Mathematics

Research article

The spectral determinations of connected multicone graphs $K_{w} \nabla m C P(n)$

Sara Pouyandeh ${ }^{1}$, Amirhossein Morovati Moez ${ }^{1}$ and Ali Zeydi Abdian ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
${ }^{2}$ Department of the Mathematical science, Lorestan University, College of Science, Lorestan, Khoramabad, Iran

* Correspondence: azeydiabdi@gmail.com; aabdian67@gmail.com; abdian.al@fs.lu.ac.ir; Tel: +989169026945.

Abstract

The main goal of this study is to characterize new classes of multicone graphs which are determined by their spectra. One of important part of algebraic graph theory is devoted to spectral graph theory. Determining whether a graph is determined by its spectra or not is often an important and challenging problem. In [1] it have been shown that the join of a Cocktail-Party graph with an arbitrary complete graph is determined by both its adjacency spectra and its Laplacian spectra. In this work, we aim to generalize these facts. A multicone graph is defined to be the join of a clique and a regular graph. Let w, m and n be natural numbers. In this paper, it is proved that any connected graph cospectral to a multicone graph $K_{w} \nabla m C P(n)$ is determined by its adjacency spectra as well as its Laplacian spectra, where $C P(n)=K^{2, \ldots, 2}$ is a Cocktail-Party graph. Moreover, we prove that any

 graph cospectral to one of these multicone graphs must be perfect. Finally, we pose two conjectures for further research.Keywords: $D A S$-graph; $D L S$-graph; graph multicone graph; adjacency spectrum
Mathematics Subject Classification: 05C50

1. Introduction

All graphs which are considered here are simple and undirected. Let G be a graph of order $n=$ $|V(G)|$ and size $m=|E(G)|$. For $v \in V(G)$, the degree of v, denoted by $d_{G}(v)$, is the number of edges incident to v. Let G be a simple graph on n vertices and $A(G)=\left(a_{i j}\right)$ be its adjacency matrix, that is, $a_{i j}$ equals 1 if v_{i} is adjacent to v_{j} and equals 0 , otherwise. All terminology and notations on graphs not defined here, may be found in $[1-5,18,19,34]$. We show n disjoint copies of a graph Γ by $n \Gamma$. For two graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and disjoint edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ the
disjoint union of G_{1} and G_{2} is the graph $G=G_{1} \cup G_{2}$ with the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join $G \nabla H$ of simple undirected graphs G and H is the graph with the vertex set $V(G \nabla H)=V(G) \cup V(H)$ and the edge set $E(G \nabla H)=E(G) \cup E(H) \cup\{u v \mid u \in V(G), v \in V(H)\}$. For a graph G, let $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the diagonal matrix of vertex degrees. The matrices $Q(G)=D(G)+A(G)$ and $L(G)=D(G)-A(G)$ are called the signless Laplacian matrix and Laplacian matrix of G, respectively. We denote the characteristic polynomial $\operatorname{det}(\lambda I-A)$ of G by $P_{G}(\lambda)$. The adjacency spectrum of G, denoted by $\operatorname{Spec}_{A}(G)$, is the multiset of eigenvalues of $A(G)$. Since $A(G)$ is symmetric, its eigenvalues are real. The adjacency spectrum of the graph G consists of the adjacency eigenvalues (together with their multiplicities), and the Laplacian spectrum of the graph G consists of the Laplacian eigenvalues (together with their multiplicities). Two graphs G and H are said to be A cospectral (L-cospectral) if they have equal adjacency (Laplacian) spectrum. The adjacency spectrum and the Laplacian spectrum of a graph G is denoted by $\operatorname{Spec}_{A}(G)$ and $\operatorname{Spec}_{L}(G)$, respectively. Two graphs with the same spectrum are called cospectral. A graph G is said to be a $D A S$-graph (a $D L S$ graph) if there is no other non-isomorphic graph A-cospectral (L-cospectral) to it. For a $D Q S$-graph (determined by signless Laplacian spectrum) the definition is similar.

