v, u) ‖2, ∀u, v ∈ Kη, λ ∈ [0, 1].

For the properties of the strongly preinvex functions in variational inequalities and equilibrium
problems, see Noor [29–31].
II. If η(v, u) = v − u, then Definition 2.2 becomes:

Definition 2.3. The function F on the convex set K is said to be strongly exponentially generalized
convex with respect to a non-negative function ξ(.), if there exists a constant µ > 0, such that

eF(u+λ(v−u)) ≤ (1 − λ)eF(u) + λeF(v) − µλ(1 − λ)ξ(v − u)), ∀u, v ∈ K, λ ∈ [0, 1].

III. If ξ(η(v, u)) = W(v, u), where W(v, u) is any arbitrary bifunction, then Definition 2.2 becomes:

Definition 2.4. The function F on the convex set K is said to be strongly exponentially generalized
convex with respect to a non-negative bifunction W(., .), if there exists a constant µ > 0, such that

eF(u+λ(v−u)) ≤ (1 − λ)eF(u) + λeF(v) − µλ(1 − λ)W(v, u), ∀u, v ∈ K, λ ∈ [0, 1],

which has been studied by Noor [21].
In brief, for appropriate choice of the arbitrary function ξ(.) and the bifunction η(., .), one can obtain

a wide class of exponentially preinvex convex functions and their variant forms, see Noor and Noor
[33, 34].

Definition 2.5. The function F on the invex set Kη is said to be strongly exponentially affine generalized
preinvex with respect to the bifunction ξ(.), if there exists a constant µ > 0, such that

eF(u+λη(v,u)) = (1 − λ)eF(u) + λeF(v) − µλ(1 − λ)ξ(η(v, u)), ∀u, v ∈ Kη, ξ ∈ [0, 1].

If t = 1
2 , then the function F satisfies

eF( 2u+η(v,u)
2 ) =

1
2
{eF(u) + eF(v)} −

1
4
µξ(η(v, u)), ∀u, v ∈ Kη,

and is called strongly exponentially affine Jensen generalized preinvex function.
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Definition 2.6. The function F on the invex set Kη is said to be strongly exponentially generalized quasi
preinvex with respect to a non-negative bifunction ξ(.), if there exists a constant µ > 0 such that

eF(u+λη(v,u)) ≤ max{eF(u), eF(v)} − µλ(1 − λ)ξ(η(v, u)), ∀u, v ∈ Kη, λ ∈ [0, 1].

Definition 2.7. The function F on the invex set Kη is said to be strongly exponentially generalized
log-preinvex with respect to ξ(.), if there exists a constant µ > 0 such that

eF(u+λη(v,u)) ≤ (eF(u))1−λ(eF(v))λ − µλ(1 − λ)ξ(η(v, u)), ∀u, v ∈ Kη, λ ∈ [0, 1],

where F(·) > 0.

From the above definition, we have

eF(u+tη(v,u)) ≤ (eF(u))1−t(eF(v))t − µλ(1 − λ)ξ(η(v, u))
≤ (1 − t)eF(u) + teF(v) − µλ(1 − λ)ξ(η(v, u))
≤ max{eF(u), eF(v)} − µλ(1 − λ)ξ(η(v, u)).

It is observed that every strongly exponentially generalized log-preinvex function is strongly
exponentially generalized preinvex function and every strongly exponentially generalized preinvex
function is a strongly exponentially generalized quasi-preinvex function. However, the converse is not
true.

For λ = 1, Definitions 2.2 and 2.7 reduce to the following condition.
Condition A.

eF(u+η(v,u)) ≤ eF(v), ∀u, v ∈ Kη.

Definition 2.8. The differentiable function F on the invex set Kη is said to be strongly exponentially
generalized invex function with respect to an arbitrary non-negative function ξ(.) and the bifunction
η(·, ·), if there exists a constant µ > 0 such that

eF(v − eF(u) ≥ 〈eF(u)F′(u), η(v, u)〉 + µξ(η(v, u)), ∀u, v ∈ Kη,

where F′(u)), is the differential of F at u.

