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1. Introduction  

Turbulence is a most prominent and ubiquitous phenomenon of fluid motion. Obstacles in 

understanding its nature arise from its extreme complexity, which, thanks to development in 

simulation method, has been overcome gradually to yield rich visual as well as numerical outcomes. 

Along with experiments in laboratory and numerical simulations on computer, we need 

constructing a model that accounts for complex phenomena from a view point of universal concepts 

abstracted from observational data. Specifically, Richardson-Kolmogorov scaling and eddy viscosity 

have been established as the most fundamental notions, on which so-called eddy viscosity models 

(EVMs) are based. EVM is a truncated set of originally infinite number of equations for moments of 

velocity field derived from the Navier-Stokes equation. EVMs are phenomenology because of the 

truncation that requires physically plausible but more or less arbitrary assumptions. For a 
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comprehensive review of turbulence in incompressible fluid, see, e.g., [1]. 

In the dynamical effective viscosity model (DEVM) proposed by Takahashi [2], the equations of 

mean turbulent flow are derived by the variational principle on a pseudo-action that does not involve 

the non-holonomic condition [3]. DEVM is constructed in terms of a general complex two by two 

matrix field and its Hermitian conjugate so as to fulfill invariance under Galilei transformation and 

rotation. The independent four variables are interpreted as a complex mean velocity and a complex 

effective viscosity, which are to be finally set real. When applied to channel and pipe flows, the 

equations in the simplest model, i.e., the minimal DEVM, reproduce the flow profiles fairly well, 

which suggests that the symmetry structure of the model must be most important. In addition, this 

success may be attributed to action-reaction correlations among elements of turbulence incorporated 

automatically into the model through the variational principle that renders the model free from the 

so-called closure problem. 

One important objective of research of turbulence is to understand the spatial variation of 

Reynolds stress. The DEVM involves a scalar and a vector, but not a tensor and therefore says 

nothing about the Reynolds stress. In this paper, we extend the minimal DEVM so as to incorporate a 

tensor in invariant ways and explore if the tensor bears the property of the Reynolds stress in 

incompressible turbulent flow. 

In Section 2, we elaborate how the minimal DEVM is extended to include a tensor. In Sec. 3, 

the model constructed in Sec. 2 is applied to turbulence in channel flow. Sec. 4 is devoted to a 

concluding remark. 

2. Incorporating tensor in the minimal DEVM 

We first give a review of the minimal DEVM. We introduce a traceless scalar matrix   by  

 u σ ,          (2.1) 

where i , , , ,i x y z  are Pauli‘s spin matrices and u  is a complex velocity field. Next, we define a 

following quantity 

(2.2) 

Here, the dot stands for a partial derivative in time.   is the kinematic viscosity. F  is the force 

given by  

ext

p



 
      

 
f σ f σ


F       (2.3) 

with p ,   and extf  being the pressure, density and external body force that acts on a unit mass. 

The Navier-Stokes equation is derived by the variation of NSA . We call the quantity like NSA  the 

pseudo-action (PA) because, although the correct equation of motion is derived by the variational 

principle, PA does not have a canonical structure of the kinetic energy subtracted by the potential 

energy and therefore its Legendre transformation does not give the system‘s energy. 
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The first three terms in NSL  yield the Lagrange derivative terms. One can construct the 

minimal DEVM by extending   by giving it the center of (2, )GL C  as 

   u σ           (2.4) 

where   is a complex scalar and by introducing into NSA  a minimal number of other terms 

invariant under (2) ~ (3)SU O  transformations. Taking variations, we have  

2
, , , , ,

2

2
, , , , ,

2

,

( ) ,

,

,
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   
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         

 
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u

u u u u

u u

  

 

  

  

   (2.5) 

where suffixes R  and I  denote real and imaginary part, respectively. We obtain the equations of 

motion for the minimal DEVM by setting   and u  real, or   be Hermitian. Higher order 

interactions among u  and   are introduced by incorporating higher order terms in u  and  . 

After such an extension,   comes to play the role of the effective or eddy viscosity [2]. 

