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1. Introduction

Fractional Cauchy problems switch the typical first-order time derivative by a fractional derivative.
Newly fractional differential equations appeared as an original branch of applied mathematics which
has been used for many mathematical simulations in science and engineering. In fact fractional
differential equations are considered as an alternative model to nonlinear differential equations.
In [13, 18] the researchers have showed the existence of solutions of abstract differential equations by
using semigroup theory and fixed point theorem. Many authors have used Banach fixed point
theorem. The non-local Cauchy problem for theoretical evolution differential equation was first
planned by Byszewski [11]. Later several investigators have studied the problem for diverse kinds of
nonlinear differential equations and integro-differential equations including functional differential
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equations in Banach spaces [14]. Motivated by those efforts we consider the existence of solutions of
fractional differential equation, with a common factor function in Banach spaces by using
Riemann-Liouville fractional calculus and generalized fixed point theorems of non-compactness
measures.

2. Background

Darbo [12] used the notion of Kuratowski measure of noncompactness (MNC, for short) and define
the classes of operators using this number. Thereafter various class of MNC have been explored. To
discuss further we recall some scientific records to prove all the outcomes of this work.
Indicate by R the set of all real numbers and R+ = [0,+∞). Let (E, ‖.‖) be a real Banach space
containing the zero element 0. Let B(x, r) indicate the closed ball centered at x with radius r. The
notion Br runs for the ball B(0, r). For X̄ , ∅ ⊂ E, we symbolize by X and ConvX the closure and the
convex closure of X, respectively. Furthermore, formalize by ME the family of non-empty bounded
subsets of E and by NE its subfamily involving all relatively compact sets. We utilize the following
definition of the MNC offered in [10].

Definition 2.1. A mapping µ : ME → R
+ is said to be a MNC in E if it achieves the next assumptions:

(10) The set kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE,
(20) X ⊂ Y ⇒ µ(X) ≤ µ(Y),
(30) µ(X) = µ(X),
(40) µ(ConvX) = µ(X),
(50) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)(Y) for λ ∈ [0, 1],
(60) If (Xn) is a sequence of closed sets fromME with Xn+1 ⊂ Xn (n = 1, 2, . . .) and if limn→∞ µ(Xn) =

0, then the set X∞ =
⋂∞

n=1Xn is nonempty.

The set kerµ defined in axiom (10) is referred to the kernel of the MNC µ. Obviously, the measure
of non-compactness satisfies X∞ ∈ kerµ. Moreover, by the inequality µ(X∞) ≤ µ(Xn) for n ∈ N, we
deduce that µ(X∞) = 0. The Kuratowski MNC is the map µ : ME → R

+ with

µ(Q) = inf
{
ε > 0 : Q ⊂

n⋃
k=1

Sk,Sk ⊂ E, diam(Sk) < ε (k ∈ N)
}
.

We indicate the set Λ = {C : C , ∅, closed, bounded and convex subset of a Banach space E}. And the
set of fixed point (coupled fixed point) of T by Fix(T ) (CFix(T )).

Theorem 2.2. (SFPT [2]) Let C be a nonempty, bounded, closed and convex subset of a Banach space
E and T : C → C be a compact, continuous operator. Then Fix(T ) , ∅ in C.

Lemma 2.3. (DFPT [10]) Let C ∈ Λ, and T : C → C be a continuous and µ-set contraction operator,
that is, ∃ a constant k ∈ [0, 1) with

µ(T (X)) ≤ kµ(X)

∀ ∅ , X ⊂ C, where µ is the Kuratowski MNC on E. Then Fix(T ) , ∅ in C.

Thereafter some extension of DFPT and its coupled version by using different types of µ−set
contractive condition(for example, see [1–21]). Recently Aghajani et al. [3] proved the generalized
version of Theorem 2.3 that stated as below:
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Theorem 2.4. Let C ∈ Λ, and T : C → C be a continuous operator such that

ψ(µ(TX)) ≤ ψ(µ(X)) − φ(µ(X)) (2.1)

∀ ∅ , X ⊂ C, where µ is an arbitrary MNC and ψ, φ : R+ → R+ are given function such that ψ is
continuous and φ is lower semicontinuous on R+. Moreover φ(0) = 0 and ψ(t) > 0 for t > 0. Then
Fix(T ) , ∅ in C.