Remark 2.1. If µ = 0, then the Definitions 2.2–2.7 reduce to the ones in Noor nd Noor [36].

Definition 2.9. A differential operator F′ : K → H is said to be:

1. strongly exponentially generalized η-monotone, iff, there exists a constant α > 0 such that

〈eF(u)F′(u), η(v, u)〉 + 〈eF(v)F′(v), η(u, v)〉 ≤ −α{ξ(η(v, u)) + ξ(η(u, v))}, u, v ∈ Kη.

2. exponetiallyη-monotone, iff,

〈eF(u)F′(u), η(v, u)〉 + 〈eF(v)F′(v), η(u, v)〉 ≤ 0, u, v ∈ Kη.

3. strongly exponentially generalized η-pseudomonotone, iff, there exists
a constant ν > 0 such that

〈eF(u)F′(u), η(v, u)〉 + νξ(η(v, u)) ≥ 0⇒ −〈eF(v)F′(v), η(u, v)〉 ≥ 0, u, v ∈ Kη.
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4. strongly exponentially relaxed generalized η-pseudomonotone, iff, there exists constant µ > 0
such that

〈eF(u)F′(u), η(v, u)〉 ≥ 0⇒ −〈eF(v)F′(v), η(u, v)〉 + µξ(η(u, v)) ≥ 0, u, v ∈ Kη.

5. strictly exponentially η-monotone, iff,

〈eF(u)F′(u), η(v, u)〉 + 〈eF(v)F′(v), η(u, v)〉 < 0, u, v ∈ Kη.

6. exponentially η-pseudomonotone, iff,

〈eF(u)F′(u), η(v, u)〉 ≥ 0⇒ 〈eF(v)F′(v), η(u, v)〉 ≤ 0, u, v ∈ Kη.

7. exponentially quasi η-monotone, iff,

〈eF(u)F′(u), η(v, u)〉 > 0⇒ 〈eF(v)F′(v), η(u, v)〉 ≤ 0, u, v ∈ Kη.

8. strictly exponentially η-pseudomonotone, iff,

〈eF(u)F′(u), η(v, u)〉 ≥ 0⇒ 〈eF(v)F′(v), η(u, v)〉 < 0, u, v ∈ Kη.

Definition 2.10. A differentiable function F on the invex set Kη is said to be strongly exponentially
pseudo generalized η-invex function, iff, if there exists a constant µ > 0 such that

〈eF(u)F′(u), η(v, u)〉 + µh(η(u, v)) ≥ 0⇒ eF(v) − eF(u) ≥ 0, ∀u, v ∈ Kη.

Definition 2.11. A differentiable function F on Kη is said to be strongly exponentially generalized
quasi-invex function, iff, if there exists a constant µ > 0 such that

eF(v) ≤ eF(u) ⇒ 〈eF(u)F′(u), η(v, u)〉 + µξ(η(u, v)) ≤ 0, ∀u, v ∈ Kη.

Definition 2.12. The function F on the set Kη is said to be exponentially pseudo-invex, if

〈eF(u)F′(u), η(v, u)〉 ≥ 0⇒ eF(v) ≥ eF(u), ∀u, v ∈ Kη.

Definition 2.13. The differentiable function F on the Kη is said to be exponentially quasi-invex
function, if such that

eF(v) ≤ eF(u) ⇒ 〈eF(u)F′(u), η(v, u)〉 ≤ 0, ∀u, v ∈ Kη.

If η(v, u) = −η(v, u),∀u, v ∈ K, then Definitions 2.9–2.13 reduce to the known ones. All these new
concepts may play important and fundamental part in the mathematical programming and optimization.

We also need the following assumption regarding the bifunction η(·, ·), which plays an important in
the derivation of the main results.

Condition C [17]. Let η(·, ·) : Kη × Kη → H satisfy thw assumptions

η(u, u + λη(v, u)) = −λη(v, u)
η(v, u + λη(v, u)) = (1 − λ)η(v, u), ∀u, v ∈ Kη, λ ∈ [0, 1].
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3. Main results

Through out this section we assume that the non-negative function ξ is even and homogeneous of
degree two, that is, ξ(−u) = ξ(u), ξ(γu) = γ2ξ(u), ∀u ∈ Kη, γ ∈ R, unless otherwise specified.

