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Abstract: In this paper, we present a modification of the traditional linear trilevel Kth-Best algorithm.
The proposed modified Kth-Best algorithm considers the linear trilevel programming problems in
which the middle level and the lower level problems are unbounded or their objective functions are
inconsistant. These cases are not considered in the trilevel Kth-Best algorithm proposed by Zhang et
al. Moreover, we discuss some geometric properties of a linear trilevel programming problem wherein
each decision maker might have his (her) own restrictions and the upper level objective function contain
lower level variables. Finally, a number of numerical examples are presented and the results are verified
as well.
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1. Introduction

Multilevel programming deals with decision-making situations in which decision makers are
arranged within a hierarchical structure. Trilevel programming, the case of multilevel programming
containing three planner, occurs in a variety of applications such as planning [6, 7], security and
accident management [1, 18], supply chain management [14, 17], economics, [10] and decentralized
inventory [9]. In a trilevel decision-making process, the first-level planner (leader), in attempting to
optimize his objective function, chooses values for the variables that he controls. Next, the
second-level planner in attempting to optimize his objective function while considering the reactions
of the third-level planner chooses values for the variables that he controls. Lastly, the third-level
planner, with regard to the decisions made by the previous levels, optimizes his own objective
function. A number of researchers have studied the linear trilevel programming (LTLP) problem, and
have proposed some procedures to solve it. Some algorithms are proposed based on penalty method
[16], Kuhn-Tucker transformation [2], multi-parametric approach [5], and enumerating extreme
points of constraint region [19] to find the exact optimal solution to special classes of trilevel
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programming problem. In addition, because of the complexity of solving trilevel problems especially
for large-scale problems, some other researches attempted to use fuzzy [13] and meta-heuristic
approaches [8, 15] to find good approximate solutions for these problems. For a good bibliography of
the solution approaches to solve trilevel programming problems, the interested reader can refer to
[11].

The present study investigates the trilevel Kth-best algorithm offered by Zhang et. al. [19] at a
higher level of accuracy. First, some of the geometric properties of the feasible region of the LTLP
problem have been stated and proven. It ought to be mentioned that despite the similarity of some
presented theoretical results in this paper with Ref. [19], the techniques of the proof are different. Then,
a modified version of the trilevel Kth-Best algorithm has been proposed regarding unboundedness of
objective functions in both the second level and third level which is not considered in the proposed
Kth-Best algorithm in reference [19]. Moreover, it is shown that the amount of computations in the
solving process by the modified trilevel Kth-Best algorithm is less than of that of the solving process by
the traditional trilevel Kth-Best algorithm. In addition, in case of finding the optimal solution of linear
trilevel programming problems with conflicting objective functions, the modified Kth-Best algorithm
is capable of giving more accurate solutions.

The organization of the paper is as follows. Basic definitions concerning LTLP problem that we
shall investigate, are presented in Section 2. Some theoretical and geometric properties of the LTLP
problem are studied in Section 3. Based on the facts stated in Section 3, a modified trilevel Kth-Best
algorithm is proposed to solve the LTLP problem in Section 4. To show the superiority of the proposed
algorithm over the traditional Kth-Best algorithm, some numerical examples are presented in Section
5. Ultimately, the paper is concluded with Section 6.

2. Basic definitions of linear trilevel programming problem

As it is mentioned before, we consider the linear trilevel programming problem which can be
formulated as follows:

min
x1∈X1

f1(x1, x2, x3) =

3∑
j=1

αT
1 jx j

s.t
3∑

j=1

A1 jx j ≤ b1 where x2, x3 solve:

min
x2∈X2

f2(x1, x2, x3) =

3∑
j=1

αT
2 jx j

s.t
3∑

j=1

A2 jx j ≤ b2 where x3 solves:

min
x3∈X3

f3(x1, x2, x3) =

3∑
j=1

αT
3 jx j (2.1)

s.t
3∑

j=1

A3 jx j ≤ b3
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where xi ∈ Xi, Xi is an indiscrete subset of Rni
+ for i = 1, 2, 3 and αi j, Ai j, bi are vectors and matrices of

conformal dimensions.
In this section, we state some definitions and notations about the LTLP problem.

• Constraint region:
S = {(x1, x2, x3) ∈ X1 × X2 × X3 :

∑3
j=1 Ai jx j ≤ bi, i = 1, 2, 3}.

• Constraint region for middle and bottom level, for fixed x̄1:
S 2(x̄1) = {(x2, x3) ∈ X2 × X3 :

∑3
j=2 Ai jx j ≤ bi − Ai1 x̄1, i = 2, 3}.