In this work, we proposed a generalized µ−set contractive condition in comparison with (2.1) using
three control functions and prove some fixed point and coupled fixed point results that generalize
and include the Theorem 2.4 and the work discussed in [10] and [8]. Our applications are based on
fractional calculus by studying the solvability of fractional Cauchy problem.

3. Fixed point results

Here, we deal with the following set of functions:
Ψ1 = {ψ1 : [0,∞)→ [0,∞) | ψ1 is lower semicontinuous and nondecreasing},
Ψ2 = {ψ2 : [0,∞)→ [0,∞) | ψ2 is upper semicontinuous },
Ψ3 = {ψ3 : [0,∞)→ [0,∞) | ψ3 is lower semicontinuous }.

Our first main result is the following :

Theorem 3.1. Let C ∈ Λ and T : C → C be a continuous operator. Assume that ∃ ψ1 ∈ Ψ1, ψ2 ∈ Ψ2

and ψ3 ∈ Ψ3 such that ∀ r > 0,
ψ1(r) − ψ2(r) + ψ3(r) > 0, (3.1)

and ∀ X , ∅ ⊆ C,

ψ1(µ(T (X)) + ϕ(µ(T (X)))) ≤ ψ2(µ(X) + ϕ(µ(X))) − ψ3(µ(X) + ϕ(µ(X))), (3.2)

where µ is an arbitrary MNC, ϕ : R+ → R+ is continuous mapping. Then Fix(T ) , ∅ in C.

Proof. Starting with C0 = C and construct a sequence {Cn} as Cn+1 = Conv(TCn), for n ∈ N∗ = N∪{0}.
If ∃ a natural number n0 ∈ N

∗ such that µ(Cn0) + ϕ(µ(Cn0)) = 0, i.e., µ(Cn0) = 0, then Cn0 is compact
T (Cn0) ⊆ Conv(TCn0) = Cn0+1 ⊆ Cn0 . Therefore, Theorem 2.2 indicated that T admits a fixed point.
Consequently, we have

0 < µ(Cn) + ϕ(µ(Cn)),∀ n ≥ 1.

In virtue of (3.2), we obtain

ψ1(µ(Cn+1) + ϕ(µ(Cn+1)))
= ψ1(µ(Conv(TCn)) + ϕ(µ(Conv(TCn)))) (3.3)
= ψ1(µ(TCn) + ϕ(µ(TCn)))
≤ ψ2(µ(Cn) + ϕ(µ(Cn))) − ψ3(µ(Cn) + ϕ(µ(Cn))).

Now, since Cn+1 ⊂ Cn, on the basis of axiom 2o of Definition 2.1, the sequence {µ(Cn) + ϕ(µ(Cn))} is
nonincreasing and nonnegative. From this we conclude that µ(Cn)+ϕ(µ(Cn))→ % when n→ ∞, where
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% ≤ 0 is a non-negative real number. Using the properties of functions ψi (i = 1, 2, 3), and (3.3) we get
that

ψ1(%) ≤ lim inf[ψ1(µ(Cn+1) + ϕ(µ(Cn+1)))]
≤ lim sup[ψ1(µ(Cn+1) + ϕ(µ(Cn+1)))]
≤ lim sup[ψ2(µ(Cn) + ϕ(µ(Cn))) − ψ3(µ(Cn) + ϕ(µ(Cn)))]
≤ lim supψ2(µ(Cn) + ϕ(µ(Cn))) − lim inf ψ3(µ(Cn) + ϕ(µ(Cn))))
≤ ψ2(%) − ψ3(%).

Thus, we obtain ψ1(%) ≤ ψ2(%) − ψ3(%), which is not possible by the condition (3.1) if % > 0. Hence,
% = limn→∞[µ(Cn) + ϕ(µ(Cn))] = 0, that limn→∞ µ(Cn) = 0.

Since Cn ⊇ Cn+1 and TCn ⊆ Cn for all n = 1, 2, . . ., then by (60) of Definition 2.1, X∞ =
⋂∞

n=1Xn

is nonempty convex closed set, invariant under T and belongs to kerµ. Consequently, Theorem 2.2
implies that result in C∞ but as C∞ ⊂ C, the result is true in C.