We now incorporate a tensor into the model. Let ijR , , 1~ 3i j  , be the ( , )i j  component of a 

tensor R , which is assumed to be invariant under the translation and Galilei transformation. At the 

beginning of constructing a model of turbulence, as in the minimal DEVM, a traceless complex 

vector matrix, which is an element of GL(2, C), is considered  

Ri ij jR  .          (2.6) 

( Ri j jiR  will do, too.) Repetition of indices implies summation. In (2.6), for simplicity, we omit the 

center of the group and express the PA mainly in terms of ijR . We envisage that ijR , like  , is some 

physical entity which is conveyed by the flow and dissipates by the frictional force. This means that 

time derivative in the equation of motion is always accompanied with advection term. The relation 

between ijR  and the observed Reynolds stress will be clarified after solving the equations of motion. 

To begin with, we notice that the Lagrange derivative ij ijR R u   of ijR  is derived by 

variation of *
ijR  in 

* * * * *1 1
( ) ( )

4 4
ij ij ij ij ij ijR R R R R R     u u u u            (2.7) 

and subsequently by setting all quantities real. Thus, we are lead to consider the following SU(2) 

invariant PA 

 (2.8) 

where   and R i  are traceless and d d dt  r . Variation of R,LdA  in *
ijR  gives 

1

2
ij R ij ij RR R R   u u  .        (2.9) 
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These terms altogether indeed coincide with the Lagrange derivative of ijR  for incompressible fluid 

that fulfils 0R u . The last term in (2.9) that gives rise to an effect in compressible flow is the 

necessary outcome in our formulation. 

We know that the minimal DEVM without tensor, when applied to turbulent channel and pipe 

flows, reproduces the profiles of the mean velocity quite well. We do not wish to spoil this favorable 

feature of the model by incorporating the tensor. The above R,LdA  in fact does not affect the 

equation of motion for u . It is because only the real part of u  appears in R,LdA  so that the net 

effect of variation of *u  in R,LdA  vanishes, i.e., * *(i / 4)( ) 0ij ij ij ijR R R R    for Im 0ijR  . This 

property of R,LdA  can be shared by any other PAs involving ijR  if the real part of u  solely appear 

in them. In the followings, we will construct invariant PAs involving tensor by employing the real 

part of u  only. Henceforth the symbol u  stands for real velocity. 

If ijR  is to somehow express the Reynolds stress, i ju u  , the Reynolds stress equation tells us 

that the mean velocity and ijR  interact via. k j ik k i kju R u R    that originates from the advection term 

in the Navier-Stokes equation. See, e.g., [1,4]. The PA that yields such terms will be given by 

 * * *
R,adv

i
( ) ( ) ( )

2
ij ij k j ik ik k i kj kjA R R u R R u R R d       .   (2.10) 

In terms of the Hermitian matrix field †) / 2 Re     u σ , the above R,advA  can be 

rewritten as 

  * * *
R,adv

i
Tr ( ) ( ) . .

4
ij j k ik ik i k kj kjA R R R R R h c d           .  (2.11) 

Expressions in terms of the matrices R i  are also possible. They will be useful when we intend to 

extend the model so as to include the center of the group. In this paper, for simplicity, we restrict 

ourselves to the traceless R i . 

Let us construct remaining interaction terms in PA that meet the invariance requirements. The 

diffusion of R i  is given by 

 * 2 2
R,dif

i
Tr )(( ) ( ) )

4
k ij k ijA R R d         .    (2.12)

 We list other possible lower order invariant interactions below. (Note the identities Tr( R ) 2i i kkR  , 

Tr(R R ) 2k k kl klR R  etc.)  

 (1) * 2 * 2
R 0 1

i
( ) ( ) . .

2
kk ijA g R g R c c d   , 

   (2) * *
2 2R i Tr( ) . . i Re . .i j ij j i ijA g R c c d g f R c c d          F ,

 

   (3) * *
3 3 3 3R

i
( Tr Tr( ) . . i ( Re ) . .

4
i j ij i j ijA g g R c c d g g u R c c d                 , (2.13) 

    

   (4) * 2 2 2 *
R 4 4i ( ) . i ( (( Re ) ( ) ) ( Re ) ) .kk kkA R c c d g g R c c d            u    , 

   (5) * *
R 5 5

i
Tr . i ( Re Re ) .

