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1. Introduction

The classical fractional calculus is one of the branches of applied mathematics which has merged
in pure mathematics. In fact, the topic of fractional differential equations and inclusions, as one of
the subjects of the fractional calculus, is an important and effective field of research which the basic
techniques of the functional analysis and fixed point theory were used to proving the existence and
uniqueness of solutions for this kind of differential equations and inclusions. On the other hand, the
extensiveness and importance of this topic has been caused to publish the many works and papers by
other researchers (for example, see [2,3,5,7,9,12-15,19,32-34].

Later, g—difference calculus or quantum calculus, as a generalization of the classical calculus, has
gained considerable attention of researchers and mathematicians. The first work on the subject of
g—difference calculus dates back to Jackson’s works [25].

In recent years, many researchers have studied and published various and distinct papers on the
existence theory of fractional g—difference equations and inclusions (for examples, see [1,4,6,17,18,
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20-23,26,29,30,35,37,39,41)).
In [8], Bashir Ahmad et al. studied the existence of solutions for the nonlocal boundary value
problem of fractional g—difference equation

CDZX(I) = f(t, x(1)), 0<r<1, l<a<?2,
a@1x(0) = B1Dx(0) = y1x(171),  axx(1) + BoDyx(1) = y2x(12),

where, “Dy 1s the fractional g—derivative of the Caputo type and ;, B;, 7; € R. Authors in that paper, by
applying the Banach contraction principle, Krasnoselskii’s fixed point theorem and the Leray-Schauder
nonlinear alternative studied the existence results.

In [40], Zhao et al. dealt with the following nonlinear fractional g—difference equation with the
nonlocal g—integral boundary value conditions:

Dix(t) + f(t,x(1)) =0, 0<i<1,1<a<2,
x(0)=0, x(1) = ulx(n), 0<B<2,

where, Dy is the fractional g—derivative of Riemann-Liouville type and u > 0. They studied the
existence of solutions for the above problem by using the generalized Banach contraction principle,
the monotone iterative method and Krasnoselskii’s fixed point theorem.

In 2015, Alsaedi, Ntouyas and Ahmad investigated the fractional g—difference inclusion with
nonlocal and substrip type boundary conditions

"D;x(t) e F(t,x(r)), 0<t<l1, 1<v<2,
1
x(0) = g(x), x(w) = bf x(s)d,s O<w<d<l,
P

where ‘Dy denotes the Caputo fractional g—derivative of order v [10].
Motivated by the above papers, in this paper, we discuss the existence of solutions for fractional
g—difference equation

{ D2u(t) = f(t,u(t), Dau(t)), 0<t<1, 0<qg<l, (1.1)

u0)=0, Dyu(l)=0, Dju(l)=0,

where, “Dy denotes the fractional g—derivative of the Caputo type of order @ and @ € (2,3] and
f:10,1] x R? — R is a continuous mapping.
Also, we study the existence of solutions for the following fractional g—difference inclusion

{ ‘Dyu(r) € F(t,u(t), Dau(r)), 0<r<1, 0<g<l,

u(0)=0, Du(1)=0, Diu(l)=0, (1.2)

where F : [0, 1] x R? — P(R) is a compact multivalued map.

The rest of the paper is organized as follows: In section 2, we state some important definitions and
lemmas on the fundamental concepts of g—fractional calculus and fixed point theory. In section 3, we
state main results on the existence of solutions for g—fractional boundary value problem (1.1). Section
4 contains some main theorems on the existence of solutions for g—fractional boundary value problem
(1.2). Finally, in section 5, we give some illustrative examples to show the validity and applicability of
our results.
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2. Preliminaries

In this section, we first recall some known definitions and lemmas about g—fractional calculus. For
more details in this regard, see [22,25-27].

1 A0
Let 0 < g < 1. For each a € R we define [a], = I T The g—analogue of the power function

(a—-b)'withneNj:={0,1,2,...}is given by
n—1

@-b)"=1, @-b"=]|@-bd), neNabeR.
k=0

In general, if @ is real number then

It is clear that if b = 0, then a'® = q®. The g—Gamma function is defined by

_(1—gt
O

where x € R\ {0,-1,-2,...}. Also, we have I'j(x + 1) = [x],I'y(x). The g—derivative of a real-valued
function f is defined by

T,

f(x) = f(gx)
1-q¢x °

The g—derivative of higher order of a function f is given by

(Dy f)(x) = (Dg)(0) = im(Dy f)(x).

D)) = fX),  (DLA) = DD H®), (0 € ).

The g—integral of a function f defined in the interval [0, b] is given by
() = [ F0)ys = x01 =) Y fae's x€ [0.5)
0 k=0

such that the sum is absolutely convergent. Now, if a € [0, b], then g—integral of f from a to b is

b
f f($)dys

b a
1,/ (b) — 1,f(a) = fo F(s)d,s fo F(s)ds

(1-9) ) [bf(bg") - af(agd’,
k=0

provided that the series converges. Similar to g—derivatives, an operator [ is given by
(I Hx) = fx), €3N = 1L,y )X, (neN).
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Note that (D1, f)(x) = f(x) and if f is continuous at x = 0, then (/,D,f)(x) = f(x) — f(0).
Let @ > 0 and f be a function defined on [0, 1]. The fractional g—integral of the Riemann-Liouville
type is (1) f)(x) = f(x) and for x € [0, 1]

1
[y(@)

N0 = = [ =g s, >0
0

The fractional g—derivative of the Caputo type of order @ > 0 is defined by

1
[y([a] = a)

where [«a] is the smallest integer greater than or equal to @ [16]. In the following lemmas, we bring
some important properties of these g—operators.