If ϕ(t) = 0 in Theorem 3.1, then have following consequence:

Corollary 3.2. Let C ∈ Λ and T : C → C be a continuous operator. Assume that ∃ ψ1 ∈ Ψ1, ψ2 ∈ Ψ2

and ψ3 ∈ Ψ3 such that for all r > 0,

ψ1(r) − ψ2(r) + ψ3(r) > 0,

and ∀ X , ∅ ⊆ C,
ψ1(µ(T (X))) ≤ ψ2(µ(X)) − ψ3(µ(X)),

where µ is an arbitrary MNC. Then Fix(T ) , ∅ in C.

Proposition 3.3. Let C ∈ Λ and T : C → C be a continuous operator. Assume that ∃ ψ1 ∈ Ψ1, ψ2 ∈ Ψ2

and ψ3 ∈ Ψ3 such that for all r > 0,

ψ1(r) − ψ2(r) + ψ3(r) > 0, (3.4)

and ∀ X , ∅ ⊆ C,

ψ1(diam(T (X)) + ϕ(diam(T (X)))) (3.5)
≤ ψ2(diam(X) + ϕ(diam(X))) − ψ3(diam(X) + ϕ(diam(X))),

where ϕ : R+ → R+ is continuous mapping. Then Fix(T ) , ∅ in C.

Proof. In view of (60), it is well know that diam(·) is a MNC and thus from Theorem 3.1, we get the
existence of a T -invariant nonempty closed convex subset X∞ with diam(X∞) = 0, consequently X∞
is a singleton and therefore, T has a fixed point in C.
To attain the uniqueness, we assume that ∃ two distinct fixed points ζ, ξ in C, then we may define the
set Y := {ζ, ξ}. In this case diam(Y) = diam(T (Y)) = ‖ξ − ζ‖ > 0. Using (3.5), we obtain

ψ1(diam(T (Y)) + ϕ(diam(T (Y))))
≤ ψ2(diam(Y) + ϕ(diam(Y))) − ψ3(diam(Y) + ϕ(diam(Y)))

a contradiction to the condition (3.4) and hence the result.
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Now we are in position to derive some classical fixed point result from Proposition 3.3 and Theorem
3.1.

Corollary 3.4. Let C ∈ Λ and T : C → C be a continuous operator. Assume that ∃ ψ1 ∈ Ψ1, ψ2 ∈ Ψ2

and ψ3 ∈ Ψ3 such that for all r > 0,

ψ1(r) − ψ2(r) + ψ3(r) > 0, (3.6)

and ∀ u, v ⊆ C,

ψ1(‖T u − T v‖ + ϕ(‖T u − T v‖)) (3.7)
≤ ψ2(‖u − v‖ + ϕ(‖u − v‖)) − ψ3(‖u − v‖ + ϕ(‖u − v‖)),

where ϕ : R+ → R+ is continuous mapping. Then Fix(T ) , ∅ in C.

Proof. Let µ : ME → R
+ be a set quantity defined by the formula µ(C) = diam(C), where diam(C) =

sup{‖u− v‖ : u, v ∈ C} stands for the diameter of C. It is easily seen that µ is a MNC in a space E in the
sense of Definition 2.1. Therefore from (3.7) we have

sup
u,v∈C

ψ1(‖T u − T v)‖ + ϕ(‖T u − T v‖))

≤ ψ1(sup
u,v∈C
‖T u − T v)‖ + sup

u,v∈C
ϕ(‖T u − T v‖))

≤ sup
u,v∈C

ψ2(‖u − v‖ + ϕ(‖u − v‖)) − sup
u,v∈C

ψ3(‖u − v‖ + ϕ(‖u − v‖))

≤ ψ2(sup
u,v∈C
‖u − v‖ + ϕ(sup

u,v∈C
‖u − v‖)) − ψ3(sup

u,v∈C
‖u − v‖ + ϕ(sup

u,v∈C
‖u − v‖))

which implies that

ψ1(diam(T (C)) + ϕ(diam(T (C))))
≤ ψ2(diam(C) + ϕ(diam(C))) − ψ3(diam(C) + ϕ(diam(C))).