In general, the spectrum of a graph does not determine the graph and the question " Which graphs are determined by their spectrum?" [29] remains a difficult problem. For the background and some known results about this problem and related topics, we refer the readers to [29] and references therein. In [29] it is conjectured that almost all graphs are determined by their spectra. Nevertheless, the set of graphs which are known to be $D A S$ (or $D L S$) is too small and therefore it would be interesting to find more examples of these graphs. The authors [31] characterized special classes of connected multicone graphs. They also conjectured that friendship graphs are $D A S$-graphs. Finally, in [21] this conjecture for $n \neq 16$ were proved. Abdian and Mirafzal [1] characterized new classes of multicone graphs. For seeing some graphs and multicone graphs which have been characterized so far we refer the reader to [1-16, 24-26].

We think that in [31] there are some gaps. In [31], the authors conjectured that the minimum degree of graphs A-cospctral with a friendship graph is 2 (see Conjecture 1). Put simply, they could not determine the minimum degree of graphs A-cospectral with a (bidegreed) multicone graph (Conjecture 1). Hence, by their techniques [31] cannot characterize new classes of multicone graphs that we have presented in this study. Conjectures (Conjectures 1 and 2) which had been proposed by the authors [31] are not valid and there is a counterexample for any of them (for further information see the first paragraph after Corollary 2 of [22]). In Theorem 3 (ii) of [31] first the minimum degree of a graph A-cospectral to a graph belonging to $\beta(n-1, \delta)$ (classes of bidegreed graphs with degree sequence δ and $n-1$, where n denotes the number of vertices) must be determined, since in general determining of the minimum degree of a graph by its spectrum is impossible. Therefore, this theorem without knowing and finding the minimum degree of a graph A-cospectral with one of graphs $\beta(n-1, \delta)$ will not effective and useful.

In this paper, we present new classes of multicone graphs that are both $D A S$ and $D L S$-graphs.

2. Preliminaries

In this section we state some results which are needed in the next sections.
Lemma 2.1. [1-4, 6, 19, 24, 29] Let G be a graph. For the adjacency matrix and Laplacian matrix,
the following can be obtained from the spectrum:
(i) The number of vertices,
(ii) The number of edges.

For the adjacency matrix, the following follows from the spectrum:
(iii) The number of closed walks of any length,
(iv) Being regular or not and the degree of regularity,
(v) Being bipartite or not.

For the Laplacian matrix, the following follows from the spectrum:
(vi) The number of spanning trees,
(vii) The number of components,
(viii) The sum of squares of degrees of vertices.

Theorem 2.1. [1-4, 7, 22, 24] If G_{1} is r_{1}-regular with n_{1} vertices, and G_{2} is r_{2}-regular with n_{2} vertices, then the characteristic polynomial of the join $G_{1} \nabla G_{2}$ is given by:

$$
P_{G_{1} \nabla G_{2}}(y)=\frac{P_{G_{1}}(y) P_{G_{2}}(y)}{\left(y-r_{1}\right)\left(y-r_{2}\right)}\left(\left(y-r_{1}\right)\left(y-r_{2}\right)-n_{1} n_{2}\right) .
$$

Theorem 2.2. [1-4, 24] Let G be a graph on n vertices. Then n is one of the Laplacian eigenvalue of G if and only if G is the join of two graphs.

Theorem 2.3. [1-4, 24] Let G and H be two graphs with Laplacian spectrum $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ and $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{m}$, respectively. Then Laplacian spectra of \bar{G} and $G \nabla H$ are $n-\lambda_{1}, n-\lambda_{2}, \ldots, n-\lambda_{n-1}, 0$ and $n+m, m+\lambda_{1}, \ldots, m+\lambda_{n-1}, n+\mu_{1}, \ldots, n+\mu_{m-1}, 0$, respectively.