2
i j ij i j i j ijA g R c c d g R c c d                u u . 
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Note that, instead of employing the matrix   , we can express the pseudo-action in terms of   

and i u  by using 2Re Tr    and 2 Tr( )i i   u σ . 

(1)
RA  represents the inertia of the R-field. (2)

RA  describes generation or destruction of the 

R-field by the force or pressure gradient and the effective viscosity. Other interactions between   

and R are given in (3)
RA  ~ (5)

RA , which involve up to the third order interactions. M  in (4)
RA  is a 

polynomial of   and acts isotropically to R . Here, we have adopted the simplest one  

 2 2 24
4( Tr( ) ( Re ) ( )

g
M g     


u    .    (2.14)

 
The rotational asymmetry that possibly emerge from (5)

RA  implies a dependence of interaction on the 

direction relative to the mean flow and will give rise to the effect of boundary.  

We sum up R,LdA , R,difA , (1) (5)
R R~A A  to obtain the total PA, RA . Taking variations of *

ijR  

followed by letting all physical quantities be real leads to the equations for ijR :  

  0 1 2

3 3 5

( )

( ) ( ) ( ).

ij ij k j ik k i kj ij ij kk ij j i

i j ij i j i j

R R u R u R R g R g R g f

g g u M g

   

   

           

          

u

u u

  


 (2.15) 

The above ‗R-equation‘ is not symmetric in i  and j. The symmetric and anti-symmetric components 

( ) / 2ij ij jiS R R 
 
and ( ) / 2ij ij jiA R R   obey the equations 

  0 1

2
3 3 5

( )

1
( ) ( )( ) ( ) ( ),

2 2

ij ij k j ik k i jk ij ij kk ij

i j j i i j j i ij i j i j

S S u S u S S g S g S

g
f f g g u u M g

  

     

          

                

u

u u

  


(2.16a) 

  1

2
3 3

( )

1
( ) ( )( ).

2 2

ij ij k j ik k i jk ij ij

i j j i i j j i

A A u A u A A g A

g
f f g g u u

 

  

        

        

u   

  (2.16b) 

Assuming a steady turbulence with sufficiently weak fields, from (2.16a), we have 

0 2
3 3

1 1 1

1
( )( ) ( )

2 2
ij i j j i kk ij i j j i

g g
S g g u u S f f

g g g
              .   (2.17) 

This relation is compared with the Boussinesq hypothesis employed in some eddy viscosity models, 

 
1

3
ij t i j j i kk iju u         ,      (2.18) 

where ij i ju u    is the Reynolds stress, t  the eddy viscosity and / 2kk  the average turbulent 

kinetic energy. For locally homogeneous turbulent flow with zero average velocity gradient, (2.18) 

leads to xx yy zz    , which is in contradiction to experiments (see, e.g., sec.4.1.4 in [1]). By 

contrast, (2.17) predicts the diagonal component iiS  along the direction of the average flow to differ 

from the orthogonal components if i  is non-vanishing. However, we have to remember that (2.17) 

hold only approximately and the full equation (2.16a) has to generally be solved.  
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We obtain the equation for the would-be turbulent kinetic energy / 2iii
K S  by setting i j  

and summing over the indices in the equations for ijS . Having the homogeneous turbulence in mind, 

let us further assume that ijS  are spatially constant and the mean velocity and the viscosity field 

take the forms i ij ju w r  and i is r  . We then have 

 2 5 2 2
0 1

3
(3 ) ( )

2 2 2
ij ij ij

g g
K S w g g K M w         f s s .   (2.19) 

The corresponding equation for the turbulent kinetic energy derived from the Reynolds equation is 

 
2(R)

i j ijK u u w         u f u ,     (2.20) 

where the superscript (R)  and the symbol   stand for the Reynolds equation and the fluctuation, 

respectively. Comparing these equations, we expect that the first term in K -equation will represent 

the production of the turbulent kinetic energy due to shear flow. The dissipative term in (R)K

-equation is intensively represented by the second term in K -equation provided that 0 13 0g g  . 

The remaining terms in the K -equation are new ones peculiar to our modeling. 

The substantial difference between our R-equation and the Reynolds equations lies in that the 

latter do not close because of the third moments, while the former does in the sense of the fulfillment 

of the variational principle. If the success of the minimal DEVM is due to the closure nature of its 

dynamical system, we may hope the R-equation to work as well. 