• Feasible set for the level 3, for fixed (x̄1, x̄2) :
Ω3(x̄1, x̄2) = {x3 ∈ X3 : A33x3 ≤ b3 −

∑2
j=1 A3 j x̄ j}.

• Rational reaction set for level 3, for fixed (x̄1, x̄2) :
Ψ3(x̄1, x̄2) = argmin{ f3(x̄1, x̄2, x3) : x3 ∈ Ω3(x̄1, x̄2)}.
• Feasible set for level 2, for fixed x̄1:

Ω2(x̄1) = {(x2, x3) ∈ S 2(x̄1) : x3 ∈ Ψ3(x̄1, x2)}.
• Rational reaction set for level 2, for fixed x̄1:

Ψ2(x̄1) = argmin{ f2(x̄1, x2, x3) : (x2, x3) ∈ Ω2(x̄1)}.
• Inducible region :

IR = {(x1, x2, x3) ∈ S : (x2, x3) ∈ Ψ2(x1)}.

In the above definitions, the term argmin{ f (x) : x ∈ S } denotes the set of all minimizers of the function
f over the set S . Now we can express the definition of the feasible solution and optimal solution to the
LTLP problem as follows:

Definition 2.1. A point (x1, x2, x3) is said to be feasible solution to the LTLP problem (2.1) if
(x1, x2, x3) ∈ IR.

Definition 2.2. A feasible point (x∗1, x
∗
2, x

∗
3) is said to be optimal solution to the LTLP problem (2.1) if

f1(x∗1, x
∗
2, x

∗
3) ≤ f1(x1, x2, x3), for all (x1, x3, x3) ∈ IR.

In view of the above Definitions, determining the solution for the LTLP problem (2.1) is equal to solve
the following problem:

min{ f1(x1, x2, x3) : (x1, x2, x3) ∈ IR}. (2.2)

3. Theoretical properties

In this section, we will demonstrate some geometric properties of the problem (2.1). Let F1, ..., Fr,
denote the non-empty faces of S . We will denote by S Xi and S Xi×X j the projection of S onto Xi and
Xi × X j respectively, for 1 ≤ i, j ≤ 3. We will also use the following assumptions to come up with the
existence of an optimal solution.

Assumption 3.1. S is a non-empty and compact polyhedron.

Assumption 3.2. Ψ2(x1) and Ψ3(x1, x2), are non-empty and single-valued for all x1 ∈ S X1 and (x1, x2) ∈
S X1×X2 respectively.

Assumption 3.3. Ψ2(.) is continuous on S X1 .
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Note that by Assumption 3.1, we can conclude that S Xi , and S Xi×X j , for i, j ∈ {1, 2, 3}, and Fk for
k ∈ {1, ..., r} are also non-empty compact polyhedrons. The following example demonstrates that
Assumption 3.3 is necessary for existence an optimal solution to the LTLP problem.

Example 3.1.

max
x1

x1 + 10x2 − 2x3 + x4

s.t 0 ≤ x1 ≤ 1
max
x2,x3

x2 + 2x3

s.t x2 + x3 ≤ x1

0 ≤ x2, x3 ≤ 1
x4 = 0

max
x4

x4

s.t x4 ≤ x3

x4 ≤ 1 − x3

In this example, we have

Ψ3(x1, x2, x3) =


x3 if 0 ≤ x3 ≤

1
2 ,

1 − x3 if 1
2 ≤ x3 ≤ 1.

Then,
Ω2(x1) = {(x2, x3, x4) : x2 + x3 ≤ x1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤

1
2 , x4 = x3 = 0}∪

{(x2, x3, x4) : x2 + x3 ≤ x1, 0 ≤ x2 ≤ 1, 1
2 ≤ x3 ≤ 1, x4 = 1 − x3 = 0},

and
Ψ2(x1) = argmax{x2 + 2x3 : (x2, x3, x4) ∈ Ω2(x1)} (3.1)

It is clear that if 0 ≤ x1 < 1, the optimal solution of the problem (3.1) is (x1, 0, 0), and if x1 = 1, the
optimal solution is (0, 1, 0). Therefore,

Ψ2(x1) =


(x1, 0, 0) if 0 ≤ x1 < 1

(0, 1, 0) if x1 = 1

It is evident that Ψ2 is discontinuous at x1 = 1. Although, in this problem, the first level objective
function has the supremum value equal to 11 when we approach the point (1, 1, 0, 0), but the problem
does not have an optimal solution.