Theorem 3.1. Let F be a differentiable function on the invex set Kη in H and Condition C hold.
Let the function ξ be even and exponentially homogeneous of degree 2. If the function F is strongly
exponentially generalized preinvex function, if and only if. F is a strongly exponentially generalized
invex function.

Proof. Let F be a strongly exponentially generalized preinvex function. Then

eF(u+λη(v,u)) ≤ (1 − λ)eF(u) + λeF(v) − λ(1 − λ)µξ(η(v, u)), ∀u, v ∈ Kη,

which can be written as

eF(v) − eF(u) ≥ {
eF(u+λη(v,u)) − eF(u)

λ
} + (1 − λ)µξ(η(v, u)).

Taking the limit in the above inequality as λ→ 0 , we have

eF(v) − eF(u) ≥ 〈eF(u)F′(u), η(v, u))〉 + µξ(η(v, u)).

This shows that F is a strongly exponentially generalized invex function.
Conversley, let F be a strongly exponentially generalized invex function on the invex set Kη. Then

∀u, v ∈ Kη, λ ∈ [0, 1], vλ = u + λη(v, u) ∈ Kη, using Condition C and the fact that the function ξ is even
and exponentially homogeneous of degree 2, we have

eF(v) − eF(u+λη(v,u))

≥ 〈eF(u+λη(v,u))F′(u + λη(v, u)), η(v, u + λη(v, u))〉 + µξ(η(v, u + tη(v, u)))
= (1 − λ)〈eF(u+λη(v,u))F′(u + λη(v, u)), η(v, u)〉 + µ(1 − λ)2ξ(η(v, u)). (3.1)

In a similar way, we have

eF(u) − eF(u+λη(v,u))

≥ 〈eF(u+λη(v,u))F′(u + λη(v, u)), η(u, u + λη(v, u))〉 + µξ(η(u, u + ξη(v, u)))
= −λeF(u+λη(v,u))F′(u + λη(v, u)), η(v, u)〉 + µλ2ξ(η(v, u)). (3.2)

Multiplying (3.11) by λ and (3.2) by (1 − λ) and adding the resultant, we have

eF(u+λη(v,u)) ≤ (1 − λ)eF(u) + λeF(v) − λ(1 − λ)µξ(η(v, u).

�

Theorem 3.2. Let F be differentiable on the invex set Kη and let Condition A and Condition C Hold.
Let the function ξ be an even and exponentially homogeneous of degree 2. The function F is a strongly
exponentially generalized invex function, if and only if, F′ is strongly exponentially generalized η-
monotone.
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Proof. Let F be a strongly exponentially generalized invex function on the invex set Kη. Then

eF(v) − eF(u) ≥ 〈eF(u+λη(v,u))F′(u), η(v, u)〉 + µξ(η(v, u)) ∀u, v ∈ Kη. (3.3)

Changing the role of u and v in (3.3), we have

eF(u) − eF(v) ≥ 〈eF(v)F′(v), η(u, v)〉 + µξ(η(u, v)) ∀u, v ∈ Kη. (3.4)

Adding (3.3) and (3.4), we have

〈eF(u)F′(u), η(v, u))〉 + 〈eF(v)F′(v), η(u, v)〉 ≥ −µ{ξ(η(v, u)) + ξ(η(u, v))}, (3.5)

which shows that F′ is strongly exponentially generalized η-monotone.
Conversely, let F′ be strongly exponentially generalized η-monotone. From (3.5), we have

〈eF(v)F′(v), η(u, v)〉 ≥ 〈eF(u)F′(u), η(v, u))〉 − {ξ(η(v, u)) + ξ(η(u, v))}, (3.6)

Since Kη is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1] vλ = u + λη(v, u) ∈ Kη. Taking v = vλ in (3.6), using
Condition C and the fact that the function h is even and exponentially homogeneous of degree 2, we
have