3. Channel turbulent flow 

In this section, we apply the S-equations (2.16a) in the previous section to a channel turbulent 

flow. We are interested in the relation between calculated ijS  and the observed Reynolds stress 

i ju u  . The experiment of the diagonal Reynolds stress for channel flow has been known as is given 

in, e.g., [5]. Many works on the direct numerical simulation (See, e.g., [6–8]) have reported results 

consistent with the experiment. The check of the consistency is important because experiments on 

turbulence in laboratory sometimes exhibit discrepancy [6]. In the followings, we refer to the results 

on the Reynolds stress reported in [5] for diagonal components and in [9] for an off-diagonal 

component. They are shown in Figure 1. 

For a channel flow ( ,0,0)xuu  with a unit half channel width, we choose the y-axis to be 

perpendicular to the walls so that it is sufficient to consider 0 1y   because of the symmetry. One 

of the walls is at 0y  . Taking the symmetry of the Reynolds stress into account, we set 

0xz zx yz zyS S S S    .        (3.1) 

Assuming that ijS  has y -dependences only, the remaining quantities in (2.16) obey the equations 

(the prime stands for derivative in y ) 

  0 1( ) 2 ( ) 0xx x xy xxS u S g g S M          ,     (3.2a) 

  2 2
0 1 5( ) ( ) ( ) 0yy yy xS g g S M g u             ,    (3.2b) 
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  0 1( ) ( ) 0zz zzS g g S M        ,       (3.2c) 

  2
1 3 3

1
( ) ( ) 0

2 2
xy x yy xy x x

g
S u S g S f g g u              ,    (3.2d) 

  2 3
1( ) 0.

2 2
xy xy x x

g g
A g A f u                 (3.2e) 

Here, xx yy zzS S S    . Summing (3.2a) ~ (3.2c) yields the equation for    

  2 2
0 1 5( ) 2 (3 ) 3 ( ) ( ) 0x xy xu S g g M g u                .   (3.3) 

 

Figure1. Example of solutions to (3.3) are depicted by solid curves. Parameters are 

0 2/ 3g   , 1 50g  , 2 118xg f   , 3 40g   , 3 39g  , 4 0.9g   , 5 1g   ， 5.2  , 1  . 

Boundary values at 1y   are 0.37yyS  , 0.38zzS  ， 1.6  , 0yy zzS S      , 0xyS  , 

0.78xyS   . Left panel: Symbols denote the data of Re 3755c   for 2u (circles), 2
zu

(squares) and 2
yu (crosses) adapted from [5]. Right panel: Circles denote the data of 

Re 2970c  for x yu u   adapted from [9]. 

We would like to find out whether there exist values of parameters with which these equations 

reproduce the experimental results for the Reynolds stress [5–8]. Unfortunately, these equations have 

too many parameters to handle directly. In order to minimize the unruly effects from varying these 

model parameters, we consider only the equations for yyS , zzS , xyS  and  . 

In the previous work [2], a dimensionless field — viscosity function — was introduced by 

0/    with a parameter 0  that has the dimension of velocity. 0  is the position where the 

potential of original dimensionful   takes the local minimum, thereby restricting the range of the 

dimensionless   as 1  . For convenience, we also rescale the mean velocity field as  

0x xu u  

and divide the equations by 0  to express the equations (3.3), (3.2b) and (3.2d) as 
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2 2 2 2
0 1 4 5

2 2 2 2
0 1 4 5

2
1 3 3

2
(( ) ) (3 ) 3 ( ) ( ) 0,

(( ) ) ( ) ( ) 0,

1 1
(( ) ) ( ) 0,

2 2

x xy x x

yy yy x x

xy x yy xy x x

u S g g g u g u

S g g S g u g u

g
S u S g S f g g u

     


    

   


             

           

          

  (3.4) 

where new constants were introduced by 

0 0,1 0,1 0 2 2 3 3 0 3 3 4,5 4,5 0/( ), /( ), / , / , / , /g g g g g g g g g g                . 

Note that the equations for  , yyS  and xyS  are closed. 