(D) (x) = A" D H(x) = f - gs) 1D f)(9)dys, a >0,
0

Lemma 2.1. [17] Let o, > 0 and f be a function defined on [0, 1]. Then

(i) LIS )(x) = Ay P ),
(i) (D212 F)(x) = f(x).
Lemma 2.2. [17] Let « > 0 and n be a positive integer. Then the following equality holds:
n-l1 a—n+k

I3 DLAX) = (DS )X = Y

k=0

k
5 PLNO).

IFa+k-n+

Now, we recall some definitions and lemmas on the multifunctions and fixed point theory which
are needed in the sequal.

Consider the set X with the metric d. Denote by P(X), 2%, P(X), Pc,(X), Pp(X) and P,.(X), the
class of all subsets, the class of all nonempty subsets of X, the class of all closed subsets of X, the
class of all compact subsets of X, the class of all bounded subsets of X and the class of all convex
subsets of X, respectively. Let F : X — 2¥ be a multivalued map. If u € Fu then we say thatu € X is a
fixed point of the multifunction F [16,24,38]. The fixed point set of the multivalued operator F will
be denoted by Fix(F).

A multifunction F : [0,1] — P,4(R) is said to be measurable whenever the function
(1) = d(y, F(t)) = inf{|ly — v|| : v € F(¢)} is measurable for all y € R [16,24]. The Pompeiu-Hausdorft
metric H,; : 2X¥ x 2X — [0, c0) is defined by

H,(A, B) = max{supd(a, B),supd(A, b)},
acA beB

where d(a, B) = infyep d(a, b), d(A, b) = inf 4 d(a, b) [16,24]. Then the space (P ,(X), Hy) is a metric
space and (P.,(X), H;) 1s a generalized metric space, where $;;,(X) 1s the set of closed and bounded
subsets of X. [16,24].

A multi-valued mapping F : X — P,(X) is called a contraction if there exists y € (0, 1) such that
H (F(x), F(y)) < yd(x,y) forall x,y € X [16].

F is called upper semi-continuous (u.s.c.) on X if for each xy € X, the set F(xp) is a nonempty
closed subset of X, and if for each open set N of X containing F(x), there exists an open neighborhood
Ny of xo such that F(Ny) € N [16]. The operator F is said to be completely continuous if F(B) is
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relatively compact for every B € $,(X).

An element x € X is called an endpoint of a multifunction F : X — P(X) whenever Fx = {x} [11].
Also, we say that F has an approximate endpoint property whenever inf ex sup,.r, d(x,y) = 0 [11]. A
real-valued function f : R — R is called upper semi-continuous whenever limsup,_, f(1,) < f(1)
for all sequence {1,},>; with 4, — A.

We denote by ¥, the family of nondecreasing functions ¢ : [0, c0) — [0, o) such that }° , ¥"(¢) <
oo for all ¢+ > 0 [36]. It is known that ¥(#) < t for all ¢ > 0 [36]. In 2012, Samet, Vetro and Vetro
introduced the notion of @-y-contractive type mappings [36]. We say that the selfmap 7 : X — X is
an a-y-contraction whenever a(u, v)d(Tu, Tv) < ¥(d(u,v)) for all u,v € X [36]. Also, the selfmap 7T is
called a-admissible whenever a(u, v) > 1 implies a(Tu, Tv) > 1 [36]. We say that X has the property
(B) whenever for each sequence {u,} in X with a(u,,u,,;) > 1 foralln > 1 and u, — u, we have
a(u,,u) > 1 for all n [36].

In 2013, Mohammadi, Rezapour and Shahzad generalized this notion to multifunctions [31]. A
multifunction F : X — P.,(X) is called @ — yy—contraction whenever

a(u,v)H ;(Fu, Fv) < y(d(u,v))

for each u,v € X [31]. Similarly, the space X has the property (C,) whenever for each sequence {u,}
in X with a(u,, u,,1) > 1 for all n € N, there exists a subsequence {u,,} of {u,} such that a(u,,,u) > 1
for all k € N. The multi-valued map F is a—admissible whenever for each u € X and v € Fu with
a(u,v) > 1, we have a(v,w) > 1 forall w € Fv [31].

Our main results based on the following fixed point theorems.

Theorem 2.1. ( [36]) Let (X, d) be a complete metric space, y € ¥, @ : X X X - Ramap and T an
a—admissible and a — y—contractive selfmap on X such that a(xy, T xo) > 1, for some xo € X. If X has
the property (B), then T has a fixed point.

Theorem 2.2. ( [28, 38], Krasnoselskii) Let M be a closed, bounded, convex and nonempty subset of
a Banach space X. Let A and B be two operators mapping M to X such that:

(i) Ax + By € M whenever x,y € M;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.

Then there exists 7z € M such that z = Az + Bz

Theorem 2.3. ( [31]) Let (X, d) be a complete metric space, @ : XXX — [0, o) a map, ¥ € ¥ a strictly
increasing map, F : X — P ,(X) an a-admissible a-y-contractive multifunction and a(uy, u;) > 1 for
some uy € X and uy € Fuy. If the space X has the property (C,), then F has a fixed point.