Theorem 2.4. [1,24,28,33] A graph has exactly one positive eigenvalue if and only if it is a complete multipartite graph with possibly some isolated vertices. The spectrum $K_{n_{1} \cdots, n_{p}}$ consists of the spectral radius (the largest eigenvalue) λ_{1} determined byfrom the equation $\sum_{i=1}^{p} \frac{n_{i}}{\lambda+n_{i}}=1$, eigenvalue 0 with the multiplicity $n-p$ and $p-1$ eigenvalues situated in the intervales $\left[-n_{p},-n_{p-1}\right], \cdots,\left[-n_{2},-n_{1}\right]$.

Theorem 2.5. [18] If Γ is an r-regular graph with eigenvalues $\lambda_{1}(=r), \lambda_{2}, \ldots, \lambda_{n}$, then $n-1-\lambda_{1},-1-\lambda_{2}, \ldots,-1-\lambda_{n}$ are the eigenvalues of the complement $\bar{\Gamma}$ of Γ, i.e.,

$$
P_{A(\bar{\Gamma})}(\lambda)=(-1)^{n} \frac{\lambda-n+r-1}{\lambda+r+1} P_{A(\Gamma)}(-\lambda-1) .
$$

Theorem 2.6. [22] Let G be a graph of order n, the complement of G, \bar{G}, has the characteristic polynomial

$$
P_{A(\bar{G})}(x)=(-1)^{n} P_{A(G)}(-x-1)\left(1-n \sum_{i=1}^{m} \frac{\beta_{i}{ }^{2}}{x+1+\mu_{i}}\right),
$$

where m and β_{i} are the number of distinct eigenvalues and the main angles (see [27]) of graph G, respectively.

Theorem 2.7. [22] If H is a proper subgraph of connected graph G, then

$$
\varrho(G)>\varrho(H) .
$$

Theorem 2.8. [30] Let G be a disconnected graph that is a DLS-graph. Then $K_{1} \nabla G$, is also a DLS-graph

The rest of the paper is organized as follows. In Section 3, we characterize graphs that are determined by their adjacency spectrum. In Section 4, we prove that graph L-cospectral to one of these graphs is determined by their Laplacian spectra. In Section 5, we prove that any graph A-cospectral (L-cospectral) to one of these graphs must be perfect. In Section 6, we review what were said in the previous sections and finally we propose two conjectures for further research.

3. Main Results

3.1. Connected graphs A-cospectral to a multicone graph $K_{w} \nabla m C P(n)$

Proposition 3.1. Let G be a graph A-cospectral to the multicone graph $K_{w} \nabla m C P(n)$. Then
$\operatorname{Spec}_{A}(G)=\left\{\left[\frac{\Omega+\sqrt{\Omega^{2}-4 \Psi}}{2}\right]^{1},[-1]^{w-1},[-2]^{(n-1) m},[0]^{n m},[2 n-2]^{m-1},\left[\frac{\Omega-\sqrt{\Omega^{2}-4 \Psi}}{2}\right]^{1}\right\}$, where $\Omega=2 n+w-3$ and $\Psi=(w-1)(2 n-2)-2 n m w$.

Proof. Obviously, $\operatorname{Spec}_{A}(m C P(n))=\left\{[2 n-2]^{m},[0]^{n m},[-2]^{(n-1) m}\right\}$ (see [22]). Put, $y_{1}=w-1, y_{2}=-1$, $y_{3}=2 n-2, y_{4}=0, y_{5}=-2, D=2 n m w$ and $P_{A\left(K_{w} \nabla m C P(n)\right.}(y)=P_{A(G)}(y)$. Now, it follows from Theorem 2.1 that
$P_{A(G)}(y)=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right)^{w-1}\left(y-y_{3}\right)^{m}\left(y-y_{4}\right)^{m n}\left(y-y_{5}\right)^{(n-1) m}}{\left(y-y_{1}\right)\left(y-y_{3}\right)}\left(\left(y-y_{1}\right)\left(y-y_{3}\right)-D\right) . \quad$ Now, the eigenvalues are the roots of the above equation.

