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1. Introduction

The smoking behaviors have been considered as a critical problem on both health and social
aspects for a long time. It is well-known that smoking can increase the risks of having serious
diseases such as cancer and cardiovascular disease. WHO has estimated that tobacco use (smoking
and smokeless) is currently responsible for the death of about six million people across the world each
year with many of these deaths occurring prematurely. Although often associated with ill-health,
disability and death from noncommunicable chronic diseases, tobacco smoking is also associated
with an increased risk of death from communicable diseases [1].

To reduce such serious effect, many nations and global health organizations had applied control
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policies. According to WHO Comprehensive Information Systems, During the most recent decade,
the prevalence of tobacco smoking in men fell in 125 (72%) countries, and in women fell in 155
(87%) countries. If these trends continue, only 37 (21%) countries are on track to achieve their targets
for men and 88 (49%) are on track for women, and there would be an estimated 1.1 billion current
tobacco smokers (95% credible interval 700 million to 1.6 billion) in 2025 [2]. Among many control
policies, health education campaigns played an important role. Ian Bier et al. [3] studied the
relationship between auricular acupuncture, education, and smoking cessation. They concluded that
acupuncture and education, alone and in combination, significantly reduce smoking. Damiende
Walque [4] collected data from smoking population, and concluded that education does affect
smoking decisions: educated individuals are less likely to smoke, and among those who initiated
smoking, they are more likely to have stopped. Moreover, Sarah Durkin et al. [5] directly studied how
mass media campaigns to promote smoking cessation among adults. Their studies showed that mass
media campaigns conducted in the context of comprehensive tobacco control programmes can
promote quitting and reduce adult smoking prevalence. Mass media campaigns to promote quitting
are important investments as part of comprehensive tobacco control programmes to educate about the
harms of smoking, set the agenda for discussion, change smoking attitudes and beliefs, increase
quitting intentions and quit attempts, and reduce adult smoking prevalence.

Above evidences motivated us to construct a mathematical model to mimic the smoking dynamics
with health educational campaigns involved. We think it can be a helpful tool to analyze smoking
behaviors and their control.

Back to 90’s, smoking dynamics were only been studied by using basic SIR model. In a recent
decade, several more sophisticated models about smoking dynamics have been studied. In 2008,
Sharomo and Gumel [6] introduced new classes Qt (temporary quitter) and Qp (permanent quitter)
into the model and presented a more realistic dynamics about smoking population. In 2014,
Alkhudhari et al. [7] further developed Sharomo and Gumel’s model by considering peer pressure
effect on the transmission from Qt (temporary quitter) to S (Smoker). Besides, several researchers
like Din et al. [8] have studied the effect of introducing the class Z of smoker with illnesses. Similar
models about smoking, drinking can also be found in other studies including [9–15].

Above works guide us to derive a smoking model along with health educational campaigns
involved. The paper is organized as follows. In Section 2, we present the model with health education
effect, and prove the model is well posed. Section 3 focuses on the existence of smoking-free
equilibrium and smoking-present equilibrium. Derivations for the reproduction number and both local
and global stability properties for equilibria are also included in this section. In Section 4, we provide
some numerical simulation results to support our analytic results. Section 5 includes discussions of
the results.

2. Model formulation and its properties

2.1. Formulation of the model

In this section we describe our smoking model with health educational campaigns involved. We
first divide the whole population into 6 groups:
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PN(t): Normal susceptible population, who do not smoke or smoke occasionally
and do not get health education, may become smokers in future.

PE(t): Educated susceptible population, who get health education and do not smoke
or smoke occasionally, have lower chance to develop smoking behaviors.

S (t): Smoking population
Qt(t): Temporary quitters, who are currently abstaining smoking, but may not succeed.
Qp(t): Permanent quitters, who permanently quit smoking, never smoke again.

Z(t): Smokers with associated diseases, yield extra death rate.

The total number of population at time t is given by

N(t) = PN(t) + PE(t) + S (t) + Qt(t) + Qp(t) + Z(t)

The following system of ODEs forms our model (Figure 1):

Figure 1. Transfer diagram of the model.