Theorem 2.4. ( [11]) Let (X,d) be a complete metric space and ¥ : [0,00) — [0, 00) be an upper
semi-continuous function such that y(t) < t and liminf, (¢t — ¥(t)) > O for all t > 0. Suppose that
T : X = Puap(X) is a multifunction such that Hy(Tx,Ty) < y(d(x,y)) for all x,y € X. Then T has a
unique endpoint if and only if T has approximate endpoint property.
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3. Existence results for fractional g—difference equation

Let X = {u: u,D,u € C([0, 1],R)}. Then X is a Banach space via the norm

llull = sup |u(2)] + sup [Du(7)].

t€[0,1] 1€[0,1]
Put
1 1 2 2 2
A = + + 9 , ) = + ,
Fq(a +1) Fq(a) (1+ q)Fq(a' -1 Fq(a) Fq(a -1)
1 2 1 2
Ay = + 4 ) Ay = + ,
Fq(a/) (1+ q)Fq(a -1 Fq(a) Fq(a/ -1
O, = [m|Ay, D, = |Iml|As. (3.1)

Lemma 3.1. Let y € C([0,1],R). Then the integral solution of the g—fractional boundary value
problem

‘Dgu(r) = y(1),
(3.2)
u(0) =0, Du(l)=0, Dlu(l)=
is given by
! a-1) 1 (a-2)
(t = gs) (1-gs)
u(t) = ———y()d,s—t | ————V(s)d,s
0 L@ TN Te-n
P—tl+q) (" (1-gs9?
d,s. 3.3
T+q  Jo Tja—2 YW (3.3)
Proof. Choose the constants ¢, ¢; and ¢, € R such that
(t - (a D
u(t) = f r @ ————y(s)d,s + o + C1t + o (3.4)

Thus, we have )
!
(t—qs)
D, u(t) = _ d, s +c; + (1l + g)t,
(1) f a1 s raral+g
T, (a-2)
By using the boundary value condmons, we find that ¢y = 0 and

(T -gee? L1 -g9)©@?
c) = _.E —I‘q(a N y(s$)dys +f0 Ta-2) y(s$)dys,

_ (1-gs)e™
c) = — 1+qf Ta=2) y(8$)dys.

By substituting the values of ¢;’s in Eq (3.3), we obtain the g—integral equation (3.2). The converse
follows by direct computation. The proof is completed. O

5 ( )(a 3)
Dy u(t) = (@ y($)dys + (1 + g).
q

and
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In view of the above lemma, we define an operator S : X — X as follows:

Su)®) ————f(s,u(s), Dyu(s))d,s — t ——————f(s,u(s), Dyu(s))d,s

[y(@) o Tyl@=1)

—t(1+q) (' (1-gse™
1+¢ o TIyla-2)

f (t—gs)* "1 = gs)@?

S(s,u(s), Dyu(s))d,s. 3.5

It is evident that the solution of the problem (1.1) is a fixed point of an operator S ; that is Su = u.
Now, we are ready to prove our main results.

Theorem 3.1. Let y € W, ¢ : R2xR?> — R be amap and f : [0, 1] X R> — R a continuous function.
Suppose that:

(H1) Forall uy,u,vi,vy € R,

‘f(f, u,vy) — f(, Mz,Vz)' < l//(|ul —up| + vy — \/2|)(A1 j—Az)’

with £((uy (£),v1()), (ua(0), va(1))) 2 0 for t € [0, 1].
(H2) There exists up € R such that f((uo(t),uno(t)), (Fuo(t),Dq(Fuo(t)))) > O forallt € [0,1] and

E((u(t). Dgut0)). (v(1), Dyv(1))) = O implies

E((Fu(®), Dy(Fu(®))), (Fv(t), Dy(Fv(1)))) 2 0

forallt € [0,1] and u,v € R.
(H3) For each convergent sequence {u,},>1 in R with u, — u and

E(n(2), Dyt (D), 1 (0, Dyt (1)) 2

forallnandt € [0, 1], we have f((un(t), D,u,(1)), (u(1), un(t))) > 0.
Then the fractional q—difference Eq (1.1) has at least one solution.
Proof. Let u,v € R with &(u(t), D,u(?)), (v(t), D,v(1))) > 0 for all 7 € [0, 1]. Then, we get
R W (¢9)
( qs)(a 2)
+tf T@-1) ————|f (s, u(s), Dyu(s)) — f(s,v(s), Dyv(s))ld,s

2—1(l+ql (1 -gs)?
(I+a) Jo T, @-2)

————y(Ju(s) = v(s)| + IDgu(s) — Dyv(s))(

IS u(?) = Sv(2)|

IA

£ (s, u(s), Dyu(s)) = f(s,v(s), Dyv(s))ldys

|f (s, u(s), Dgu(s)) = f(s,v(s), Dgv(s))ldys

IA

: )
I, (a/ 1) A Az

Y(lu(s) = v(s)| + |Dgu(s) = D V(S)I)(

Fq( ) AZ)
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2+q
T+ Plya—1)

S FarnVi- viD(

2+¢q
(1+ Ply(a—1)

Al = v

www—wm+mww—0wmm +A)

W(llu = Vil

A Az) F( ) A1+A2)

Sl = vi(

A A)