Lemma 3.1. Let G be A-cospectral to the multicone graph $K_{w} \nabla m C P(n)$. Then G is a DAS-graph
Proof. It is clear that $P_{A(G)}(x)=P_{A\left(K_{w} \nabla m C P(n)\right)}(x)$. It follows from Theorem 2.6 that $P_{A(\bar{G})}(x)=(-1)^{2 m n+w} P_{A(G)}(-x-1)\left(1-(2 m n+w) \sum_{i=1}^{6} \frac{\beta_{i}{ }^{2}}{x+1+\mu_{i}} \quad=\right.$ $(-1)^{2 m n+w} P_{A\left(K_{w} \nabla m C P(n)\right)}(-x-1)\left(1-(2 m n+w) \sum_{i=1}^{6} \frac{\beta_{i}{ }^{2}}{x+1+\mu_{i}}\right)=P_{A\left(\overline{K_{w} \nabla m C P(n)}\right)}(x)$. Hence $P_{A(\bar{G})}(x)=P_{A\left(\overline{\left.K_{w} \nabla m C P(n)\right)}\right.}(x)$. Therefore, $\operatorname{Spec}_{A}(\bar{G})=\operatorname{Spec}_{A}\left(\overline{K_{w} \nabla m C P(n)}\right)$. By Theorem 2.5 $\operatorname{Spec}_{A}(\bar{G})=$ $\operatorname{Spec}_{A}\left(\overline{K_{w} \nabla m C P(n)}\right)=\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{m-1},[-1]^{m n},[1]^{(n-1) m},[0]^{w}\right\}$.

Consider the exponents of a, b, c and d with $1 \leq a \leq m-1,1 \leq b \leq m n, 1 \leq c \leq(n-1) m$ and $1 \leq d \leq w$.

Obviously, any graph with two distinct eigenvalues is a complete graph with at least two vertices. Also, note that if a graph has at least an edge, then the largest eigenvalue is always positive and the smallest eigenvalue is always negative. A graph with no edges only has 0 as its eigenvalue. In addition, any graph with at least an edge has K_{2} as its subgraph. Consider the following cases:

Case 1. \bar{G} is connected. Obviously, this case cannot happen. Consider $\operatorname{Spec}_{A}(H)=$
$\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{m-1},[-1]^{m n},[1]^{(n-1) m},[0]^{w}\right\}$ and $\operatorname{Spec}_{A}(\overline{m C P(n)})=$
$\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{m-1},[-1]^{m n},[1]^{(n-1) m}\right\}$. Clearly, H has w vertices more than $\overline{m C P(n)}$. On the other hand, the number of edges H and $\overline{m C P(n)}$ are the same. Consequently by a simple induction on w we prove that $H=w K_{1} \cup \overline{m C P(n)}$. For $w=1$, it is easy to see that $H=\overline{m C P(n)} \cup$ K_{1}, since H has a vertex more than $\overline{m C P(n)}$ and the number of their edges are the same (Note that $\frac{m C P(n)}{}$ is a $D A S$-graph). Let the problem is true for w; that is if $\operatorname{Spec}_{A}\left(H_{1}\right)=\operatorname{Spec}_{A}(H)$, then $H_{1}=w K_{1} \cup \overline{m C P(n)}$, where H_{1} is an arbitrary graph A-cospectral with H. We prove that the problem for $w+1$. In other words, if $\operatorname{Spec}_{A}\left(H_{2}\right)=\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{m-1},[-1]^{m n},[1]^{(n-1) m},[0]^{w+1}\right\}$, then $H_{2}=(w+1) K_{1} \cup \overline{m C P(n)}$. Obviously, H_{2} has 1 vertex more than H_{1}. On the other hand, the number of edges H_{1} and H_{2} are the same. Therefore, $H_{2}=H_{1} \cup K_{1}$. Now, the induction hypothesis completes the proof.

In the following we show that $\overline{m C P(n)}$ and $w K_{1}$ are only subgraphs of \bar{G}. To put that another way, $\bar{G}=\overline{m C P(n)} \cup w K_{1}$.