Lemma 3.1. Let N = {(x̄1, x2, x3) : (x2, x3) ∈ S 2(x̄1)} and (x̄1, x̄2, x̄3) ∈ ri F∩IR where F is a non-empty
face of S , then F ∩ N = {(x̄1, x̄2, x̄3)}. The term ri F denotes the relative interior of F.

Proof. It follows from (x̄1, x̄2, x̄3) ∈ IR that (x̄2, x̄3) ∈ Ψ2(x̄1). Moreover, Ψ2(x̄1) is nonempty and single-
valued. Therefore, (x̄2, x̄3) is the unique optimal solution of the following linear bilevel programming
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problem:

min
x2≥0

3∑
j=2

αT
2 jx j

s.t
3∑

j=2

A2 jx j ≤ b2 − A21 x̄1 where x3 solves:

min
x3≥0

3∑
j=2

αT
3 jx j (3.2)

s.t
3∑

j=2

A3 jx j ≤ b3 − A31 x̄1

By Theorem 5.2.2 of [3] we conclude that (x̄2, x̄3) is an extreme point of S 2(x̄1). Now let (x̃2, x̃3) be
another point of the S 2(x̄1) and (x̄1, x̃2, x̃3) belongs to F ∩ N.
Since (x̄1, x̄2, x̄3) ∈ ri F and (x̄1, x̃2, x̃3) ∈ F, there exists a γ > 1 such that

(x̄1, x̂2, x̂3) = γ(x̄1, x̄2, x̄3) + (1 − γ)(x̄1, x̃2, x̃3) ∈ F ( Theorem 6.4 of [12] ). If we set β =
γ − 1
γ

, then,

0 < β < 1 and (x̄1, x̄2, x̄3) can be written as:
(x̄1, x̄2, x̄3) = β(x̄1, x̃2, x̃3) + (1 − β)(x̄1, x̂2, x̂3).
Thus, it can be concluded that (x̄2, x̄3) = β(x̃2, x̃3) + (1 − β)(x̂2, x̂3). In addition, it can be clearly seen
that (x̃2, x̃3) and (x̂2, x̂3) are belong to S 2(x̄1), which contradicts the fact that (x̄2, x̄3) is an extreme point
of S 2(x̄1). This completes the proof. �

Corollary 3.1. Let N̄ = {(x̄1, x2, x3) : (x̄1, x2, x3) ∈ S } and (x̄1, x̄2, x̄3) ∈ ri F ∩ IR where F is a
non-empty face of S . Then F ∩ N̄ = {(x̄1, x̄2, x̄3)}.

Proof. The statement is immediately derived from the fact that
N̄ ⊂ {(x̄1, x2, x3) : (x2, x3) ∈ S 2(x̄1)} �

Theorem 3.1. Let IR ∩ ri F , ∅ where F is a non-empty face of S. Then, F ⊂ IR.

Proof. Let (x̂1, x̂2, x̂3) ∈ IR ∩ ri F and let (x̄1, x̄2, x̄3) ∈ F be arbitrary. Since (x̂1, x̂2, x̂3) ∈ ri F, we can
find a neighborhood N̂ around it such that
N = N̂ ∩ aff F ⊂ ri F, where aff F denotes the affine hull of face F. Since Ψ2 is a single-valued and
continuous map over S X1 , we can find a neighborhood W around x̂ such that:
{(x,Ψ2(x)) : x ∈ W} ⊂ N ⊂ ri F.
Moreover, we can choose 0 < γ1 < 1 such that
B = {x1 ∈ S X1 : x1 = γx̄1 + (1 − γ)x̂1, 0 ≤ γ ≤ γ1} ⊂ W. Then,
{(x1,Ψ2(x1)) : x1 ∈ B} ⊂ N ⊂ ri F.
Besides, for all β ∈ [0, 1),
β(x̄1, x̄2, x̄3) + (1 − β)(x̂1, x̂2, x̂3) ∈ ri F, (see Ref. [12], Theorem 6.1).
Consequently, from Corollary 3.1, it can be concluded that:
γ(x̄2, x̄3) + (1 − γ)(x̂2, x̂3) = Ψ2(γx̄1 + (1 − γ)x̂), for all 0 ≤ γ ≤ γ1.
In addition, γ(x̄1, x̄2, x̄3) + (1 − γ)(x̂1, x̂2, x̂3) ∈ ri F ⊂ S . Therefore,
γ(x̄1, x̄2, x̄3) + (1 − γ)(x̂1, x̂2, x̂3) ∈ IR, for all 0 ≤ γ ≤ γ1,
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Eventually,
(x̃1, ỹ1, z̃1) = γ1(x̄1, x̄2, x̄3) + (1 − γ1)(x̂1, x̂2, x̂3) ∈ IR ∩ ri F.
If we repeat the process, we can construct from (x̃1, ỹ1, z̃1) a new point called (x̃2, ỹ2, z̃2) ∈ IR ∩ ri F
which lies along the line segment among (x̄1, x̄2, x̄3) and (x̃1, ỹ1, z̃1).
Therefore, we approach point (x̄1, x̄2, x̄3) along the line segment among (x̄1, x̄2, x̄3) and (x̂1, x̂2, x̂3), by
the points which are belongs to IR and so by the continuity of Ψ2, it can be concluded that (x̄1, x̄2, x̄3) ∈
IR and this completes the proof. �

Corollary 3.2. The inducible region of the LTLP problem can be written as the union of some faces of
S that are not necessarily connected.

Corollary 3.3. If IR , ∅, an optimal solution to the LTLP problem occurs at a vertex of IR and hence,
at a vertex of S .

Proof. Notice that the problem (2.2) can be written equivalently as

min{ f1(x1, x2, x3) : (x1, x2, x3) ∈ conv IR} (3.3)

where conv IR denotes the convex hull of IR. It is clear that there exists a solution to the problem
(3.3) which is a vertex of conv IR [4]. Although, conv IR and IR are different sets their vertices are
the same. Moreover, by Corollary 3.2, IR is formed from the union of some faces of S. Therefore, the
vertices of IR (and conv IR) are also the vertices of S and this fact completes the proof. �

Through the above results, it has been demonstrated that there exists at least a vertex of S which
solves the problem (2.1). This fact allows us to develop enumerative algorithms which search amongst
extreme points of the constraint region to solve the LTLP problem.

4. Modified trilevel Kth-Best algorithm

In this section, the modified trilevel Kth-Best algorithm is presented. In actual, the modified
algorithm takes into account LTLP problems with unbounded middle and bottom level problems.
These cases are not considered in the Kth-Best algorithm [19]. Also, it resolves some of drawbacks
while finding an optimal solution for LTLP problems with opposing objectives. Moreover, in the next
section, it is shown that in some LTLP problems, the proposed algorithm leads to reduction the
amount of computations needed for finding an optimal solution.
The process of the modified trilevel Kth-Best algorithm is as follows:

The Algorithm

Step 1. Initialization: Set k ←− 1, W∗ = T = W ←− ∅. Go to Step 2
Step 2. Find the optimal solution of the optimization problem (4.1). Let it be (x[1]

1 , x[1]
2 , x[1]

3 ) and go to
Step 3.

min{ f1(x1, x2, x3) : (x1, x2, x3) ∈ S } (4.1)

Step 3. Solve the following problem.

min{αT
3 3x3 : x3 ∈ Ω3(x[k]

1 , x
[k]
2 )}. (4.2)
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If the problem (4.2) is unbounded go to step 7, else let x′3 be the optimal solution and go to Step 4.
Step 4. If x[k]

3 = x′3, go to step 5 else go to step 7. [ If x[k]
3 = x′3 then x[k]

3 ∈ Ψ3(x[k]
1 , x

[k]
2 ).]

Step 5. Solve the following problem.

min{αT
2 2x2 + αT

2 3x3 : (x2, x3) ∈ S 2(x[k]
1 ), x3 = x[k]

3 }. (4.3)

If problem (4.3) is unbounded go to step 7, else let x′2 be the optimal solution and go to step 6.
Step 6. If x[k]

2 = x′2, then (x[k]
2 , x

[k]
3 ) ∈ Ψ2(x[k]

1 ) and (x[k]
1 , x

[k]
2 , x

[k]
3 ) is the optimal solution, exit. Else go to

Step 7.
Step 7. Set k ←− k + 1 and T ←− T ∪ (x[k]

1 , x
[k]
2 , x

[k]
3 ). Let W be the adjacent extreme points set of

current extreme point i.e., (x[k]
1 , x

[k]
2 , x

[k]
3 ). Set W∗ ←− W∗ ∪W \ T . Go to Step 8

Step 8. If W∗ = ∅ there is no optimal solution, exit. Else let (x[k]
1 , x

[k]
2 , x

[k]
3 ) be the point with the

smallest value in W∗ with respect to f1, go to step 3.