A+ Az),
and

¢ (a-2)
0 %lﬂs u(s), Dgu(s)) = f(s,v(s), Dgv(s))ldys
q

Y1 -g9“?
0 q( _1)

(1- qS)(" Y
+r - 1|f ) (s, u(s), Dyu(s)) — f(s,v(s), Dyv(s))ldys

|DySu(t) — D,Sv(t)| <

|f (s, u(s), Dyu(s)) = f(s,v(s), Dgv(s))ldys

IA

www—wm+wwm—Dwmm

Ay +A2)
Y(lu(s) = v(s)| + IDyu(s) = Dv(s)))(

nm>

A+ Az)
wllle =i«

+
Ty(@)
e =viD( 5 1 o)

IA

Fq( ) q( ) AZ)

¥l - nx

r() AA)

= Agy(llu = vi)(

AA)

Hence

IS0 = SVl < Ay + Al = VD ) = vl = .

Now, define the function @ : R X R — [0, c0) as follows
Lo if &), Dyu(r)), (v(1), Dyv(©)) 2 0
a(u,v) =
0, otherwise.
By definition of the above function, it is clear that
a(u,v)d(Su,Sv) < ¥(d(u,v))

for each u,v € R. This means that S is an @ — y—contractive operator. Also, it is easy to see that
S 1s an @—admissible and a(uy, Sup) > 1. Suppose that {u,},>; is a sequence in R with u, — u and
a(u, u,,1) = 1 for all n. By definition of the function @, we have

E(Un(2), Dgttn(0), (1 (1), Dyt (1)) 2 0
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Thus by the hypothesis, f((u,,(t), Dyu, (1)), (u(2), un(t))) > 0. This shows that for all n, a(u,,u) > 1.
So R has the property (B). Finally, Theorem 2.1 implies that the operator S has fixed point u* € R
which is the solution for the g—fractional problem (1.1). This completes the proof. m|

Theorem 3.2. Let f : [0, 1] X R?> — R be a continuous function. Suppose that:

(H4) There exists a continuous function L : [0, 1] — R such that for each t € [0, 1] and for all u;,v; € R,
i=1,2, we have
|f(t ur, up) — f(t,vi,vo)l < L(O)(luy — vil + lus — va).

(HS5) There exist a continuous function u : [0,1] — R* and a non-decreasing continuous function
W2 [0,1] = R* such that
|t ur, w)l < pOY(lun| + lwal),  1€[0,1], w; €R, i=1,2.
Then, the fractional g—difference equation (1.1) has at least one solution on [0, 1] if

= [ILII((A1 + Ag) < 1,

where ||L|| = sup |L(¢)| and Ay, A, are given by Eq (3.1).
1€[0,1]

Proof. Define ||u|| = sup |u(?)| and choose a suitable constant » such that
1€[0.1]

r 2 Y(llulDllulfAr + As}, (3.6)

where A;’s are given by Eq (3.1). We consider the set B, = {u € X : |lu|| < r}, where r is given in
Eq (3.6). It is clear that B, is a closed, bounded, convex and nonempty subset of the Banach space X.
Now, define two operators S; and S, on B, as follows:

(1= g9

S =
(S 1u)(2) ) T,@

f(s,u(s), Dgu(s))dys, (3.7)

and

(a=2)
(Sa(t) = -1 f T ; F5.u(s). Dyu(9))d,s

—tl+q) (" A-gs)e
l+¢g o Tya-2)

foreach t € [0, 1]. Put a = sup,.y Y¥(||ull). For u,v € B,, we have

S (s, u(s), Dyu(s))dys, (3.9)

_ (a-1)
(S 11t + S2v)(D) f ¢ q()) (s, u(s), Dyu(s)ld, s
l]

(1 - )(a 2)
+t fo %lﬂs,vm)ﬂqv@))ldw

=1+ gl (' (1=gs)?
I+q  Jo Tyla-2)

£ (s, v(s), Dgv(s))ldys
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< @ fo (t — q5) " () (u(s)| + 1D u(s))d,s

1
+ﬁ f(; (1 = g9) " Pu(s)p(v(s) + |D,v(s)Dd,s
q

2 = 1(1 + )|
(1 + gy (a-2)

R S 2+gq ]
T a+1) T, o) 1+l a-1)

1
f (1 = g8) (s (v(s)] + [Dv(s))d,s
0

< alul| = allullA;.

Also,

f (¢ _ (@-2)
|(DyS 1u+ D,Sov)(@)| < f(; %Iﬂs, u(s), Dyu(s))ld,s
q

L (] — gs)@2
+ S--izfl-——-Lf(s,v(s),l)qv(s)nd;s

0 q( _1)

— gs)@?
+|r—1|f( CIS_)Z) |f (s, v(s), D,v(s))ld,s

IA

—r @ 1 fo (1 = g9) (s (u(s)| + 1Du(s))dys
q
1 1
+—F @@= f (1 = ) PusW(v(s)| + |Dv(s))d,s

~1
lt B)j‘a )" T g(a = 2u(W(v(s)| + 1Dev(s))dys
2 2
+ |
rq(a) Fq (-1)

Hence ||Su + S,v|| £ rand so, S u + S,v € B,.
Clearly, the continuity of S is follows from the function f. Also, for each u € B,, we have

< allﬂll[ = allullAz.