ṖN = qµ − µPN − βPNS

ṖE = (1 − q)µ − µPE − βδPES

Ṡ = −(µ + γ + λ)S + βS (PN + δPE) + αQt

Q̇t = −µQt − αQt − ηQt + γS

Q̇p = −µQp + ηQt

Ż = λS − (µ + ν)Z
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First of all, every group share same death rate µ. For simplicity, we assume the new recruitment
rate of the system to be same as the death rate µ. The new population recruited into the system is
divided into 2 portions - uneducated and educated. The proportion q(0 < q < 1) of new recruitment is
uneducated portion, and the proportion (1 − q) is educated portion. Since smoking population cannot
be isolated, through peer pressure, we have both educated and uneducated susceptible population
transferring to smokers with transmission coefficient β. However, educated people have lower chance
to become smokers, hence we assume addition immunity coefficient δ to reflect this effect, where
0 < δ < 1. Smokers can turn into temporary quitters by getting treatment or self-abstaining, hence we
assume γ as the corresponding transmission coefficient. On the other hand, temporary quitters can
also relapse, hence we assume α as the corresponding transmission coefficient. There does exist some
quitters could abstain smoking permanently. By enough treatment and perseverance, a temporary
quitter can become a permanent quitter. For this type of transmission, we assume a transmission
coefficient η. We have mentioned in introduction that smoking is highly related to some serious
diseases. Therefore, it is reasonable to have a transmission from ordinary smokers to diseased
smokers with coefficient λ. In addition, this diseased population yield extra death rate ν.

2.2. Properties of the model

Boundedness is one of important properties of a system, and we shall provide it for our system by
following lemma.

Lemma 2.1. If PN(0) > 0, PE(0) > 0, S (0) > 0, Qt(0) > 0, Qp(0) > 0, Z(0) > 0, then the solutions
PN(t) ≥ 0, PE(t) ≥ 0, S (t) ≥ 0, Qt(t) ≥ 0, Qp(t) ≥ 0, Z(t) ≥ 0 for all t > 0.

Proof. Suppose above lemma does not hold, then at least one of PN(t), PE(t), S (t), Qt(t), Qp(t), Z(t) is
less than 0 for some t’s. We have following 6 cases:

1. There exists a first time t1 such that PN(t1) = 0, P′N(t1) < 0, and PE(t) ≥ 0, S (t) ≥ 0, Qt(t) ≥ 0,
Qp(t) ≥ 0, Z(t) ≥ 0 for 0 ≤ t ≤ t1. But P′N(t1) = qµ ≥ 0, so this case is impossible.

2. There exists a first time t2 such that PE(t2) = 0, P′E(t2) < 0, and PN(t) ≥ 0, S (t) ≥ 0, Qt(t) ≥ 0,
Qp(t) ≥ 0, Z(t) ≥ 0 for 0 ≤ t ≤ t2. But P′E(t2) = (1 − q)µ ≥ 0, so this case is impossible.

3. There exists a first time t3 such that S (t3) = 0, S ′(t3) < 0, and PN(t) ≥ 0, PE(t) ≥ 0, Qt(t) ≥ 0,
Qp(t) ≥ 0, Z(t) ≥ 0 for 0 ≤ t ≤ t3. But S ′(t3) = 0 ≥ 0, so this case is impossible.

4. There exists a first time t4 such that Qt(t4) = 0, Q′t(t4) < 0, and PN(t) ≥ 0, PE(t) ≥ 0, S (t) ≥ 0,
Qp(t) ≥ 0, Z(t) ≥ 0 for 0 ≤ t ≤ t4. But Q′t(t4) = γS (t4) ≥ 0, so this case is impossible.

5. There exists a first time t5 such that Qp(t5) = 0, Q′p(t5) < 0, and PN(t) ≥ 0, PE(t) ≥ 0, S (t) ≥ 0,
Qt(t) ≥ 0, Z(t) ≥ 0 for 0 ≤ t ≤ t5. But Q′p(t5) = ηQt(t5) ≥ 0, so this case is impossible.

6. There exists a first time t6 such that Z(t6) = 0, Z′(t6) < 0, and PN(t) ≥ 0, PE(t) ≥ 0, S (t) ≥ 0,
Qt(t) ≥ 0, Qp(t) ≥ 0 for 0 ≤ t ≤ t6. But Z′(t6) = λS (t6) ≥ 0, so this case is impossible.