Thus following Proposition 3.3, T has an unique fixed point.

4. Coupled fixed point results

In this section, we prove coupled fixed point result of Theorem 3.1.

Definition 4.1. [15] An element (u∗, v∗) ∈ E2 is called a coupled fixed point (CFP) of a mapping
G : E2 → E if G(u∗, v∗) = u∗ and G(v∗, u∗) = v∗.

Our first coupled fixed point result is the following:

Theorem 4.2. Let C ∈ Λ and G : C×C → C be continuous operator. Assume that ∃ ψ1 ∈ Ψ1, ψ2 ∈ Ψ2

and ψ3 ∈ Ψ3 such that for all r > 0,

ψ1(r) − ψ2(r) + ψ3(r) > 0,
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and for i, j ∈ {1, 2}, i , j,

ψ1(µ(G(Xi × X j)) + ϕ(µ(G(Xi × X j))))
≤ ψ2(max{µ(Xi), µ(X j)} + ϕ(max{µ(Xi), µ(X j)}))

−ψ3(max{µ(Xi), µ(X j)} + ϕ(max{µ(Xi), µ(X j)})) (4.1)

∀ X1,X2 ∈ C, where ϕ : R+ → R+ is continuous mapping. Then CFix(G) , ∅ in C × C.

Proof. Consider the map Ĝ : C × C → C given by the formula

Ĝ(u, v) = (G(u, v),G(v, u)).

Since G is continuous, Ĝ is also continuous. Following [3], we define a new MNC in the space C2 as
µ̂(X) = max{µ(X1), µ(X2)}, where Xi, i = 1, 2 denote the natural projections of C. Now let X ⊂ C2 be
a nonempty subset. Now in view of (4.1) and the condition (20), we obtain

ψ1(̂µ(Ĝ(X)) + ϕ(̂µ(Ĝ(X))))

≤ ψ1

(
µ̂(G(X1 × X2) × G(X2 × X1))

+ϕ(̂µ(G(X1 × X2) × G(X2 × X1)))

)
= ψ1

(
max{µ(G(X1 × X2)), µ(G(X2 × X1))}

+ϕ(max{µ(G(X1 × X2)), µ(G(X2 × X1))})

)
= max

{
ψ1(µ(G(X1 × X2)) + ϕ(µ(G(X1 × X2)))),
ψ1(µ(G(X2 × X1)) + ϕ(µ(G(X2 × X1))))

}

≤ max


ψ2(max{µ(X1), µ(X2)} + ϕ(max{µ(X1), µ(X2)}))
−ψ3(max{µ(X1), µ(X2)} + ϕ(max{µ(X1), µ(X2)})),
ψ2(max{µ(X2), µ(X1)} + ϕ(max{µ(X2), µ(X1)}))
−ψ3(max{µ(X2), µ(X1)} + ϕ(max{µ(X2), µ(X1)}))


= ψ2(max{µ(X1), µ(X2)} + ϕ(max{µ(X1), µ(X2)}))

−ψ3(max{µ(X1), µ(X2)} + ϕ(max{µ(X1), µ(X2)}))
= ψ2(̂µ(X) + ϕ(̂µ(X))) − ψ3(̂µ(X) + ϕ(̂µ(X))),

that is,

ψ2(̂µ(X) + ϕ(̂µ(X))) − ψ3(̂µ(X) + ϕ(̂µ(X))).

Therefore, Theorem 3.1 implies that Ĝ has a fixed point, and consequently G has a CFP.

The second coupled fixed point result is the following:

Theorem 4.3. Let C ∈ Λ and G : C × C → C is continuous operator. Assume that ∃ ψ1 ∈ Ψ1, ψ2 ∈ Ψ2

and ψ3 ∈ Ψ3 such that for all r > 0,

ψ1(r) − ψ2(r) + ψ3(r) > 0,

with ψ1 is sub-additive and for i, j ∈ {1, 2}, i , j,

ψ1(µ(G(Xi × X j)) + ϕ(µ(G(Xi × X j))))
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≤
1
2
ψ2(µ(Xi) + µ(X j) + ϕ(µ(Xi) + µ(X j)))

−
1
2
ψ3(µ(Xi) + µ(X j) + ϕ(µ(Xi) + µ(X j))) (4.2)

∀ X1,X2 ∈ C, where ϕ : R+ → R+ is continuous and sub-additive mapping. Then CFix(G) , ∅ in
C × C.