Case 2. \bar{G} is disconnected; that is $\bar{G}=H_{1} \cup \cdots \cup H_{n}$. Obviously, $\operatorname{Spec}_{A}(\bar{G})=\operatorname{Spec}_{A}\left(H_{1}\right) \cup \cdots \cup$ $\operatorname{Spec}_{A}\left(H_{n}\right)$. Consider the following subcases:

1. If proper subgraph H_{1} of \bar{G} has two distinct eigenvalues.
(a) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[-1]^{b}\right\}$.

Since the summation of the eigenvalues of a graph is always zero, so $2 m n-2 n+1-b=0$, which means that $b=2 m n-2 n+1$. On the other hand, since H_{1} has two distinct eigenvalues, so it is a disjoint union of complete graphs on the same vertices; i.e., $b=1$ or $2 m n-2 n+1=1$. Therefore, $2 m n=2 n$ or $m=1$. This means that $H_{1}=K_{2}=\overline{C P(1)}$.
(b) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{a}\right\}$. Since $2 m n-2 n+1+a(-2 n+1)=0$, so $a=\frac{2 m n-2 n+1}{2 n-1} \leq m-1 \leq n m$ or $2 m n-2 n+1 \leq 2 n m-n m$. Therefore, $-2 n+1 \leq-n m$, for $m \geq 2$ we get a contradiction. If $m=1$, then $a=0$, a contradiction.
(c) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[-1]^{b},[1]^{c}\right\}$. If H_{1} is a connected graph, then by the Perron-Frobenius theorem $c=b=1$ and so $H_{1}=K_{2}=\overline{C P(1)}=\overline{1 C P(1)}$. If H_{1} is disconnected, then $H_{1}=c K_{2}=$ $\overline{C P(c)}=\overline{1 C P(c)}$, where $b=c \geq 2$.
(d) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[-2 n+1]^{a},[1]^{c}\right\}$. By Perron-Frobenius theorem $c=1$. Obviously, $(-2 n+$ 1) $a=-1$ or $a=\frac{1}{2 n-1}$. Clearly, $n=1$ or $H_{1}=K_{2}=\overline{C P(1)}=\overline{1 C P(1)}$.
2. If proper subgraph H_{1} of \bar{G} has three distinct eigenvalues. By Theorem 2.4 any graph with exactly one positive eigenvalue is a multipartite graph with possibly some isolated vertices.
(a) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[0]^{d},[-1]^{b}\right\}$. Since $2 m n-2 n+1-b=0$, so $b=2 m n-2 n+1 \leq$ $m n$ or $m n-2 n+1 \leq 0$. It is clear that for $m \geq 2$ we have a contradiction. If $m=1$, then $b=1$ and so $H_{1}=K_{2}=\overline{1 C P(1)}$, a contradiction.
(b) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{a},[0]^{d}\right\}$. Similar Subcase 1 (b) we get a contradiction.
(c) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{a},[-1]^{b}\right\}$, a contradiction, since any multipartite graph consists of the eigenvalue 0 .
(d) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[-1]^{b},[1]^{c},[0]^{d}\right\}$. If H is a connected graph, then $b=c=1$ and so $b+c=$
$2 m\left(H_{1}\right)$ or $m\left(H_{1}\right)=1$. This means that $H_{1}=K_{2} \cup d K_{1}$, a contradiction, since any multipartite graph is a connected graph.
(e) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[-1]^{b},[1]^{c},[-2 n+1]^{a}\right\}$. Obviously, $(2 n-1) a=b-c$. By the PerronFrobenius theorem $c=1$. By Theorem $2.4 H_{1}$ is a multipartite complete graph and as a result it has 0 as its eigenvalue and so we get a contradiction.
(f) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[-1]^{b},[1]^{c}\right\}$. Clearly, $2 m n-2 n+1=b-c \leq b+c \leq m n+m-1$ or $m n-2 n \leq-2$. For $m \geq 2$ we get a contradiction. If $m=1$, then we have not three distinct eigenvalues, a contradiction.
3. If proper subgraph H_{1} of \bar{G} has four distinct eigenvalues.
(a) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[0]^{d},[-1]^{b},[1]^{c}\right\}$. The proof is similar to Subcase 2 (f).
(b) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{a},[-1]^{b},[1]^{c}\right\}$. It is clear that $a=m-1, b=m n$ and $c=(n-1) m$. In this case $H=\overline{m C P(n)}$.
(c) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[0]^{a},[-1]^{b},[1]^{c},[-2 n+1]^{a}\right\}$. Clearly $c-b=(2 n-1) a$ and so $1=b+(2 n-1) a$. Since $b \geq 1$ thus $b=1$ and $(2 n-1) a=0$ or $n=\frac{1}{2}$, which is impossible.
4. If proper subgraph H_{1} of \bar{G} has five distinct eigenvalues.
(a) $\operatorname{Spec}_{A}\left(H_{1}\right)=\left\{[2 m n-2 n+1]^{1},[-2 n+1]^{a},[-1]^{b},[1]^{c},[0]^{d}\right\}$. It is clear that there is no connected graph with this spectrum, otherwise by Subcase 3 (b) $\overline{m C P(n)}$ is a proper subgraph of H_{1} and so by Theorem $2.72 m n-2 n+1=\varrho\left(H_{1}\right)>\varrho(\overline{m C P(n)})=2 m n-2 n+1$, which is impossible.
By what was proved it is easy to see that $H_{1}=\overline{m C P(n)}$ and so $\bar{G}=w K_{1} \cup \overline{m C P(n)}$ or $G=$ $K_{w} \nabla m C P(n)$.