(a—-1) 1
(S ()] < f U= s, u(s), Dyu(s))lds < ————ullylul),

q( ) Fy(a+1)
and
( )(a 2) 1
I(DyS1u)(D)] < f —If(s u(s), Dyu(s))lds < lgellygrCllaelD-
Iy(a)
Thus ||S ju|| < {Fq(a ) + I@ }llyllw(llull). This proves that the operator S ; is uniformly bounded on
B..

Now, we show that the operator S is compact on B,. For each t,1, € [0, 1] with #; < t,, one can
write

(S 1u)(72) = (S 1u)(11)]
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" (1, — qs)@ " (1~ g9)"
‘ 0 %f(s,u(s),un(s))ds— ) %JC(&“(”’DW(”)‘{S
Nt — a8) @D — (4 — gs)@D
q
ty _ (a-1)
_l_f %f(s,u(s),un(S))ds‘
H q
oA _ (a=1) _ —_ (@-1)
= e Fq(a()t1 ) (s, u(s), Dgu(s)lds
ty _ (a—1)
%| f(s,u(s), Dyu(s))lds
h q

{IE’ - -n)' B-n)

T @+ D) +QW+DHMMWW

It is seen that (S 1u)(t2) — (S 1u)(t;)| — O as t, — ;. Also, we have

[(DgS 11u)(12) = (DgS 1u)(t1)]

i ‘ otz (tqu_(;]—s—)(tll;Z)f (5, u(s), Dgu(s))dls - Otl (tqu_(g—s_)(;z)f(s, u(s), Dgu(s))ds
< ‘ j; " (- 618)(“;()&— _(ti )— qS)<a—2>f(s, u(s)’un(s))dS’
,ltz (tzrq_(j—s_)(i?f(s, u(s), un(s))ds'
_-ﬂnm_qwiiiﬁfqﬂ%ﬂﬂ&M&Dwumw
,f%igg?VWMﬂDwmws
] {g%_ﬁ?ggrﬁﬁH+f”ig§4}wwmw>

Again, we see that (DS 1u)(t2) — (DgS 1u)(t)] — 0 as t, — t;. Hence ||(S 1u)(t2) — (S 1u)(#1)|| tends to
zero as t, — t;. Thus, S is equicontinuous and so S is relatively compact on B,. Consequently, the
Arzela-Ascoli theorem implies that §; is a compact operator on B,.

Finally, we prove that S, is a contraction mapping. For each u,v € B,, we have

(S 2:0)(1) = (S20)(D)

1 _ (@=2)
= %ﬂggTTvum@LDw@»—fﬁw@%Dw@W%s

12— t(1+q) (1 =gs)ed
(I+q) : 0 I“q(cqys_ 2) |/ (s, u(s), Dyu(s)) — f(s,v(s), Dyv(s)ldys

L1 = gs)@?
a3 %L(s)(lu(s)—v(s)HIun(s)—qu(s)|)dqs

IA
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P =11+ gl (' (1=gs)?
I+q  Jo Tyla-2)

Also,
[(DyS 2u)(2) — (DS 2v)(D)]

1 (a=2)
< f 5,80, D) = 5,080, Dy(5)dy 5
l]

-1)
(1-gs)?
+|e — 1 f F@=2) 51 (s,uls), Dgu(s)) — f(s,v(s), Dgv(s))ldys
q
1 —gs)@?
< ¢L(s)(|u(s) = V(5)] + |Dgu(s) — Dyv(s)|)dys
o Tgla=1)
(1-gs)
+He—1] f ) ——L(s)(|u(s) = v(s)| + IDu(s) = Dyv(s)|)d,s
q

Hence, we obtain
sup [(S2u)(®) — (S2v)(D)] < [|LIA;|lu — v,
t€[0,1]

sup |(DgS2u)(t) — (DgS2v)(0)] < |ILI|Aslue = vl.
te[0,1]

L(s)(Ju(s) = v($)| + IDgu(s) = Dyv(s))dys

Thus, ||Su — Sov|| < |ILII(A; + Ay)||lu — v|| or ||S,u — S,v|| < k|lu — v||. Thus S5, is contraction on B, as
k < 1. Therefore, all the assumptions of Theorem 2.2 are satisfied. Hence, Theorem 2.2 implies that

the g—fractional boundary value problem (1.1) has at least one solution on [0, 1].

4. Existence results for fractional g—difference inclusion

O

In this section, we prove our main results about the existence of solutions for fractional g—difference

inclusion (1.2).

Definition 4.1. A function u € C([0, 1], R) is called a solution for the fractional q—difference inclusion
(1.2) whenever it satisfies the boundary value conditions and there exists a function v € L'([0, 1]) such

that v(t) € F(t,u(t), D,u(t)) for almost all t € [0, 1] and

(t—gs) " (1 -gs)?
) f (s)dys —t f v(s)d
u T ( ) ——V(S S q( _ 1) vis)ays

P—-tl+q) (' (1-gs)e™
1+¢g 0o TIya-2)

v(s)dys.

forallt € [0,1].