Proof. Consider the map Ĝ : C × C → C defined by the formula

Ĝ(u, v) = (G(u, v),G(v, u)).

Since G is continuous, Ĝ is also continuous. Following [3], we define a new MNC in the space C2 as

µ̂(X) =
µ(X1) + µ(X2)

2

whereXi, i = 1, 2 denote the natural projections of C. Now let ∅ , X and thus to (4.2) and the condition
(20) of Definition 2.1 we conclude that

ψ1(̂µ(Ĝ(X)) + ϕ(̂µ(Ĝ(X))))
≤ ψ1(̂µ(G(X1 × X2) × G(X2 × X1)) + ϕ(̂µ(G(X1 × X2) × G(X2 × X1))))

= ψ1

(
µ(G(X1 × X2))

2
+ ϕ

(
µ(G(X1 × X2))

2

))
+ψ1

(
µ(G(X2 × X1))

2
+ ϕ

(
µ(G(X2 × X1))

2

))
≤ ψ2

(
µ(X1) + µ(X2)

2
+ ϕ

(
µ(X1) + µ(X2)

2

))
−ψ3

(
µ(X1) + µ(X2)

2
+ ϕ

(
µ(X1) + µ(X2)

2

))
= ψ2(̂µ(X) + ϕ(̂µ(X))) − ψ3(̂µ(X) + ϕ(̂µ(X))),

that is,

ψ1(̂µ(Ĝ(X)) + ϕ(̂µ(Ĝ(X)))) ≤ ψ2(̂µ(X) + ϕ(̂µ(X))) − ψ3(̂µ(X) + ϕ(̂µ(X))).

Thus Theorem 3.1 implies that Ĝ has a fixed point, and hence G has a CFP.

Remark 4.4. If ϕ(t) = 0 in Theorem 4.2 and 4.3, then we get CFP of Corollary 3.2.

5. Applications

This section deals with some practicing of the previous section. Our aim is to illustrate sufficient
conditions for the existence of the fractional Cauchy problem taking the type

Dα
t ν(t) = F

(
t, ν(t)

)
, ν(0) = ν0; (5.1)
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where Dα
t is the Riemann-Liouville fractional calculus, 0Dα

t ν(t) = d
dt I1−αν(t) corresponding to the

fractional integral operator

Iα(ν)(t) =
1

Γ(α)

∫ t

0
(t − s)α−1ν(s) ds.

In our discussion, we let the function F
(
t, ν(t)

)
has a common factor function γ℘ : [0,T ] → (0,∞);

thus it becomes of the type
F
(
t, ν(t)

)
:= γ℘(t) f

(
t, ν(t)

)
.

Moreover, we assume that F is continuous and Lipschitz with the Lipschitz constant ` > 0. We get the
following boundedness result:

Theorem 5.1. Suppose that f ∈ C([0,T ] × R2,R) achieving

‖ f ‖ ≤
Γ(α)

(1 − ℘) Tα−1 , ℘ ∈ (0, 1), t ∈ [0,T ], α ∈ (0, 1].

If ν0 >
1
℘

then every solution of (5.1) is bounded.

Proof. Let ν be a solution of the form (see [19])

ν(t) = ν0 +

∫ t

0

(t − s)α−1

Γ(α)
F
(
s, ν(s)

)
ds.

Then by definition of the function F yields

ν(t) = ν0 +

∫ t

0

(t − s)α−1

Γ(α)
F
(
s, ν(s)

)
ds

= ν0 +

∫ t

0

(t − s)α−1

Γ(α)
γ℘(s) f

(
s, ν(s)

)
ds

≤ ν0 +

∫ t

0

(t − s)α−1

Γ(α)
γ℘(s)‖ f ‖ds

≤ ν0 +
Tα−1‖ f ‖

Γ(α)

∫ t

0
γ℘(s)ds

≤ ν0 +

∫ t

0
γ℘(s) ds

1 − ℘

=
ν0 − ν0℘

1 − ℘
+

∫ t

0
γ℘(s) ds

1 − ℘
.