〈eF(vλ)F′(vλ), η(u, u + tη(v, u))〉 ≤ 〈eF(u)F′(u), η(u + λη(v, u), u))〉
−µ{ξ(η(u + λη(v, u), u)) + ξ(η(u, u + λη(v, u)))}

= −λ〈eF(u)F′(u), η(v, u)〉 − 2λ2µξ(η(v, u)),

which implies that

〈eF(vλ)F′(vλ), η(v, u)〉 ≥ 〈eF(u)F′(u), η(v, u) + 2µλξ(η(v, u)). (3.7)

Let

ϕ(λ) = eF(u+λη(v,u)). (3.8)

Then

ϕ(0) = eF(u), ϕ(1) = eF(u+λη(v,u)). (3.9)

From (3.7), we have

ϕ′(t) = 〈eF(u+λη(v,u))F′(u + λη(v, u)), η(v, u)〉
≥ 〈eF(u)F′(u), η(v, u)〉 + 2µλξ(η(v, u)). (3.10)

Integrating (3.10) between 0 and 1, we have

ϕ(1) − ϕ(0) ≥ 〈eF(u)F′(u), η(v, u)〉 + µξ(η(v, u)).

that is,

eF(u+ξη(v,u)) − eF(u) ≥ 〈eF(u)F′(u), η(v, u)〉 + µξ(η(v, u)).

By using Condition A, we have

eF(v) − eF(u) ≥ 〈eF(u)F′(u), η(v, u)〉 + µξ(η(v, u)).

which shows that F is strongly exponentially generalized invex function on the invex set Kη. �
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Theorem 3.3. Let F be a differentiable strongly exponentially generalized preinvex function with
modulus µ > 0. If u ∈ Kη is the minimum of the function F, then

eF(v) − eF(u) ≥ µξ(η(v, u)), ∀u, v ∈ Kη. (3.11)

Proof. Let u ∈ Kη be a minimum of the function F. Then

F(u) ≤ F(v),∀v ∈ Kη

from which, we have

eF(u) ≤ eF(v),∀v ∈ Kη. (3.12)

Since K + η is an invex set, so, ∀u, v ∈ Kη, λ ∈ [0, 1],

vλ = u + λη(v, u) ∈ Kη.

Taking v = vλ in (3.12), we have

0 ≤ lim
λ→0
{
eF(u+λη(v,u)) − eF(u)

λ
} = 〈eF(u)F′(u), η(v, u)〉. (3.13)

Since F is differentiable strongly exponentially generalized prenvex function, so

eF(u+λη(v,u)) ≤ eF(u) + λ(eF(v) − eF(u))
−µλ(1 − λ)h(η(v, u)), u, v ∈ Kη, λ ∈ [0, 1],

from which, using (3.13), we have

eF(v) − eF(u) ≥ lim
λ→0
{
eF(u+λη(v,u)) − eF(u)

λ
} + µξ(η(v, u)).

= 〈eF(u)F′(u), v − u〉 + µξ(η(v, u))
≥ µh(η(v, u)),

the required result (3.11). �

Remark 3.1. If
〈eF(u)F′(u), v − u〉 + µξ(η(v, u)) ≥ 0, ∀u, v ∈ Kη,

then u ∈ Kη is the minimum of the function F.

We would like to emphasize that the minimum u ∈ Kη of the strongly exponentially generalized
preinvex functions can be characterized by inequality

〈eF(u)F′(u), η(v.u)〉 ≥ 0,∀v ∈ Kη, (3.14)

which is called the exponential variational-like inequality and appears to be a new one. It is an
interesting problem to study the existence of a unique solution of the exponentially variational-like
inequality (3.14) and its applications.
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Theorem 3.4. Let F′ be exponentially strongly generalized relaxed η- pseudomonotone and Condition
A and C hold. If the function ξ is even and exponentially homogeneous of degree 2, then F is a strongly
exponentially generalized η-pseudo-invex function.