Corollary 3.1. Any graph A-cospectral to a multicone graph $K_{w} \nabla m C P(2)=K_{w} \nabla m C_{4}$ is a DASgraph.
In the following lemma, we show that multicone graphs $K_{w} \nabla m C P(n)$ are $D L S$-graphs.

4. Graphs L-cospectral to a multicone graph $K_{w} \nabla m C P(n)$

Theorem 4.1. If $\operatorname{Spec}_{L}(G)=\operatorname{Spec}_{L}\left(K_{w} \nabla m C P(n)\right)$, then $G \cong K_{w} \nabla m C P(n)$.
Proof. We solve the problem by induction on w. If $w=m=1$, then by Theorems 2.2 and 2.3 the proof is clear. If $w=1$ and $m \geq 2$, then by Theorem 2.8 the proof is straightforward. Let the problem be true for w; that is, if $\operatorname{Spec}_{L}\left(G_{1}\right)=\operatorname{Spec}_{L}\left(K_{w} \nabla m C P(n)\right)$, then $G_{1} \cong K_{w} \nabla m C P(n)$, where G_{1} is a graph. We show that $\operatorname{Spec}_{L}(G)=\operatorname{Spec}_{L}\left(K_{w+1} \nabla m C P(n)\right)$ implies that $G \cong K_{w+1} \nabla m C P(n)$. It follows from
 $\operatorname{Spec}_{L}\left(H_{2}\right)=\operatorname{Spec}_{L}\left(K_{w} \nabla m C P(n)\right)$ and $H_{1}=K_{1}$. By the induction hypothesis $H_{2}=K_{w} \nabla m C P(n)$ and so $\left.G=H_{1} \nabla H_{2}=K_{1} \nabla\left(K_{w} \nabla m C P(n)\right)=K_{w+1} \nabla m C P(n)\right)$. The proof is complete.
Corollary 4.1. Any graph L-cospectral to the multicone graph $K_{w} \nabla m C P(2)=K_{w} \nabla m C_{4}$ is a DLS graph.

In the following, we show that any graph A-cospectral and also L-cospectral to the multicone graph $K_{w} \nabla m C P(n)$ is perfect.