Since ν0 >
1
℘

then we have

‖ν‖ ≤
|ν0| +

( ∫ T

0
γ℘(s) ds − 1

)
1 − ℘

:= r.

This completes the proof.
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Note that the term
∫ T

0 γ℘(s) ds−1
1−℘ is called Tsallis fractional Entropy [22]. This entropy has been utilized

beside with the Principle of maximum entropy to develop the Tsallis distribution. This entropy has
been employed in many fields such as thermodynamics, chaos, statistical mechanics and information
theory. Moreover, the value r is called the diameter of the entropy region (Br). Therefore, any solution
in this region is called the entropy solution (see [16, 17]). We proceed to prove the existence of (5.1)
as follows:

Theorem 5.2. Define the operator Q : Br → Br as follows:

(Qν)(t) = ν0 +

∫ t

0

(t − s)α−1

Γ(α)
F
(
s, ν(s)

)
ds +

∫ t−ε

0

(t − s)α

Γ(α + 1)
F′

(
s, ν(s)

)
ds. (5.2)

If

‖F‖ ≤
Γ(α + 1)[γ̄ − 1 + ℘|ν0|]

4Tα(1 − ℘)
, γ̄ :=

∫ T

0
γ℘(s) ds ≥ 1, ℘ ∈ (0, 1),

then the equation 5.1 admits at least one solution.

Proof. Our aim is to achieve Corollary 3.4.

Boundedness. By the definition of the operator Q, a computation implies

(Qν)(t) =ν0 +

∫ t

0

(t − s)α−1

Γ(α)
F
(
s, ν(s)

)
ds +

∫ t−ε

0

(t − s)α

Γ(α + 1)
F′

(
s, ν(s)

)
ds

= ν0 +

∫ t

0

(t − s)α−1

Γ(α)
F
(
s, ν(s)

)
ds + α

∫ t−ε

0

(t − s)α−1

Γ(α + 1)
F
(
s, ν(s)

)
ds

+
εα

Γ(α + 1)
F(t − ε) −

tα

Γ(α + 1)
F(0, ν(0))

≤ |ν0| + ‖F‖
∫ t

0

(t − s)α−1

Γ(α)
ds + α‖F‖

∫ t−ε

0

(t − s)α−1

Γ(α + 1)
ds

+
εα

Γ(α + 1)
F(t − ε) −

tα

Γ(α + 1)
F(0, ν(0))

≤ |ν0| + ‖F‖
( tα

Γ(α + 1)
+

(t − ε)α

Γ(α + 1)
+

εα

Γ(α + 1)
+

tα

Γ(α + 1)

)
.

Taking the maximum norm on t ∈ [0,T ] we have

‖Qν‖ ≤ |ν0| +
4‖F‖Tα

Γ(α + 1)
≤ r.

Hence Q is bounded in Br.
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Continuity. Let δ > 0 and ν, υ ∈ Br such that ‖ν − υ‖ ≤ δ. Then a computation implies

|(Qν)(t) − (Qυ)(t)| ≤
∫ t

0

(t − s)α−1

Γ(α)
‖F

(
s, ν(s)

)
− F

(
s, υ(s)

)
‖ds

+

∫ t−ε

0

(t − s)α

Γ(α + 1)
‖F′

(
s, ν(s) − F′

(
s, ν(s)

)
‖ds

≤

∫ t

0

(t − s)α−1

Γ(α)
‖F

(
s, ν(s)

)
− F

(
s, υ(s)

)
‖ds

+

∫ t−ε

0

(t − s)α−1

Γ(α + 1)
‖F

(
s, ν(s) − F

(
s, ν(s)

)
‖ds

+
εα

Γ(α + 1)
‖F

(
s, ν(s) − F

(
s, ν(s)

)
‖, ν0 = υ0

≤ ‖ν − υ‖`
( tα

Γ(α + 1)
+

(t − ε)α

Γ(α + 1)
+

εα

Γ(α + 1)

)
≤

3δ`Tα

Γ(α + 1)
= ε,

where
δ :=

Γ(α + 1)ε
3Tα`

.