That shows the contradiction, therefore the lemma has to be true. �

By summing the equations of our system, we find that

P′N + P′E + S ′ + Q′t + Q′p + Z′ = µ[1 − (PN + PE + S + Qt + Qp + Z)] − νZ

≤ µ[1 − (PN + PE + S + Qt + Qp + Z)]
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It follows that PN(t) + PE(t) + S (t) + Qt(t) + Qp(t) + Z(t) ≤ 1, so the set

Ω = {(PN , PE, S ,Qt,Qp,Z) ∈ R6
+ : PN + PE + S + Qt + Qp + Z ≤ 1}

is positively invariant for our system. Hence, the global stability of the system will be only considered
within set Ω. Also, the whole population has the scaled upper bound 1 in this model, and the number
of each population group can be interpreted as the portion of the whole population.

3. Equilibria and stabilities

3.1. Equilibria and local stabilities

By setting the right-hand side of the model to 0, we get following equations:

PN =
qµ

µ + βS

PE =
(1 − q)µ
µ + βδS

S =
αQt

(µ + γ + η) − β(PN + δPE)

Qt =
γS

µ + η + α

Qp =
η

µ
Qt

Z =
λS
µ + ν

We see that the model has a smoking-free equilibrium E0 = (PN0 , PE0 , 0, 0, 0, 0), where

PN0 = q PE0 = 1 − q

The smoking infected compartments are S , Qt, and Z, giving m = 3. Since each function in our
model represents a direct transfer of individuals, each function is non negative. And if one population
group is empty, then there is no transfer of individuals out of that population group. Also, our model
assumes that incidence of smoking infection for uninfected population groups is zero, the smoking
free subspace is always invariant, and the smoking free equilibrium is stable in the absence of new
infection. This indicates that our model satisfies the five conditions in lemma 1 from van den Driessche
and Watmough [16]. Let X = (S ,Qt,Z, PN , PE,Qp)T , then the model can be rewritten as

dX
dt

= F(X) − V(X)

where

F(X) =



βPNS + βδPES
0
0
0
0
0


V(X) =



(µ + γ + λ)S − αQt

(α + µ + η)Qt − γS
(µ + ν)Z − λS

µPN + βPNS − qµ
µPE + βδPES − (1 − q)µ

µQp − ηQt
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By computing the Jacobian matrices at E0, we got

DF(E0) =

(
F3×3 0

0 0

)
DV(E0) =

(
V3×3 0
J1 J2

)
where

F =


βPN0 + βδPE0 0 0

0 0 0
0 0 0

 V =


µ + γ + λ −α 0
−γ α + µ + η 0
−λ 0 µ + ν



J1 =


βPN0 0 0
βγPE0 0 0

0 −η 0

 J2 =


µ 0 0
0 µ 0
0 0 µ


Further, F is non-negative, V is a non-singular 3-matrix and all eigenvalues of J2 have positive real part.
Thus, the basic reproduction number of the model can be derived by the method of next generation
matrix [16]. And we got the basic reproduction number R0

R0 = ρ(FV−1) =
β(PN0 + δPE0)(µ + η + α)

(µ + γ + λ)(µ + η + α) − αγ

By Theorem 2 from van den Driessche and Watmough [16], the local stability of smoking-free
equilibrium E0 can be summarized as following:

Theorem 3.1. The smoking-free equilibrium E0 is locally asymptotically stable for R0 < 1 and unstable
for R0 > 1.

Now we look at smoking-present equilibrium E∗ = (P∗N , P
∗
E, S

∗,Q∗t ,Q
∗
p,Z

∗). Similarly, by he right-hand
side of the model to 0, we get

PN =
qµ

µ + βS

PE =
(1 − q)µ
µ + βδS

Qt =
γS

µ + η + α

S [β(PN + δPE) − (µ + γ + λ)] + αQt = 0

By substituting Qt into last equation, we have

S [β(PN + δPE) − (µ + γ + λ)] +
γS

µ + η + α
= 0

⇒ S
(
β(PN + δPE) − (µ + γ + λ) +

γ

µ + η + α

)
= 0
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Since S , 0,

β(PN + δPE) − (µ + γ + λ) +
γ

µ + η + α
= 0

⇒ PN + δPE =
1
β

(
(µ + γ + λ) −

γ

µ + η + α

)