Figure 1 illustrates the process of modified trilevel Kth-Best algorithm.

Remark 4.1. It is clear that if IR , ∅ and Assumption 3.3 is valid, the LTLP problem has an optimal
solution. However, in spite of the fact that the constraint region S is bounded, the middle-level problem
or the bottom level problem may be unbounded. In these cases, we have Ψ2(x1) = ∅ for all x1 ∈ S X1 or
Ψ3(x1, x2) = ∅ for all (x1, x2) ∈ S X1×X2 . Hence, the inducible region will be empty set and consequently,
the LTLP problem has no optimal solution. We have considered this case in the modified trilevel kth-
Best algorithm. Indeed, when the optimality of the candidate vertex is examined, the unboundedness of
the middle level or the bottom level problems are also inspected in step 3 and step 5. Eventually, if the
middle-level or the bottom-level problem is unbounded, after the finite number of iterations (at most
equal to the number of extreme points), the algorithm will terminate with the result that the trilevel
programming problem has no optimal solution.

Proposition 4.1. Let the LTLP problem (2.1) has an optimal solution. Then the modified trilevel Kth-
Best algorithm will terminate with an optimal solution of LTLP problem in a finite number of iterations.

Proof. Let (x[k]
1 , x

[k]
2 , x

[k]
3 ) be the terminated point. The termination condition in Step 6 of the algorithm

is equal to the fact that (x[k]
1 , x

[k]
2 , x

[k]
3 ) belongs to the inducible region. Moreover, according to the

algorithm procedure, we know that (x[k]
1 , x

[k]
2 , x

[k]
3 ) is the optimal solution of the following problem:

min{ f1(x1, x2, x3) : (x1, x2, x3) ∈ S \∪k−1
i=1 (x[i]

1 , x
[i]
2 , x

[i]
3 )}, (Theorem 2.3.4 of [3]). Therefore if termination

occurs, this point has the smallest value between the points of IR with respect to f1.
It is worth mentioning that, by omitting the examined extreme points from W∗, the cycling is prevented.
Moreover, since the extreme points of the constraint region are finite, the algorithm will terminate after
a finite number of iterations. �

5. Numerical examples

To illustrate the advantages of the modified trilevel Kth-Best algorithm, the following examples are
solved according to the outline indicated in the previous section.

Example 5.1. Consider the following LTLP problem:

min
x1

2x1 + 2x2 + 5x3
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𝐿𝑒𝑡 𝑥3
′  𝑏𝑒 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (4.2). 

 

Yes 

Yes 

𝑘 ← 1,𝑊∗ = 𝑊 = 𝑇 ← ∅. 

 𝑙𝑒𝑡 (𝑥1
1, 𝑥2

1, 𝑥3
1) 𝑏𝑒 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (4.1). 

𝑆𝑜𝑙𝑣𝑒 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑙𝑒𝑣𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (4.2). 

𝐼𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (4.2) 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑? 

No 

𝐼𝑠 𝑥3
𝑘 = 𝑥3

′ ? 

𝑆𝑜𝑙𝑣𝑒 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑙𝑒𝑣𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚( 4.3). 

𝐼𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (4.3) 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑? 

No 

𝐿𝑒𝑡 𝑥2
′  𝑏𝑒 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (4.3). 

𝐼𝑠 𝑥2
𝑘 = 𝑥2

′ ? 

(𝑥1
𝑘 , 𝑥2

𝑘, 𝑥3
𝑘) 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

Exit. 

𝐿𝑒𝑡 𝑊 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑡. 

𝑘 ← 𝑘 + 1, 𝑇 ← 𝑇 ∪ *(𝑥1
𝑘, 𝑥2

𝑘 , 𝑥3
𝑘),𝑊∗ ← 𝑊∗ ∪ 𝑊\𝑇. 

𝐼𝑠 𝑊∗ = ∅? 

Yes 

𝑇ℎ𝑒 𝐿𝑇𝐿𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ℎ𝑎𝑠 𝑛𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

Yes 

𝐿𝑒𝑡 (𝑥1
𝑘 , 𝑥2

𝑘, 𝑥3
𝑘)𝑏𝑒 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑓1.  