Proof. Let F′ be strongly exponentially relaxed generalized η-pseudomonotone. Then

〈eF(u)F′(u), η(v, u)〉 ≥ 0, ∀u, v ∈ Kη,

implies that

−〈eF(v)F′(v), η(u, v)〉 ≥ αξ(η(u, v)). (3.15)

Since Kη is an invex set, ∀u, v ∈ Kη, λ ∈ [0, 1], vλ = u + λη(v, u) ∈ Kη. Taking v = vλ in (3.15), using
Condition C and the fact that the function ξ is even and exponentially homogeneous of degree 2, we
have

−〈eF(u+λη(v,u))F′(u + λη(v, u)), η(u, v)〉 ≥ λαξ(η(v, u)). (3.16)

Let

ϕ(t) = eF(u+λη(v,u)), ∀u, v ∈ Kη, λ ∈ [0, 1].

Then, using (3.16), we have

ϕ′(λ) = 〈eF(u+λη(v,u))F′(u + λη(v, u)), η(u, v)〉 ≥ λαξ(η(v, u)).

Integrating the above relation between 0 to 1, we have

ϕ(1) − ϕ(0) ≥
α

2
ξ(η(v, u)),

that is,

eF(u+λη(v,u)) − eF(u) ≥
α

2
ξ(η(v, u)),

which implies, using Condition A, that

eF(v) − eF(u) ≥
α

2
ξ(η(v, u)),

showing that F is a strongly exponentially generalized η-pseudo-invex function. �

As special cases of Theorem 3.4, we have the following:

Theorem 3.5. Let the differential F′(u) of a function F(u) on the invex set Kη be exponentially
η-pseudomonotone and let Conditions A and C hold. If the function ξ is even and exponentially
homogeneous of degree 2, then F is exponentially pseudo η-invex function.

Theorem 3.6. Let the differential F′(u) of a function F(u) on the invex set Kη be strongly
exponentially generalized η-pseudomonotone and Conditions A and C hold. If the function h is even
and exponentially homogeneous of degree 2, then F is strongly exponentially generalized pseudo
η-invex function.
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Theorem 3.7. Let the differential F′(u) of a function F(u) on the invex set Kη be strongly
exponentially generalized η-pseudomonotone and let Conditions A and C hold. If the function h is
even and exponentially homogeneous of degree 2, then F is strongly exponentially generalized pseudo
η-invex function.

Theorem 3.8. Let the differential F′(u) of a function F(u) on the invex set be exponentially
η-pseudomonotone and Conditions A and C hold. If the function h is even and exponentially
homogeneous of degree 2, then F is exponentially pseudo invex function.

Theorem 3.9. Let the differential eF(u)F′(u) of a differentiable preinvex function F(u) be Lipschitz
continuous on the invex set Kη with a constant β > 0. Then

eF(u+η(v,u)) − eF(u) ≤ 〈eF(u)F′(u), η(v, u)〉 +
β

2
‖η(v, u)‖2, u, v ∈ Kη.

Proof. Its proof follows from Noor and Noor [30]. �

Definition 3.1. The function F is said to be sharply strongly generalized pseudo preinvex, if there exists
a constant µ > 0 such that

〈F′(u), η(v, u)〉 ≥ 0⇒ F(v) ≥ F(v + λη(v, u)) + µλ(1 − λ)ξ(η(v, u)), ∀u, v ∈ Kη, λ ∈ [0, 1].

Theorem 3.10. Let F be a sharply strongly generalized pseudo preinvex function on Kη with a constant
µ > 0. Then

−〈F′(v), η(v, u)〉 ≥ µξ(η(v, u)), ∀u, v ∈ Kη.

Proof. Let F be a sharply strongly generalized pesudo preinvex function on Kη. Then

F(v) ≥ F(v + λη(v, u)) + µλ(1 − λ)ξ(η(v, u)), ∀u, v ∈ Kη, λ ∈ [0, 1].

from which we have

{
F(v + λη(v, u)) − F(v)

λ
} + µ(1 − λ)ξ(η(v, u)) ≤ 0.