5. Some graphical properties about multicone graphs $K_{w} \nabla m C P(n)$

Suppose $\chi(G)$ and $\omega(G)$ are chromatic number and clique number of graph G, respectively. A graph is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G. It is proved that a graph G is perfect if and only if G is Berge; that is, it contains no odd hole or antihole as induced subgraph, where odd hole and antihole are odd cycle, C_{m} for $m \geq 5$, and its complement, respectively. Also, in 1972 Lovász proved that, a graph is perfect if and only if its complement is perfect(see [1,17]).

Theorem 5.1. Let graph G be A-cospectral to a multicone graph $K_{w} \nabla m C P(n)$. Then G and \bar{G} are perfect.

Proof. It is quite clear that G cannot consist of an odd hole of order greater than or equal to five as an induced subgraph. We show that G contains no odd antihole of order greater than or equal to five as an induced subgraph. By contrary, we suppose that G contains $\overline{C_{k}}$ as an induced subgraph, where k is odd and $k \geq 5$. Hence $\bar{G}=w K_{1} \cup \overline{m C P(n)}$ must consists of C_{k} as an induced subgraph. In other words, $\overline{m C P(n)}=\underbrace{n K_{2} \nabla \ldots \nabla n K_{2}}_{\text {mtimes }}$ must consists of C_{k} as an induced subgraph. This is obviously a contradiction.

Theorem 5.2. Let $\operatorname{Spec}_{L}(G)=\operatorname{Spec}_{L}\left(K_{w} \nabla m C P(n)\right)$. Then G and \bar{G} are perfect.
Proof. The proof is in the same way of Theorem 5.1.
In the following, we pose two conjectures.

6. Final remarks and open problems

In this paper, we have shown any graph A-cospectral to a multicone graph $K_{w} \nabla m C P(n)$ is DS with respect to its spectra. Also, we have shown in specialcases the complement of these graphs are DS. In addition, we have proved any graph A-cospectral (L-cospectral) to one of these graphs is perfect. Hence we pose two conjectures.

Conjecture 1. Any graph A-cospectral to a complement of multicone graph $K_{w} \nabla m C P(n)$ is a DAS graph.