No 

No 

Yes 

No 

Figure 1. Modified Kth-Best algorithm.
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x1 ≤ 8
x2 ≤ 5 where x2, x3 solve:

max
x2

6x1 + x2 − 3x3

x1 + x2 ≤ 8
x1 + 4x2 ≥ 8
7x1 − 2x2 ≥ 0 where x3 solves:

min
x3

2x1 + x2 − 2x3

5x1 + 5x2 + 14x3 ≤ 40
x1, x2, x3 ≥ 0

In this example, we have Ψ3(x1, x2) = 1
14 (40− 5x1 − 5x2) for all 0 ≤ x1, x2 ≤ 8 , x1 + x2 ≤ 8. Moreover,

Ψ2(x1) = {(
7
2

x1,
1

14
(40 −

45
2

x1)) :
8
15
≤ x1 ≤

16
9
} ∪ {(8 − x1, 0) :

16
9
≤ x1 ≤ 8}.

It is clear that for 10
7 ≤ x1 ≤

16
9 , we have 7

2 x1 > 5 and for 16
9 ≤ x1 < 3, we have 8 − x1 > 5. So, neither

S nor IR include the following set:
{(x1,

7
2 x1,

1
14 (40 − 45

2 x1) : 10
7 < x1 ≤

16
9 } ∪ {(x1, 8 − x1, 0) : 16

9 ≤ x1 < 3}.

Figure 2. Disconnected Inducible Region

Actually,
IR = {(x1,

7
2 x1,

1
14 (40 − 45

2 x1) : 8
15 ≤ x1 ≤

10
7 } ∪ {(x1, 8 − x1, 0) : 3 ≤ x1 ≤ 8}

which is disconnected. This fact shows that despite the continuity of Ψ2, the inducible region is
disconnected. The hatched lines at Figure 2 represent the inducible region.
By Corollary 3.3, an optimal solution of the above example occurs at the point ( 8

15 ,
28
15 , 2).

To solve the example by the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1. (x[1]

1 , x[1]
2 , x[1]

3 ) = ( 8
15 ,

28
15 , 0).
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2. x′3 = 2 , x[1]
3

3. T = {( 8
15 ,

28
15 , 0)}.

4. W∗ = {(8, 0, 0), ( 10
7 , 5, 0), ( 8

15 ,
28
15 , 2)}.

Iteration 2
1. (x[2]

1 , x[2]
2 , x[2]

3 ) = ( 10
7 , 5, 0).

2. x′3 = 55
98 , x[2]

3
3. T = {( 8

15 ,
28
15 , 0), (10

7 , 5, 0)}.
4. W∗ = {(8, 0, 0), ( 10

7 , 5,
55
98 ), ( 8

15 ,
28
15 , 2), (3, 5, 0)}.

Iteration 3
1. (x[3]

1 , x[3]
2 , x[3]

3 ) = ( 8
15 ,

28
15 , 2).

2. x′3 = 2 = x[3]
3

3. x′2 = 28
15 = x[3]

2

4. The point (x[3]
1 , x[3]

2 , x[3]
3 ) = ( 8

15 ,
28
15 , 2) is the optimal solution.

As demonstrated in the solving process of this problem, although the number of iterations and the
optimal solution found by the two algorithms are the same, the number of optimization problems
needed to be solved in each iteration of the Kth-Best algorithm [19] are more than the number of
optimization problems needed to be solved in the modified Kth-Best algorithm. Then the amount of
computations in each iteration of the modified Kth-Best algorithm is less than that of the
corresponding iteration in the Kth-Best algorithm..

The two following examples show some discrepancies in the Kth-Best algorithm [19] that cause an
erroneous result.

Example 5.2.

min
x

f1(x, y, z) = −x − 4z + 2y where y, z soleve:

s.t min
y

f2(x, y, z) = 3y − 2z where z solves:

s.t min
z

f3(x, y, z) = 2z − y

s.t x + y + z ≤ 2
0 ≤ x, y, z ≤ 1

In this example, we have IR = {(x, 0, 0) : 0 ≤ x ≤ 1}. The constraint region and inducible region are
shown in Figure 3 by gray area and hatched line, respectively. It is easy to see that the constraint region
is a compact set and lower levels reaction sets are single-valued. Therefore, all the assumptions of the
trilevel Kth-Best algorithm [19] hold.

The Kth-Best algorithm process [19] for solving this problem is as follows:
Iteration 1 : (x[1], y[1], z[1]) = (1, 0, 1) , (y′[1], z

′
[1]) = (0, 1) , z

′′

[1] = 0 and z[1] , z
′′

[1].
Therefore, (x[1], y[1], z[1]) = (1, 0, 1) is not the optimal solution of the LTLP problem and we have to
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Figure 3. IR and constraint region of Example 5.2

find the next best adjacent extreme point.