Taking limit in the above inequality, as t → 0, we have

−〈F′(v), η(v, u)〉 ≥ µξ(η(v, u)),

the required result. �

Definition 3.2. A function F is said to be a exponentially generalized pseudo preinvex function, if
there exists a strictly positive bifunction B(., .), such that

eF(v) < eF(u)

⇒

eF(u+λη(v,u)) < eF(u) + λ(λ − 1)B(v, u),∀u, v ∈ Kη, λ ∈ [0, 1].
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Theorem 3.11. If the function F is strongly exponentially generalized preinvex function such that
eF(v) < eF(u), then the function F is strongly exponentially generalized pseudo preinvex.

Proof. Since eF(v) < eF(u) and F is strongly exponentially generalized preinvex function, then ∀u, v ∈
Kη, λ ∈ [0, 1], we have

eF(u+λη(v,u)) ≤ eF(u) + λ(eF(v) − eF(u)) − µλ(1 − λ)ξ(η(v, u)))
< eF(u) + λ(1 − λ)(eF(v) − eF(u)) − µλ(1 − λ)ξ(η(v, u)))
= eF(u) + t(t − 1)(eF(u) − eF(v)) − µλ(1 − λ)ξ(η(v, u))
< eF(u) + t(t − 1)B(u, v) − µλ(1 − λ)ξ(η(v, u)),

where B(u, v) = eF(u) − eF(v) > 0 . This shows that F is a strongly exponentially generalized preinvex
function.

�

It is well known that each strongly convex functions is of the form − ± ‖.‖2, where f is a convex
function. We now establish a similar result for the strongly exponentially generalized preinvex
functions.

Theorem 3.12. Let f be a strongly exponentially affine generalized preinvex function. Then F is
a strongly exponentially generalized preinvex function, if and only if, ζ = F − f is a exponentially
preinvex function.

Proof. Let f be strongly exponentially affine generalized preinvex function. Then

e f (u+λη(v,u)) = (1 − λ)e f (u) + λe f (v) − µλ(1 − λ)ξ(η(v, u)). (3.17)

From the strongly exponentially generalized preinvexity of F, we have

eF(u+λη(v,u)) ≤ (1 − λ)eF(u) + teF(v) − µλ(1 − λ)ξ(η(v, u)). (3.18)

From (3.17 ) and (3.18), we have

eF(u+λη(v,u)) − e f (u+λη(v.u)) ≤ (1 − λ)(eF(u) − e f (u)) + λ(eF(v) − e f (v)), (3.19)

from which it follows that

eζ(u+λη(v,u)) = eF((u+λη(v,u))) − e f ((1−λ)u+λv)

≤ (1 − λ)eF(u) + λeF(v) − (1 − λ)e f (u) − λe f (v)

= (1 − λ)(eF(u) − e f (u)) + λ(eF(v) − e f (v)),

which show that ζ = F − f is an exponentially preinvex function.
The inverse implication is obvious. �

We would like to remark that one can show that F is a strongly exponentially generalized preinvex
function, if and only if, F is strongly exponentially affine preinvex function essentially using the
technique of Adamek [1] and Noor et al. [17].
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It is worth mentioning that the strongly exponentially generalized preinvex is also Wright strongly
exponentially generalized preinvex functions. From the definition 2.2, we have

eF(u+λη(v,u)) + eF(v+λη(u,v) ≤ eF(u) + eF(v) − 2µλ(1 − λ)ξ(η(v, u)),∀u, v ∈ Kη, λ ∈ [0, 1],

which is called Wright strongly exponentially generalized preinvex function. One can studies the
properties and applications of the Wright strongly exponentially generalized preinvex functions in
optimization operations research.

4. Conclusion

In this paper, we have introduced and studied a new class of preinvex functions with respect to any
arbitrary function and bifunction. which is called strongly exponentially generalized function. It is
shown that several new classes of strongly preinvex and convex functions can be obtained as special
cases of these relative strongly generalized preinvex functions. Some basic properties of these functions
are explored. The ideas and techniques of this paper may motivate further research.
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