( )xu y  has been known from experiments [5,10] or by direct numerical calculation [6–8]. Its 

approximate functional form is given in Appendix. ( )y  in minimal DEVM has been numerically 

calculated by Takahashi [2], according to which, ( )y  approximately linearly increases near the 

wall and gradually approaches a constant value. For the present calculation for flows with the 

Reynolds number of a few thousands, we adopt an approximation 

( ) 0.6sin(π / 2)y y          (3.5) 

for the sake of simplicity in numerical calculations. The   obtained by solving (3.4) is employed in 

solving (3.2c) for zzS . The results are shown in Fig.1 together with the experimental data. The 

model parameters are found by trial and error. The ―boundary‖ condition is given at 1y  , i.e., at the 

center of the channel. The calculation shows fairly good agreements with experiments in the region 

0.3y   for the choice of the model parameters given in the caption. Other set of values may be also 

possible.  

Marked deficits in   and yyS  from the experimentally known Reynolds stress are observed 

in 0.3y  . This indicates that our model lacks some terms that should be effective near the wall. 

From Fig.1, it is anticipated that addition of interactions of xxS  and yyS  with   will remedy the 

disagreement for   has relatively large values in the vicinity of the wall. The simplest candidates 

may consist of terms *i ( ) ij k i k jF R u u   , *i ( ) ij i jG R     , *i ( ) ij i k j kH R u u    and their complex 

conjugates. For the sake of simplicity, we try the first two terms with  

2 2
6 7( ) , ( )F g G g    ,       (3.6) 

which respectively give new contribution to the equation for xxS  and yyS  near 0y  . Accordingly, 

the equations for   and yyS  are altered as 

2 2 2 2 2 2 4
0 1 4 5 6 7

2 2 2 2 4
0 1 4 5 7

2
(( ) ) (3 ) 3 ( ) ( ) 0,

(( ) ) ( ) ( ) 0,

x xy x x x

yy yy x x

u S g g g u g u g u g

S g g S g u g u g

       


     

                  

             

 (3.7) 

where 3
6,7 6,7 0 /g g   . These equations together with the one for xyS  are solved with the result 

depicted in Figure 2. As was expected, the region of y  with better fitting to data has been extended 

toward the wall. zzS  and xyS  are not visibly changed by the above modification of the equations. 
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Figure 2. Solutions to (3.2) added by new terms (3.6). The meanings of curves and 

symbols are same as in Fig.1. Parameters are 0 2/3g   , 1 50g  , 2 118xg f   , 3 40g   , 

3 39g  , 4 0.9g   , 5 1g   ， 6 4g  , 7 90g  , 5.2  , 1  . Same boundary values as in 

Fig.1 are adopted except that 1.5  .  

We notice that the components of the symmetric tensor agree semi-quantitatively with the 

experimental results for the Reynolds stress in the central and upper half of the logarithmic region.  

 

Figure 3. Example of xyA  as a solution to (3.2) for the same parameters as in Fig.1. Red 

solid curve: xyA . Blue dotted curve: xu  (vorticity). The inset depicts the same curves 

with small ordinate values being enlarged. 

Finally, in Figure 3, we show the result for the antisymmetric component xyA  which is 

obtained by solving the A -equation (3.2e) with a boundary condition 0,xy xy xA A u    at 1y  . 

Although A  is antisymmetric, it substantially differs from the vorticity. The physical meaning of A  

is unclear. 

4. Concluding remarks 

We constructed a conventional model that incorporates a tensor into the minimal DEVM in an 

invariant way and explored if the symmetric part of the tensor shows some correspondence to the 
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Reynolds stress observed in channel turbulent flow. The new tensor terms were added to the minimal 

DEVM so as not to affect the mean velocity which had already been well reproduced within the 

minimal DEVM [2]. We found that a correspondence to the Reynolds stress in fact exists off the wall 

and is improved further by adding higher order interaction terms. A new form of the Boussinesq 

hypothesis adapted to the model was also found. The preliminary result reported in this paper 

suggests that tensor model seems promising in describing the Reynolds stress. 

A relative improvement of the model was achieved by incorporating higher order terms which 

are not small as compared with the lower order terms. Indeed, our fitting gives 

6 7 0 1 2 3 3 4 5max(| |,| |) / max(| |,| |,| |, |,| |,| |,| |) 0.75xg g g g g f g g g g  . 

Higher order terms may not be safely neglected. 