Iteration 2 : (x[2], y[2], z[2]) = (0, 0, 1) , (y′[2], z
′
[2]) = (0, 1), z

′′

[2] = 0. Since z
′′

[2] , z[2], then this point is
not the optimal solution either. Following the algorithm, at iteration 7, we obtain:

Iteration 7 : (x[7], y[7], z[7]) = (0, 1, 0). This is the last accessible extreme point which should be
examined. At this iteration, we have (y′[7], z

′
[7]) = (0, 1) and since z′[7] , z[7], this point is not the optimal

solution either. Therefore, the trilevel Kth-Best algorithm [19] fails to find an optimal solution to this
problem.
By solving the example via the modified trilevel Kth-Best algorithm, the process is as follows:

Iteration 1
1. (x[1], y[1], z[1]) = (1, 0, 1).
2. z′ = 0 , z[1]

3. W∗ = {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0)}.

Iteration 2
1. (x[2], y[2], z[2]) = (0, 0, 1)
2. z′ = 0 , z[2]

3. W∗ = {(0, 1, 1), (1, 0, 0), (0, 0, 0), (1, 1, 0)}
Continuing this method, at iteration 4 we get:
(x[4], y[4], z[4]) = (1, 0, 0), z′ = 0 and y′ = 0. Therefore, the point (1, 0, 0) is the optimal solution which
is equal to the solution obtained by the multi-parametric approach [5].

Note that, in the trilevel Kth-Best algorithm [19], the bottom-level optimal solution which is found for
some fixed values of upper and middle-level variables, is not considered as a constraint for the second
level problem. This causes the Kth-best algorithm is not capable of finding an optimal solution for
some LTLP problems. This fact is considered in step 5 of the modified trilevel Kth-Best algorithm by
fixing the lower level variable which is found as the optimal solution of problem (4.2) and substituting
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it in the problem (4.3).

Example 5.3.

min
x1

x1 − 4x2 + 2x3

− x1 − x2 ≤ −3
− 3x1 + 2x2 − x3 ≥ −10 where x2, x3 solve:

min
x2

x1 + x2 − x3

− 2x1 + x2 − 2x3 ≤ −1 (5.1)
2x1 + x2 + 4x3 ≤ 14 where x3 solves:

min
x3

x1 − 2x2 − 2x3

2x1 − x2 − x3 ≤ 2
x1, x2, x3 ≥ 0

Figure 4. An empty inducible region.

The process of the modified trilevel Kth-Best algorithm to solve this problem is as follows:
Iteration 1
1. (x[1]

1 , x[1]
2 , x[1]

3 ) = (3.75, 6.5, 0).
2. The bottom level problem corresponding to (x1, x2) = (3.75, 6.5) is unbounded.
3. T = {(3.75, 6.5, 0)}.
4. W = {(4, 6, 0), ( 4

3 ,
5
3 , 0), (0, 4, 2.5)}.

5. W∗ = W.

Iteration 2
1. (x[2]

1 , x[2]
2 , x[2]

3 ) = (4, 6, 0).
2. The bottom level problem corresponding to (x1, x2) = (4, 6) is unbounded.
3. T = {(3.75, 6.5, 0), (4, 6, 0)}.
4. W = {(3.75, 6.5, 0), (5

3 ,
4
3 , 0), ( 31

13 ,
8

13 ,
28
13 )}.
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5. W∗ = {( 4
3 ,

5
3 , 0), (0, 4, 2.5), ( 5

3 ,
4
3 , 0), ( 31

13 ,
8

13 ,
28
13 )}.

Iteration 3
1. (x[3]

1 , x[3]
2 , x[3]

3 ) = (0, 4, 2.5).
2. The bottom level problem corresponding to (x1, x2) = (0, 4) is unbounded.
3. T = {(3.75, 6.5, 0), (4, 6, 0), (0, 4, 2.5)}.
4. W = {(0, 3, 2.75), (0, 3, 2), (3.75, 6.5, 0)}
5. W∗ = {(4

3 ,
5
3 , 0), (0, 3, 2), ( 5

3 ,
4
3 , 0), (31

13 ,
8
13 ,

28
13 ), (0, 3, 2.75)}.

Iteration 4
1. (x[4]

1 , x[4]
2 , x[4]

3 ) = (0, 3, 2).
2. The bottom level problem corresponding to (x1, x2) = (0, 3) is unbounded.
3. T = {(3.75, 6.5, 0), (4, 6, 0), (0, 4, 2.5), (0, 3, 2)}.
4. W = {(0, 4, 2.5), (0, 3, 2.75)}.
5. W∗ = {(4

3 ,
5
3 , 0), ( 5

3 ,
4
3 , 0), ( 31

13 ,
8
13 ,

28
13 ), (0, 3, 2.75)}.