By substituting PN and PE, we have

Y(S ) :=
q(µ + βδS ) + (1 − q)δ(µ + βS )

(µ + βS )(µ + βδS )
−

(µ + γ + λ)(µ + η + α) − αγ
µβ(µ + η + α)

= 0

By taking the derivative of Y(S ), we have

Y ′(S ) = −
β{β2δ2S 2 + µS [2βδ2(1 − q) + 2βδq] + µ2[δ2(1 − q) + q]}

(µ + βS )2(µ + βδS )2 < 0

Hence, the function Y(S ) is decreasing for S > 0. In addition, since (µ + βδS )(µ + βS ) > (µ + βδS )βS
and q(µ + βδS ) + (1 − q)δ(µ + βS ) ≤ u + βδS , we have

Y(S ) <
1
βS
−

(µ + γ + λ)(µ + η + α) − αγ
µβ(µ + η + α)

Thus,

Y(0) =
(µ + γ + λ)(µ + η + α) − αγ

µβ(µ + η + α)
(R0 − 1)

Y(1) <
1
β
−

(µ + γ + λ)(µ + η + α) − αγ
µβ(µ + η + α)

= −
λ(µ + η + α) + γ(µ + η)

µβ(µ + η + α)
< 0

If R0 > 1, by the monotonicity of Y(S ), there exist an unique root in (0, 1). If R0 ≤ 1, there is not root
in (0, 1). Since the smoking-present equilibrium E∗ lives in the set Ω = {(PN , PE, S ,Qt,Qp,Z) ∈ R6

+ :
PN + PE + S + Qt + Qp + Z ≤ 1}, following theorem can be established:

Theorem 3.2. The system always has the smoking-free equilibrium E0. If R0 > 1, the system has an
unique smoking-present equilibrium E∗, where

P∗N =
qµ

µ + βS ∗

P∗E =
(1 − q)µ
µ + βδS ∗

Q∗t =
γS ∗

µ + η + α
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Q∗p =
η

µ
Q∗t

Z∗ =
λS ∗

µ + ν

and S ∗ is the unique root of Y(S ) = 0.

Theorem 3.3. The smoking-present equilibrium E∗ is locally stable, and there is no hopf bifurcation.

Proof. Since variables Qp and Z do not appears in first four equations of the system, the dynamics of
the system is same as the following one:

ṖN = qµ − µPN − βPNS

ṖE = (1 − q)µ − µPE − βδPES

Ṡ = −(µ + γ + λ)S + βS (PN + δPE) + αQt

Q̇t = −µQt − αQt − ηQt + γS

Consider the previous four equations in the original system, we get its Jacobian matrix at the smoking-
present equilibrium E∗,

J(E∗) =


−β S − µ 0 −β PN 0

0 −µ δ S − µ −β δ PE 0

β S β δ S β (δ PE + PN) − µ − γ − λ α

0 0 γ −µ − α − η


.

R0 = 1 reveals that
β (δ PE + PN) − µ − γ − λ = −

α γ

α + η + µ
.

Hence, we have

J(E∗) =



−β S − µ 0 −β PN 0

0 −µ δ S − µ −β δ PE 0

β S β δ S −
α γ

α+η+µ
α

0 0 γ −µ − α − η


.

Our aim is to prove J(E∗) has no positive or zero-real part eigenvalues. In order to reduce complexity
due to multiple parameters, we introduce new variables, which are all positive from the original
parameters are positive.

a11 = β S + µ, a13 = β PN , a22 = µ δ S + µ, a23 = β δ PE, a31 = S β, a32 = S δβ, a44 = µ + α + η.

Even the new variables are not independent, we would like to investigate them in a broader ranges.
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Then, we have

J(E∗) =



−a11 0 −a13 0

0 −a22 −a23 0

a31 a32 −
α γ

a44
α

0 0 γ −a44


.