Let X be a Banach space with the norm defined in the last section. For each u € X, the set of

selections of the operator F is defined by

SFu= {v e LY([0,1]) : v(¢) € F(1, u(t), D,u(t)) for almost all ¢ € [0, 1]}.
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Also, we define the operator N : X — P(X) by
N(u) ={h e X: there exists v € S , such that h(t) = w(r) for all £ € [0, 1]}, 4.1)

where
(1= g9 (1 - g9
w(o) f e f Toaon s

Pty (Mg
v(s)d,s.
1+¢ o Iyla-2) 1

Theorem 4.1. Let F : [0,1] X R?* — P.p(R) be a multifunction. Suppose that:

(H6) The operator F is integrably bounded and F(-,u,v) : [0,1] — P.,(R) is measurable for all
u,v € R.
(H7) Assume that there exists m € C([0, 1], [0, o)) such that

1
Hy(F(t,uy, 1)), F(t ua,u5)) < m(os(luy — wa) + uy - u;|)(m) 4.2)

forallt € [0,1] and u;,u; € R (i = 1,2) and y € Y. The constants A, and A, are given by Eq
(3.1).

(HS8) There exists a function & : R?> x R? — R with f((ul, u}), (uo, u&)) >0 foru,u; €R (i=1,2).

(H9) If {u,},>1 is a sequence in X such that u, — u and f((un(t),unn(t)), (u(t),un(t))) > 0 for all
t € [0, 1], then there exists a subsequence {u, }j>1 of {u,} such that

E(( (1), Dy (1)), (u(t), Dgu(1))) 2 0

forallte[0,1].

(H10) There exist uy € X and h € N(up) such that f((uo(t), D,uy(1)), (h(1), th(t))) >0, forallt€0,1],
where the operator N : X — P(X) is given by Eq (4.1).

(H11) For each u € X and h € N(u) with f((u(t), D u(t)), (h(1), th(t))) > 0, there exists w € N(u) such

that £((h(z), Dyh(1)), (w(t), Dyw(1))) 2 0.
Then the fractional g—difference inclusion (1.2) has a solution.

Proof. 1t is evident that the fixed point of the operator N : X — P(X) is a solution of the inclusion
problem (1.2). Since the multivalued map ¢ — F(¢, u(t), D,u(?)) is measurable and it closed-valued for
all u € X, so F has measurable selection and the set S ,, is not empty.

We prove that N'(u) is a closed subset of X for all u € X, i.e., N(u) € P.(X). For this, let {u,},> be
a sequence in N (u) which converges to u. We should prove that u € N'(u). For each natural number n,
there exists v, € S g, such that

(t - )"V L(1 - gs)@
u,(t) f ;](s) vn(s)dqs—tf(; %vn(s)dqs

—t(l+q) (1 (1-g9°?
1+¢g o TIyla-2)

Va($)dys,
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for almost all 7 € [0, 1].
That F has compact values, we pass into a subsequence (if necessary) to obtain that a subsequence
{Vu}us1 converges to some v € L'([0, 1]). Thus v € S ru and we get

u,(t) — ur)
I AN G0 L - g
= \]; WV(S)qu—IL‘ mv(s)dqs

P—t1+q) (' (1-gs)d
v(s)dys,
1+¢g 0o Iyla-2)

for each r € [0, 1]. This shows that u € N(u); that is, the operator N is closed-valued. Now, since F' is
a multifunction with compact values, it is easy to check that N (u) is bounded set in X for all u € X. In
the next step, we show that the operator N is an @ — y—contractive multivalued map. For this purpose,
we define a function @ : X X X — [0, o) by

1, if f((u(t), D,u(t)), (' (1), un’(t))) >0
a(u,u’) =
0, otherwise

forall u,u’ € X. Letu,u’ € X and h; € N(u’). We choose v, € S f,, such that

f (r—gs)™ L - g

hy () ———vi(s)d,s —t —————vi(8)dys

I'y(@) ! o Tgl@-1)
—i(l+q) (1 -gs)?
1+¢ o Tya-2)

for all € [0, 1]. Since by (4.2), we have

vi(s)dys,

Hy(F(t.u, Dgu), F(t,u', D)) < m(Ou(ju — /| + |Dgu — un’l)(m)

for all u,u’ € X with f((u(t),un(t)), (u’(t),un’(t))) > 0 for almost all ¢+ € [0, 1], so there exists
w € F(t,u(t), D,u(t)) such that

vi() = wl < m(@y(lut) — ' (0)] + |Dyu(t) - un’(’)')(m)'

Now, consider the multivalued map A : [0, 1] — P(R) which is given by
Aty ={weR : i) —wl < mow(lut) - ' (@)

/ 1
+D,u(t) — Dyu (f)|)(m)}

for all ¢ € [0, 1]. Clearly, the multifunction A(-) N F (-, u(-), D,u(-)) is measurable, because v; and ¢ =
mys((u = 1| + |Dgu — Dy’ )(
such that

) are measurable. In this step, we can choose v, € F(, u(t), D,u(t))
A+ Ay

[vi(t) = va()] < m(ew(lu(t) = ' (1)] + |Dgu(t) - un'“)')(m)’
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for all ¢ € [0, 1]. Define the element s, € N(u) by follows:

(a-1) (@=2)
hy() = f(t :I(S)) va(s)d, S—tf d q(qu D va(s)dys

P—t1+q) (" (1-gs) 3)v(s)ds
1+gq o Dja-2) 2779

for all 7 € [0, 1]. Letting sup,q 1y Im(0)] = |lml|, we have

by = ol
< f - jf)() U= ()~ vatdys + [ | %|vl<s>—vz<s>|dqs
2 Elt(Jrl (;r) 9 01 (1F q—( Zs_)(c;—;) 5)— ea s
< f - "(S)(; 1)m<s)¢/(|u<s)—u'<s>|+|un<s>—un'<s>|)(m)dqs
T, A
! %m(s%u(s)—u’(s»+|un<s>—un'<s>|)(m)dqs
- E{f; 2) 01 (qu_(js_)(:;)m(sw(|u<S) ()
+1Du(s) - un'(s)|)(m)dqs
< q(l )||m||w<||u—u'||)(m)
= W n, 1)
v +()r sl =)o)
- [rq(a1+ D rqia) te ;2)12(62 e = A)
= A= N s )
and
|Dyhy — Dyh,|
f ¢ q(qsfi;)w](s) Va()ldys + f %Iw(ﬂ—w(@l%s
He— 1| f Lol (qs_)(;;)wl(s) ()l
(1—gs)?

m(s)(Ju(s) — ' (5)| + IDgu(s) - un'(s)|)(;)dqs

<
o Fgla=1) lImll(Ay + Az)
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L1 - g9 , , 1
+ f ﬁm(s)lp(m(s) — ' (5)| + |Du(s) — Dyu (s)l)(m)dqs

N 1
s 1] f C I (s {lu(s) = (50 + 1Du(5) = Dt ()Yl

-2 A+ As)

< e )||m||w<||u—u'||)(” ) Fqia)umnw(nu—u’||)(—”m”( )
e )||m||w(||u—u||>(m)

- [rja) v rq(az_ o = ()

= Azmnu—u'u)(m),

for all # € [0, 1]. Hence, we obtain

171 = holl sup |hy (1) = ha(0)] + Sup |Dghi (1) = Dgho (1)

te[0,1]

(A1 + Ayl — u'l)(

IA

1 ,
m) = ¢(llu— ).

Therefore a(u, u’)Hy;(N(u), Nw')) < ¥(|lu — u’||) for all u,u’ € X. This means that N is an o —
Y—contractive multivalued mapping. Now, let # € X and «’ € N(u) be such that a(u,u’) > 1. Thus,
by definition of @, we have f((u(t),un(t)), (u'(t),un’(t))) > 0 and by the hypothesis there exists
w € N(u") such that §((u’(t),un’(t)), (w(t),qu(t))) > 0. This implies that a(«’,w) > 1 and so, this
proves that the operator N is an @—admissible.

Finally, we choose uy € X and u’ € N(uy) such that

&((uo(0), Dguo(0), (' (1), Dy (1)) 2

Hence a(ug, u’) > 1. Consequently, Theorem 2.3 implies that N has a fixed point. In the other words,
there exists u* € X such that u* € N(u*) which u* is the solution of the fractional g—difference inclusion
(1.2) and the proof is completed. m|

Theorem 4.2. Let F : [0,1] XxR? - P.p(R) be a multifunction. Suppose that:

(H12) The function ¢ : [0,00) — [0, 00) is a nondecreasing upper semi-continuous mapping such that
liminf, . (t — ¥ (¢)) > 0 and Y(t) < t for all t > 0.

(H13) The operator F : [0,1] X R* — P_,(R) be an integrably bounded multifunction such that
F(,ui,uy) : [0,1] = P, (R) is measurable for all uy, u, € R.

(H14) There exists a function m € C([0, 1], [0, o)) such that

4 ’ ’ ’ 1
Hy(F (&, wp) = F(t,163,185)) < m@wu = 1] + iy = ) o——=-)
1 2

forallt €[0,1] and u;,u; € R (i = 1,2), where ®;’s are given in Eq (3.1).
(H15) The operator N has the approximate endpoint property where N is defined in Eq (4.1).
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Then the g—fractional inclusion problem (1.2) has a solution.

Proof. We show that the multifunction N : X — P(X) has an endpoint. For this, we prove that N(u)
is a closed subset of P(X) for all u € X. First of all, since the multivalued map ¢ — F(t, u(t), D,u(t))
is measurable and has closed values for all u € X, so it has measurable selection and thus Sz, is
nonempty for all u € X.

Similar to the first part of the proof of Theorem 4.1, one can see that the operator N(u) is closed-
valued. Also, N(u) is a bounded set for all u € X, because F is a compact multivalued map.

Finally, we show that H;(N(u), N(w)) < ¥(|lu—wl|). Letu,w € X and h; € N(w). Choose v; € Sg,,

such that
(l _ )(a 1) 1 (1 _ )(a—2)
hl(t) f Zz ) VI(S)qu - l‘jo‘ %V](S)dqs
— _ (a-3)
(1+q) (" (1-gs) Vi()dys,

1+¢g o TIya-2)
for almost all 7 € [0, 1]. Since

Hy(F(t, u(t), Dqu(t)) — F(t, w(t), Dgw(1))) < m(Dy(|u(t) — w(®)| + |Dqu(t) — DqW(t)I)((D1 n (I)z)

for all 7 € [0, 1], there exist z € F(t, u(t), D,u(t)) such that

i(0) =2 < mOP(u(®) = o)l +1Dgu(e) = DD (G—5-)

for all ¢ € [0, 1]. Now, consider the multivalued map U : [0, 1] — P(R) which is defined by

U@ ={z e R : i) =2l < m@y(ua) = wol + 1Dyu®) = Dw)( =)

Since v; and ¢ = my(lu — w| + |Dyu — qul)(q) ) are measurable, the multifunction U(-) N

2
F(-,u(-), Dyu(-)) is measurable. Choose v»(?) € F(t, u(t), D,u(t)) such that

Vi (1) = v ()] < m@y(Ju(r) — wO)l + [Dgu(t) — DqW(t)I)(

for all # € [0, 1]. We define the element &, € N(u) as follows:
(t—gs)" " -gs)?
hy(1) f —— v (s)d,s—t —————vy(8)d,s
’ Ty 77 )y Tga-1 7777

Potl+g (T-g o
v (8)d,s,
1+gq o Dga-2) 277

O, + (Dz)’

for all ¢ € [0, 1]. Therefore, similar to the proof of Theorem 4.1, we get
ih1 = holl = sup |hi (1) = ha(D)] + sup |Dghi(1) — Dyho(1)]

t€[0,1] t€[0,1]
@1+ @l = Wl G—5-) = il = .