Iteration 5
1. (x[5]

1 , x[5]
2 , x[5]

3 ) = (0, 3, 2.75).
2. The bottom level problem corresponding to (x1, x2) = (0, 3) is unbounded.
3. T = {(3.75, 6.5, 0), (4, 6, 0), (0, 4, 2.5), (0, 3, 2), (0, 3, 2.75)}.
4. W = {(0, 3, 2), (0, 4, 2.5), ( 31

13 ,
8

13 ,
28
13 )}.

5. W∗ = {( 4
3 ,

5
3 , 0), ( 5

3 ,
4
3 , 0), ( 31

13 ,
8
13 ,

28
13 )}.

Iteration 6
1. (x[6]

1 , x[6]
2 , x[6]

3 ) = ( 4
3 ,

5
3 , 0).

2. The bottom level problem corresponding to (x1, x2) = ( 4
3 ,

5
3 ) is unbounded.

3. T = {(3.75, 6.5, 0), (4, 6, 0), (0, 4, 2.5), (0, 3, 2), (0, 3, 2.75), ( 4
3 ,

5
3 , 0)}.

4. W = {(3.75, 6.5, 0), ( 5
3 ,

4
3 , 0)(0, 3, 2)}.

5. W∗ = {( 5
3 ,

4
3 , 0), ( 31

13 ,
8

13 ,
28
13 )}.

Iteration 7
1. (x[7]

1 , x[7]
2 , x[7]

3 ) = ( 5
3 ,

4
3 , 0).

2. The bottom level problem corresponding to (x1, x2) = ( 5
3 ,

4
3 ) is unbounded.

3. T = {(3.75, 6.5, 0), (4, 6, 0), (0, 4, 2.5), (0, 3, 2), (0, 3, 2.75), ( 4
3 ,

5
3 , 0), ( 5

3 ,
4
3 , 0)}.

4. W = {(4, 6, 0), ( 31
13 ,

8
13 ,

28
13 ), (4

3 ,
5
3 , 0)}.

5. W∗ = {( 31
13 ,

8
13 ,

28
13 )}.

Iteration 8
1. (x[8]

1 , x[8]
2 , x[8]

3 ) = ( 31
13 ,

8
13 ,

28
13 ).

2. The bottom level problem corresponding to (x1, x2) = ( 31
13 ,

8
13 ) is unbounded.

3. T = {(3.75, 6.5, 0), (4, 6, 0), (0, 4, 2.5), (0, 3, 2), (0, 3, 2.75), ( 4
3 ,

5
3 , 0), (5

3 ,
4
3 , 0),

( 31
13 ,

8
13 ,

28
13 )}.

4. W∗ = ∅.
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5. There is no optimal solution.

In the above example, the constraint region is a bounded polyhedron. Let (x∗1, x
∗
2) ∈ S X1,X2 be chosen

arbitrarily. To find the mapping Ψ3(x∗1, x
∗
2), the following parametric linear programming should be

solved:

min
x3

x1 − 2x2 − 2x3

2x1 − x2 − x3 ≤ 2 (5.2)
x1 = x∗1 , x2 = x∗2 , x3 ≥ 0

It is easy to see that the problem (5.2) is unbounded. Therefore, Ψ3(x∗1, x
∗
2) = ∅ for all (x∗1, x

∗
2) ∈ S X1,X2 .

Consequently, IR is also empty and the problem (5.1) does not have any feasible solution and so any
optimal solution. The constraint region is represented at Figure 4. Therefore, the modified trilevel
Kth-Best algorithm concludes that the problem does not have an optimal solution, while the trilevel
Kth-Best algorithm [19] has obtained the point (4, 6, 0) as the optimal solution ([19], section 5.1) which
is incorrect.

6. Conclusion

In this study, the linear trilevel programming problem whereby each planner has his (her) own
constraints, was considered. Some geometric properties of the inducible region were discussed. Under
certain assumptions, it is proved that if the inducible region is non-empty, then it is composed of the
union of some non-empty faces of the constraint region S and at least an optimal solution occurs at
an extreme point of IR which is also an extreme point of S . Then, we proposed a modified trilevel
Kth-Best algorithm to find an optimal solution. Finally, we presented some numerical examples to
highlight some discrepancies between the modified trilevel Kth-Best algorithm and the trilevel Kth-
Best algorithm.
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