J(E∗) − xI = 0 gives the eigen-polynomial,

Ep(x) = a44 x4 +
(
a44

2 + (a11 + a22) a44 + α γ
)

x3

+
(
(a11 + a22) a44

2 + (a11 a22 + a13 a31 + a23 a32) a44 + γ α (a11 + a22)
)

x2

+
(
(a11 a22 + a13 a31 + a23 a32) a44

2 + (a11 a23 a32 + a13 a22 a31) a44 + γ a11 a22 α
)

x

+ a44
2 (a11 a23 a32 + a13 a22 a31) .

All coefficients of Ep(x) are positive, therefore Ep(x) has no non-negative eigenvalues.Suppose Ep(x)
has a pair of complex eigenvalues x∗ = a ± bi. Let REp(x∗) and IPp(x∗) denote the real part and
imaginal part of Ep(x∗). The resultant between REp(x∗) and IPp(x∗) respect to b is a polynomial in a
with positive coefficients, which has no non-negative roots. Therefore, J(E∗) could not have complex
eigenvalues with positive or zero real part. Hence, the eigenvalues of J(E∗) are negative or complex
with negative real part, therefore, the smoking-present equilibria E∗ is local stable and could not present
hopf-bifurcation.

�

3.2. Global stability of equilibria

Theorem 3.4. If R0 ≤ 1, the smoking-free equilibrium E0 is globally asymptotically stable.

Proof. Since variables Qp and Z do not appears in first four equations of the system, the dynamics of
the system is same as the following one:

ṖN = qµ − µPN − βPNS

ṖE = (1 − q)µ − µPE − βδPES

Ṡ = −(µ + γ + λ)S + βS (PN + δPE) + αQt

Q̇t = −µQt − αQt − ηQt + γS

By proving the global stability of smoking-free equilibrium Ē0(PN0 , PE0 , 0, 0) of above system, we
prove the original one.
For the smoking-free equilibrium Ē0, following equations hold:

qµ − µPN = 0
(1 − q)µ − µPE = 0

Hence, we can rewrite above system as

ṖN = PN

[
qµ

(
1

PN
−

1
PN0

)
− βS

]
AIMS Mathematics Volume 3, Issue 4, 584–599
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ṖE = PE

[
(1 − q)µ

(
1

PE
−

1
PE0

)
− βδS

]
Ṡ = βS

[
(PN0 + δPE0) + (PN − PN0) + δ(PE − PE0)

]
+ αQt − (µ + γ + λ)S

Q̇t = γS − (µ + η + α)Qt

Define the Lyapunov function:

V1 =

(
PN − PN0 − PN0ln

PN

PN0

)
+

(
PE − PE0 − PE0ln

PE

PE0

)
+ S +

α

µ + η + α
Qt

By taking the derivative, we have

V ′1 = (PN − PN0)
P′N
PN

+ (PE − PE0)
P′E
PE

+ S ′ +
α

µ + η + α
Q′t

= (PN − PN0)
[
qµ

(
1

PN
−

1
PN0

)
− βS

]
+ (PE − PE0)

[
(1 − q)µ

(
1

PE
−

1
PE0

)
− βδS

]
+ βS

[
(PN0 + δPE0) + (PN − PN0) + δ(PE − PE0)

]
+ αQt − (µ + γ + λ)S

+
α

µ + η + α
[γS − (µ + η + α)Qt]

=
(µ + γ + λ)(µ + η + α) − αγ

µ + η + α
(R0 − 1)S + F(PN , PE)

,where

F(PN , PE) = qµ(PN − PN0)
(

1
PN
−

1
PN0

)
+ (1 − q)µ(PE − PE0)

(
1

PE
−

1
PE0

)
= qµ

(
2 −

PN

PN0

−
PN0

PN

)
+ (1 − q)µ

(
2 −

PE

PE0

−
PE0

PE

)
Let x = PN

PN0
and y = PE

PE0
, then

F(PN , PE) = qµ
(
2 − x −

1
x

)
+ (1 − q)µ

(
2 − y −

1
y

)
= qµ

(
(−1)(x − 1)2

x

)
+ (1 − q)µ

(
(−1)(y − 1)2

y

)
It is obvious that F(PN , PE) ≤ 0 for x, y > 0. In particular, F(PN , PE) = 0 if and only if PN = PN0 and
PE = PE0 . Hence, if R0 ≤ 1, V ′1 < 0 for PN , PN0 , PE , PE0 and S , 0. Therefore, by Lyapunov
stability criterion, the smoking-free equilibrium Ē0 is globally asymptotically stable, and so is E0. �

Theorem 3.5. If R0 > 1, the smoking-present equilibrium E∗ is globally asymptotically stable.
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Proof. Similarly, we prove the stability of original smoking-present equilibrium E∗ by proving the
stability of Ē∗(P∗N , P

∗
E, S

∗,Q∗t ).
For Ē∗, following equations hold:

qµ − µPN − βPNS = 0
(1 − q)µ − µPE − βδPES = 0

−(µ + γ + λ)S + βS (PN + δPE) + αQt = 0
γS − Qt(µ + η + α) = 0

Let a = PN
P∗N

, b = PE
P∗E

, c = S
S ∗ , and d =

Qt
Q∗t

, we have

a′ = a
[

qµ
P∗N

(
1
a
− 1

)
− βS ∗(c − 1)

]
b′ = b

[
(1 − q)µ

P∗E

(
1
b
− 1

)
− βδS ∗(c − 1)

]
c′ = c

[
βP∗N(a − 1) + βδP∗E(b − 1) +

αQ∗t
S ∗

(
d
c
− 1

)]
d′ = d

[
γS ∗

Q∗t

( c
d
− 1

)]
Define the Lyapunov function:

V2 = P∗N(a − 1 − lna) + P∗E(b − 1 − lnb) + S ∗(c − 1 − lnc) +
α

µ + η + α
Q∗t (d − 1 − lnd)

By taking the derivative, we have

V ′2 = P∗N

(
a − 1

a

)
a′ + P∗E

(
b − 1

b

)
b′ + S ∗

(
c − 1

c

)
c′ +

α

µ + η + α
Q∗t

(
d − 1

d

)
d′

= (a − 1)
[
qµ

(
1
a
− 1

)
− βP∗NS ∗(c − 1)

]
+ (b − 1)

[
(1 − q)µ

(
1
b
− 1

)
− βδP∗ES ∗(c − 1)

]
+ (c − 1)

[
βP∗NS ∗(a − 1) + βδP∗ES ∗(b − 1) + αQ∗t

(
d
c
− 1

)]
+

αγS ∗

µ + η + α
(d − 1)

( c
d
− 1

)
= qµ(a − 1)

(
1
a
− 1

)
− βP∗NS ∗(a − 1)(c − 1) + (1 − q)µ(b − 1)

(
1
b
− 1

)
− βδP∗ES ∗(b − 1)(c − 1)

+ βP∗NS ∗(c − 1)(a − 1) + βδP∗ES ∗(c − 1)(b − 1) + αQ∗t (c − 1)
(
d
c
− 1

)
+

αγS ∗

µ + η + α
(d − 1)

( c
d
− 1

)
= qµ

(
−

(a − 1)2

a

)
+ (1 − q)µ

(
−

(b − 1)2

b

)
+ αQ∗t

(
d − c −

d
c

+ 1
)

αγS ∗

µ + η + α

(
c − d −

c
d

+ 1
)
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= F(a, b) + G(c, d)

where

F(a, b) = qµ
(
−

(a − 1)2

a

)
+ (1 − q)µ

(
−

(b − 1)2

b

)
G(c, d) =

αγS ∗

µ + η + α

(
2 −

c
d
−

d
c

)
=

αγS ∗

µ + η + α

(
−

(c − d)2

cd

)

It is easy to see that F(a, b) ≤ 0 for a, b > 0. In particular, F(a, b) = 0 if and only if PN = P∗N and
PE = P∗E. Also, G(c, d) ≤ 0 for c, d > 0. In particular, G(c, d) = 0 if and only if S

S ∗ =
Qt
Q∗t

. Hence,
V ′2 < 0 for PN , P∗N , PE , P∗E, S , S ∗, and Qt , Q∗t . Therefore, by byLyapunov stability criterion, the
smoking-free equilibrium Ē∗ is globally asymptotically stable,and so is E∗. �

4. Numerical simulation

In this section, we provide some numerical results to support our analytic results from above. For
the choices of parameters, some are chosen from medical researches, and others are estimated. The
values for normal mortality µ and additional disease death rate ν are provided by McEvoy, John W., et
al. [9]. Other parameters are estimated. All the parameter values show in Table 1.
The model is simulated for following different initial values such that PN(0) + PE(0) + S (0) + Qt(0) +