The DEVM gives the action-reaction relations among the elements of fluid through the 

variational principle as was manifested in [2]. Taking advantage of this property of the DEVM, we 

also want to know what the reaction of the Reynolds stress to the mean flow is. It is desirable to find 

a more sophisticated method for constructing a model. 

From an aesthetic point of view, it is preferable to treat tensor and vector equally. For this 

purpose, it may be worthwhile to consider integrating the components of the tensor as a vector 

matrix by 

Ri ij jR   or Ri j jiR  

and explicitly express the pseudo-action in an SU(2) invariant way. In order to close multiplications 

in GL(2, C), we add the center as 

Ri i ij jv R    or Ri i j jiv R   

Here, v  can be a vector or an axial-vector. Such an extension of R i  is analogous to the one in the 

minimal DEVM, wherein the effective viscosity was introduced by requiring the scalar matrices   

and †  to form a set closed under multiplication. It is interesting to note that, if we require these 

matrices to have a definite parity, v  will be an axial-vector. One candidate is the vorticity. The role 

of the antisymmetric components of the tensor R , if any, will be reexamined in such a model that 

embodies the aim of the original DEVM. Further study along this line will be intriguing. 

Appendix: An empirical formula for the mean velocity of turbulent channel flow 

The interval of the dimensionless coordinate   is divided into three regions. 

i) Viscous sublayer + buffer region 1  :  

( ) sin( / ).u A A   

ii) Buffer region + logarithmic region 1 2    :  

1( ) (2.4ln 5.5)[1 exp( ( ))].u B C         

iii) Central region 2 max    : 
2

max( ) ( ) .u D E      

Imposing a condition that ( )u   belongs to the 1C  class yields following relations among constants 

1 1( ) 1 sin( / ) / ( ),B A A A Fl    

1 1

1

cos( / ) (2.4 / )(1 ( ))
( ) ,

( ) ( )

A B A
C A

B A Fl

 



 
  
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  2
2 2 1 max 2( ) ( ) 1 ( )exp[ ( )( )] ( )( ) ,D A Fl B A C A E A           

2 2 1
max 2 2 2

1 2.4 2.4
( ) ( ) ( ) ( ) exp[ ( )( )] ,

2( )
E A B A Fl C A C A  

   

  
         

 

where 

( ) 2.4ln 5.5.Fl     

In the text, following values are employed 

1 2 max max10, / 2, 450, 15.A        

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. P. A. Davidson, Turbulence: An introduction for scientists and engineers, 2nd Ed., Oxford Univ. 

Press, 2015. 

2. K. Takahashi, Mean-field theory of turbulence from variational principle and its application to 

the rotation of a thin fluid disk, Prog. Theor. Exp. Phys., 2017. 

3. H. Fukagawa and Y. Fujitani, A variational principle for dissipative fluid dynamics, Prog. Theor. 

Phys., 127 (2012), 921–935. 

4. T. B. Gatski and J.-P. Bonnet, Compressibility, Turbulence and High Speed Flow, (Elsevier, 

Oxford), 2008. 

5. K. Nishino and N. Kasagi, Turbulence statistics measurement in a two-dimensional turbulent 

channel flow with the aid of the three−dimensional particle tracking velocimeter, Ronbunshyu B 

(Japan Soc. Mech. Eng), 56 (1990), 116–125. 

6. J. Kim, P. Moin and R. Moser, Turbulence statistics in fully developed channel flow at low 

Reynolds number, J. Fluid Mech., 177 (1987), 133–166. 

7. H. Abe, H. Kawamura and Y. Matsuo, Direct numerical simulation of a fully developed 

turbulent channel flow with respect to the Reynolds number dependence, J. Fluid. Eng-T ASME, 

123 (2001), 382–393. 

8. S. Dharmarathne, M. Tutkun, G. Araya, et al. Structures of scalar transport in a turbulent 

channel, Eur. J. Mech. B-Fluid, 55 (2015), 259–271. 

9. T. Wei and W. W. Willmarth, Reynolds-number effects on the structure of a turbulent channel 

flow, J. Fluid Mech., 204 (1989), 57–95. 

10. J. Laufer, Investigation of turbulent flow in a two-dimensional channel, 1951. 

© 2018 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