Measure of noncompactness. Here, we aim to prove

µ(Q)(Br) ≤ µ(Br).

For ν and υ ∈ Br, we have

|(Qν)(t) − (Qυ)(t)| ≤‖ν − υ‖`
( tα

Γ(α + 1)
+

(t − ε)α

Γ(α + 1)
+

εα

Γ(α + 1)

)
≤ ‖ν − υ‖

3`Tα

Γ(α + 1)

then we conclude that

diam(Q(Br)) ≤Kα diam(Br),

where for sufficient value of ` > 0 we have

Kα :=
3`Tα

Γ(α + 1)
<

1
2
.

Consequently, diam(Q(Br)) ≤ diam(Br). Now we consider the functions ψ1, ψ2, ψ3 : (0,∞) → (0,∞)
as follows:

ψ1(ς) = ς +
1
2
, ψ2(ς) = ς + 1, ψ3(ς) =

ς + 1
2

.

It is clear that
ψ1(ς) − ψ2(ς) + ψ3(ς) =

ς

2
> 0
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and

ψ1(µ(Q(Br))) ≤ ψ1(Kα µ(Br)) = Kα µ(Br) +
1
2

<
µ(Br)

2
+

1
2

= ψ2(µ(Br) − ψ3(µ(Br)).

Hence, Q admits a fixed point analogous to the solution of (5.1).

Theorem 5.3. Consider the fractional Cauchy problem (5.1). If ` < Γ(α+1)
6Tα , then the problem has a

unique entropy solution ν(t) ∈ Br and (ν, ν) ∈ (Br, Br) is its unique coupled entropy solution.

Proof. Define the operator Q : Br → Br. Then for ν, υ ∈ Br, we have

|(Qν)(t) − (Qυ)(t)| ≤
∫ t

0

(t − s)α−1

Γ(α)
‖F

(
s, ν(s)

)
− F

(
s, υ(s)

)
‖ds

+

∫ t−ε

0

(t − s)α

Γ(α + 1)
‖F′

(
s, ν(s) − F′

(
s, ν(s)

)
‖ds

≤

∫ t

0

(t − s)α−1

Γ(α)
‖F

(
s, ν(s)

)
− F

(
s, υ(s)

)
‖ds

+

∫ t−ε

0

(t − s)α−1

Γ(α + 1)
‖F

(
s, ν(s) − F

(
s, ν(s)

)
‖ds

+
εα

Γ(α + 1)
‖F

(
s, ν(s) − F

(
s, ν(s)

)
‖, ν0 = υ0

≤ ‖ν − υ‖`
( tα

Γ(α + 1)
+

(t − ε)α

Γ(α + 1)
+

εα

Γ(α + 1)

)
≤

3`Tα

Γ(α + 1)
‖ν − υ‖.

Hence, in virtue of the Banach fixed point theorem, Q admits a unique fixed point in Br analogous to
the solution of (5.1).
Now, define the operator Q : Br × Br → Br then we obtain

‖Q(u, v) −Q(u′, v′)‖ ≤ 2`max(‖u − u′‖, ‖v − v′‖) ≤
6`Tα

Γ(α + 1)
< `.

Thus, Eq. (5.1) has a unique couple solution.

5.1. Numerical example

Consider the equation

Dα
t ν(t) = γ℘(t)ν(t), ν(0) = ν0; (5.3)(

℘ = 0.5 ∈ (0, 1), α = 0.5 ∈ (0, 1], t ∈ J = [0, 1], ν ∈ C([J, 4J])
)
.
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Thus, ‖ν‖ ≤ Γ(α)
(1−℘)Tα−1 = 3.54 < 4. This implies that the solution ν is bounded by Tsallis entropy

(Theorem 5.1). Moreover, let γ℘(t) = t℘, ℘ = 0.5, ν0 > 1/℘, we conclude that the assumption of
Theorem 5.2 is achieved. This indicates that (5.3) admits a solution in Br. Moreover, if we assume that

|
√
γ(t)| ≤

0.88
6

= 0.14 then in view of Theorem 5.3, Eq. (5.3) has a unique couple solution in (Br, Br)
for some r.
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