Qp(0) + Z(0) = 1:

1. PN(0) = 0.8, PE(0) = 0.1, S (0) = 0.1, Qt(0) = 0 Qp(0) = 0, Z(0) = 0.

2. PN(0) = 0.1, PE(0) = 0.1, S (0) = 0.8, Qt(0) = 0 Qp(0) = 0, Z(0) = 0.

3. PN(0) = 0.2, PE(0) = 0.2, S (0) = 0.2, Qt(0) = 0.2 Qp(0) = 0.2, Z(0) = 0.

4. PN(0) = 0.1, PE(0) = 0.1, S (0) = 0.5, Qt(0) = 0 Qp(0) = 0, Z(0) = 0.3.

For R0 < 1, Figure 2 shows that the smoking-free equilibrium E0 is globally asymptotically stable. For
R0 > 1, Figure 3 shows that the smoking-present equilibrium E∗ is globally asymptotically stable.
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Figure 2. R0 < 1, E0 is globally asymptotically stable.

Figure 3. R0 > 1, E∗ is globally asymptotically stable.
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Table 1. Table of parameter values.

Parameter Meaning Value Source
q non-educated portion

of new recruitment rate
0.7 Estimated for test case

µ natural death rate and
new recruitment rate

0.017 McEvoy, John W., et al. ”Mortality rates
in smokers and nonsmokers in the presence
or absence of coronary artery calcification.”
JACC: Cardiovascular Imaging 5.10 (2012):
1037-1045.

β transmission coefficient
for potential smokers
(both non-educated and
educated) transfer to
smokers (S)

0.2/0.7 Estimated for test cases

δ immuity coefficient for
educated population
(PE) to lower the
transfer to smokers (S)

0.25 Smoking & Tobacco Use.17 Centers for
Disease Control and Prevention, Centers for
Disease Control and Prevention, 3 Feb. 2017

γ transmission coefficient
for smokers (S) transfer
to temporary quitters
(Qt)

0.554 Morbidity and Mortality Weekly Report
(MMWR).17 Centers for Disease Control and
Prevention, Centers for Disease Control and
Prevention, 14 Aug. 2017

α transmission coefficient
for temporary quitters
(Qt) transfer to smokers
(S)

0.48 Morbidity and Mortality Weekly Report
(MMWR).17 Centers for Disease Control and
Prevention, Centers for Disease Control and
Prevention, 14 Aug. 2017

η transmission coefficient
for temporary quitters
(Qt) transfer to
permanent quitters
(Qp)

0.074 Morbidity and Mortality Weekly Report
(MMWR).17 Centers for Disease Control and
Prevention, Centers for Disease Control and
Prevention, 14 Aug. 2017

λ transmission coefficient
for smokers (S) transfer
to smokers with
diseases (Z)

0.4233 Smoking & Tobacco Use.17 Centers for
Disease Control and Prevention, Centers for
Disease Control and Prevention, 3 Feb. 2017

ν extra death rate for
smokers with diseases
(Z)

0.043 McEvoy, John W., et al. ”Mortality rates
in smokers and nonsmokers in the presence
or absence of coronary artery calcification.”
JACC: Cardiovascular Imaging 5.10 (2012):
1037-1045.
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5. Discussion

In this paper, we consider the health education effect on the smoking dynamic model. We have
derived the reproduction number (R0) and obtained the following results: when R0 < 1, smoking-free
equilibrium is both locally and globally asymptotically stable. As the educated susceptible population
increases, the permanent quitter population also increases. When R0 > 1, we proved the smoking-
present equilibrium is globally asymptotically stable by constructing Lyapunov function. When the
ratio of educated susceptible group increases, the permanent quitter group experiences a time frame of
oscillation then becomes stable. The results imply that increasing the health education population not
only increases the permanent quitter, but also reduce the difficulty of non-smoking work of the area.

It will be very interesting to consider the time delay in this model, and it will be more realistic
and give us more insights into the smoking dynamics, but some complex dynamic behaviors may
occur( [15, 17]).
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