Conjecture 2. Multicone graphs $K_{w} \nabla m C P(n)$ are DQS -graphs.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. A. Z. Abdian and S. M. Mirafzal, On new classes of multicone graphs determined by their spectrums, Alg. Struc. Appl., 2 (2015), 23-34.
2. A. Z. Abdian, Graphs which are determined by their spectrum, Konuralp. J. Math., 4 (2016), 34-41.
3. A. Z. Abdian, Two classes of multicone graphs determined by their spectra, J. Math. Ext., 10 (2016), 111-121.
4. A. Z. Abdian, Graphs cospectral with multicone graphs $K_{w} \nabla L(P)$, TWMS. J. App. Eng. Math., 7 (2017), 181-187.
5. A. Z. Abdian, The spectral determinations of the multicone graphs $K_{w} \nabla P$, arXiv:1706.02661.
6. A. Z. Abdian and S. M. Mirafzal, The spectral characterizations of the connected multicone graphs $K_{w} \nabla \operatorname{LHS}$ and $K_{w} \nabla \operatorname{LGQ(3,9),~Discrete~Math.~Algorithm.~Appl.,~} 10$ (2018), 1850019.
7. A. Z. Abdian and S. M. Mirafzal, The spectral determinations of the connected multicone graphs $K_{w} \nabla m P_{17}$ and $K_{w} \nabla m S$, Czech. Math. J., 68 (2018), 1091-1104.
8. A. Z. Abdian, The spectral determinations of the multicone graphs $K_{w} \nabla m C_{n}$, arXiv preprint arXiv:1703.08728.
9. A. Z. Abdian, L. W. Beineke, M. R. Oboudi, et al., On the spectral determinations of the connected multicone graphs $K_{r} \nabla s K_{t}$, AKCE Int. J. Graphs Combin., arXiv preprint arXiv:1806.02625.
10. A. Z. Abdian, A. Behmaram and G. H. Fath-Tabar, Graphs determined by signless Laplacian spectra, AKCE Int. J. Graphs Combin., https://doi.org/10.1016/j.akcej.2018.06.00.
11. A. Z. Abdian, G. H. Fath-Tabar and M. R. Moghaddam, The spectral determination of the multicone graphs $K_{w} \nabla C$ with respect to their signless Laplacian spectra, J. Alg. Systems, (to appear).
12. A. Z. Abdian, S. Pouyandeh and B. Askari, Which multicone graphs Kn ∇ Km are determined by their signless Laplacian spectrum?(the proof of a conjecture), J. Discrete Math., Sci. and Cryp., 22 (2019), 91-99.
13. A. Z. Abdian and A. M. Moez, The spectral determination of the join of two friendship graphs, Honam Math. J., 41 (2019), 67-87.
14. A. Z. Abdian and A. R. Ashrafi, No two Jellyfish graphs are L-cospectral and Q-cospectral, arXiv preprint arXiv:1908.07909.
15. M. R. Moghaddam, K. Zhao, S. Pouyandeh, et al., The spectral determination of the multicone graphs $K_{w} \nabla P_{17} \nabla P_{17}$ and $K_{w} \nabla S \nabla S$, Konuralp. J. Math., 7 (2019), 192-198.
16. A. Z. Abdian, A. R. Ashrafi, L. W. Beineke, et al., Laplacian spectral determination of pathfriendship graphs, arXiv preprint arXiv:1903.11121.
17. A. Brandstädt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM, 1999.
18. R. B. Bapat, Graphs and Matrices, London: Springer, 2010.
19. N. Biggs, Algebraic Graph Theory, Cambridge: Cambridge University press, 1993.
20. X. M. Cheng, G. R. W. Greaves, J. H. Koolen, Graphs with three eigenvalues and second largest eigenvalue at most l, J. Comb. Theory B, 129 (2018), 55-78.
21. S. M. Cioabä, W. H. Haemers, J. R. Vermette, et al., The graphs with all but two eigenvalues equal to ± 1, J. Algebr. Combin., 41 (2013), 887-897.
22. D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge: Cambridge University Press, 2010.
23. U. Knauer, Algebraic Graph Theory: Morphism, Monoids and Matrices, Berlin: Walter de Gruyter, 2011.
24. S. M. Mirafzal and A. Z. Abdian, Spectral characterization of new classes of multicone graphs, Stud. Univ. Babes-Bolyai Math., 62 (2017), 275-286.
25. S. M. Mirafzal and A. Z. Abdian, The spectral determinations of some classes of multicone graphs, J. Discrete Math. Sci. Crypt., 21 (2018), 179-189.
26. R. Sharafdini and A. Z. Abdian, signless Laplacian determination of some graph with independent edges, Carpathian Math. Publ., 10 (2018), 185-196.
27. P. Rowlinson, The main eigenvalues of a graph: A survey, Appl. Anal. Discrete Math., 1 (2007), 445-471.
28. D. Stevanović, I. Gutman and M. U. Rehman, On spectral radius and energy of complete multipartite graphs, Ars Math. Contemp., 9 (2014), 109-113.
29. E. R. Van Dam and W. H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra. Appl., 373 (2003), 241-272.
30. E. R. Van Dam and W. H. Haemers, Developments on spectral characterizations of graphs, Discrete Math., 309 (2009), 576-586.
31. J. Wang, H. Zhao and Q. Huang, Spectral charactrization of multicone graphs, Czech. Math. J., 62 (2012), 117-126.
32. J. Wang, F. Belardo, Q. Huang, et al., On the two largest Q-eigenvalues of graphs, Discrete Math., 310 (2010), 2858-2866.
33. J. Wang and Q. Huang, Spectral characterization of generalized cocktail-party graphs, J. Math. Res. Appl., 32 (2012), 666-672.
34. D. B. West, Introduction to Graph Theory, Upper Saddle River: Prentice Hall, 1996.

AIMS Press
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