Hence H;(N (1), N(w)) < ¢¥(|lu —wl|) for all u, w € X. By hypothesis (H15), since the multifunction
N has approximate endpoint property, by Theorem 2.4, there exists u* € X such that N(u*) = {u"}.
Consequently, the g—fractional inclusion (1.2) has the solution #* and the proof is completed. O

IA
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S. Examples

Now, in this section, we present some illustrative examples to show the validity of our main results.
Example 5.1. Consider the fractional g—difference equation

t| arctan(D ou)|

t
‘D2u(t) = — | arcsi 1 1
1210 = qag s+ 50 ootarctan@y o €10 ©-1)
via the boundary value conditions
u(0) =0, D pu(1) = u(0), D%/Zu(l) = u(0) (5.2)

where CD?Z denotes the Caputo q—fractional derivative of order 5/2. Clearly, « = 5/2 and g = 1/2.

We define f : [0,1] x R?> — R by

t| arctan y(7)|
100 + 100| arctan y(¢)|

t
S, x(0),y(0) = 1_00| arcsin x(f)| +
In this case, for each x;,y; € R (i = 1,2), we have

|f(t, x1(0), y1() = [, x2(0), y2(D)| < ﬁl arcsin x;(¢) — arcsin x,(7)|

t
+ ml arctan y;(¢) — arctan y,(¢)|

t
100

Hence L(r) = t/100 and so ||L|| = sup 17 |1L(1)| = 1/100. On the other hand, we define continuous and
nondecreasing function ¥ : R* — R by y(x) = x for all x € R*. We have

<

(I11() = x2(0)] + Iy (1) = ya()1).

11t 10, (D1 O] < =2 + 1Dy ) = 2

Clearly, u : [0,1] — R is given by u(t) = t/100 which is continuous function. Then, we have A +
Ay = 6.0085 and so k =~ 0.06 < 1. Since, all assumptions of Theorem 3.2 hold, thus the fractional
q—difference equation (5.1)—(5.2) has at least one solution on [0, 1].

Y(lul + 1Dy j2ul).

Example 5.2. We consider the fractional g—difference inclusion

0.025t| cos u(r)] 25t sin(zr/2)t||D jpu(t)|
<D2u(1) € |0, , 0,1 53
o €| 2(1+ cosu(l) + 20001 + D1 pu(d)) }rero (53)
via the boundary value conditions
u(0) =0, D pu(1) = u(0), Df/zu(l) = u(0). (5.4)

Put « = 5/2 and q = 1/2. By these values, we get Ay ~ 2.5596 and A, ~ 3.4489. We define
multifunction F : [0,1] x R? — P(R) by follows:

0.025¢| cos x(2)| N 25t sin(ﬂ/2)t||y(t)|]
7 2(1 + | cos x(1)]) 2000(1 + |y(»)))

F(1, (1), y(1)) = [0
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for each t € [0,1]. By above definition, there exists a continuous function m : [0,1] — [0, c0) by
m(t) = 5t/200 for all t. Then ||m|| = 5/200. Also, we define upper semi-continuous and nondecreasing
Sfunction ¥ : (0,00) — [0,00) by Y(t) = t/2 for all t > 0. It is clear that liminf,_(t — Y(¢)) > 0
and Yy(t) < t for all t > 0. On the other hand, we have ®, ~ 0.06399 and ®, ~ 0.08622 and

~ 6.6577 > 0. For every x;,y; € R (i = 1,2), we have

O + D,

Hd(F(r x1(1),y1(0) = F(t, x2(8), y2(1)))

5t
< ﬁ 5(|X1(I) X (O + [y1 (1) = y2(D)
= ﬁlﬁ(bﬂ(l) x|+ [yi(®) = y2(0)))

< mOY(Ix1(2) = x2(O] + [y1(2) — yZ(t)D((Dl + ch)'

Now, put X ={u : u,D;ppu € C([0,1],R)}. Define N : X — P(R) as follows:

N(u) = {h € X : there exists v € S g, such that h(t) = w(¢) for all t € [0, 1]},

where

(t — S)(g—n L1 = LgG-2

w(r) = f —2—v()dis—1t | ————w(s)dys
1“1/2( ) ’ o IpGG-D ’
(-3
— S 2
-—3 429 v(s)d; s.

5 o TipG-2) :

Also, the operator N has the approximate endpoint property, because sup,nq llull = 0 and so

infyex SUP e, I — 2l = 0. All assumptions of Theorem 4.2 hold. Therefore, by Theorem 4.2, the
fractional g—difference inclusion (5.3)—(5.4) has a solution.
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