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1. Introduction

In this paper, we study the following initial boundary problem
utt − ∆u +

∫ t

0
g(t − s)∆u(s)ds − ∆ut = |u|p−2u, (x, t) ∈ Ω × [0,T ),

u(x, t) = 0, x ∈ ∂Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where Ω ⊂ Rn is a bounded domain with a smooth boundary ∂Ω.
It is well known that viscoelastic materials present a natural damping, which is due to some

properties of these materials to keep memory of their past trace. This type of equations with
viscoelastic term describe a variety of important physical processes [1] and the reference therein.
There is a vast literature on the existence or nonexistence of global solutions, blow up results in finite
time, and the asymptotic behavior of the solutions for the viscoelastic equations, we refer the
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interested readers to [2–11] and the references therein. In particular, Song and Zhong [5] studied
problem (1.1). They established a blow-up result for solutions with positive initial energy. Later, Song
and Xue [6] extended this blow up result to solutions whose initial data have arbitrarily high initial
energy.

Since Payne et al. [12, 13] applied a differential inequality technique to obtain a lower bound on
blow-up time for solutions of the semilinear heat equation. Many authors have given attention to this
problem and obtained many profound results [14–18] and the references therein. However, there seems
to have been little work devoted to obtaining lower bounds on blow-up time to solutions of viscoelastic
problems. To our best knowledge, only few articles dealt with this questions, see [19–21]. Yang et
al. [19] established a lower bound for the blow-up time of the following equation

utt − ∆u +

∫ t

0
g(t − s)∆u(s)ds − |ut|

m−2ut = |u|p−2u.

Tian [20] considered a semilinear parabolic equation with viscoelastic term

ut − ∆u +

∫ t

0
g(t − s)∆u(s)ds = |u|p−2u.

By the means of differential inequality technique, they obtained a lower bound for blow-up time of the
solution. Recently, Peng et al. [21] obtained a lower bound for the blow-up time to problem (1.1) by
establishing a differential inequality. But they can only derived a lower bounds for blow up time t∗

when 2 < p 6 2(n2−2)
n(n−2) . Compared with the condition of blow up result for p in [6], there exists a gap

for p between 2(n2−2)
n(n−2) and 2n

n−2 . It is still open whether a lower bound estimate can be obtained if p lies
in this gap. Inspired by [18, 20], the goal of this paper is to gives an answer to the problem unsolved
in our earlier work Peng et. al [21]. By introducing a new auxiliary functional and using interpolation
inequalities, we obtain lower bounds for the blow-up time for the problem (1.1).

2. Main results

Throughout the paper, we use ‖ · ‖ to denote the Lp− norm for 1 6 p 6 ∞. Before stating our
main results, let us recall the results on the local existence, uniqueness and blow-up in finite time of
solutions to (1.1).

Theorem 2.1 ( [6]). Let (u0, u1) ∈ H1
0(Ω) × L2(Ω) be given. Let g be a C1 function satisfying

1 −
∫ ∞

0
g(s)ds = l > 0. (2.1)

Let p be such that 2 < p < ∞ n = 1, 2,

2 < p 6
2n

n − 2
n > 3.

(2.2)

Then problem (1.1) has a unique local solution

u ∈ C([0,Tm); H1
0(Ω), ut ∈ C([0,Tm); L2(Ω)) ∩ L2([0,Tm); H1

0(Ω)),

for some Tm > 0.
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Define the energy functional E(t) associated to the problem (1.1)

E(t) =
1
2
‖ut‖

2
2 +

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 +

1
2

(g ◦ ∇u)(t) −
1
p
‖u‖p

p,

where

(g ◦ v)(t) =

∫ t

0
g(t − s)‖v(t) − v(s)‖22ds.

Theorem 2.2 ( [6]). Assume that p > 2 satisfies (2.2) and let g be a C1 function satisfying

g(s) > 0, g′(s) 6 0,
∫ ∞

0
g(s)ds < 1 −

1
(p − 1)2 . (2.3)

Let u(t) be a solution of problem (1.1) satisfying(
2
∫

Ω

uutdx + ‖∇u(t)‖22
)
|t=0 >

2p
κ

E(0), (2.4)

then u(t) blow up in finite time, where

κ = max
η1∈(0,1)

κ(η1) = κ(η∗),

κ(η1) = min(
√

(p + 2)δη1λ1, δ(1 − η1)),

λ1 being the first eigenvalue of −∆, δ = (p−2)l− 1
p (1−l), η∗ is the root of the equation

√
(p + 2)δη1λ1 =

δ(1 − η1).

Let us introduce an auxiliary function

ϕ(t) =
1
2
‖ut‖

2
2 +

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 +

1
2

(g ◦ ∇u)(t) +
1
p
‖u‖p

p, (2.5)

with
ϕ(0) =

1
2
‖u1(x)‖22 +

1
2
‖∇u0(x)‖22 +

1
p
‖u0(x)‖p

p. (2.6)

Theorem 2.3. Under the conditions (2.3) and (2.4), assume p satisfy2 < p < ∞, n = 1, 2,

2 < p <
2n

n − 2
, n > 3,

then the solution u(x, t) of problem (1.1) blows up in finite time t∗.
(1) If n > 3, then t∗ is bounded below by

t∗ >
2n − np + 4p
2K1(p − 2)

[ϕ(0)]
4−2p

2n−np+4p ,

where K1 is given in (2.22).
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(2) If n = 1, then t∗ is bounded below by

t∗ >
2(p − 1)

K2(p − 2)
[ϕ(0)]

2−p
2(p−1) ,

where K2 is given in (2.29).
(3) If n = 2, then t∗ is bounded below by

t∗ >
p − 2

K3(p + 2)
[ϕ(0)]

2−p
p+2 .

where K3 is given in (2.34).

Proof. According to Theorem 2.2, the solution u(x, t) of (1.1) blows up in a finite time t∗. Besides,
Song and Xue [6] proved that

lim
t→t∗

[
‖ut‖

2
2 +

(
1 +

1
λ1

)
‖∇u‖22

]
= +∞,

which implies that
lim
t→t∗

ϕ(t) = +∞. (2.7)

Multiplying Eq. (1.1) by ut and integrating over Ω yields

1
2

d
dt

{ ∫
Ω

|ut|
2dx +

∫
Ω

|∇u|2dx
}

=

∫ t

0
g(t − s)

∫
Ω

∇ut · ∇udxds −
∫

Ω

|∇ut|
2dx +

∫
Ω

|u|p−2uutdx. (2.8)

For the first term on the right-hand side of (2.8), we have∫ t

0
g(t − s)

∫
Ω

∇ut · ∇udxds =
1
2

d
dt

{∫ t

0
g(s)ds

∫
Ω

|∇u(t)|2dx −
∫ t

0
g(t − s)ds

∫
Ω

|∇u(s) − ∇u(t)|2dx
}

−
1
2

g(t)
∫

Ω

|∇u(t)|2dx +
1
2

∫ t

0
g′(t − s)ds

∫
Ω

|∇u(s) − ∇u(t)|2dx. (2.9)

Inserting (2.9) into (2.8) gives

d
dt

{
1
2

∫
Ω

|ut|
2dx +

1
2

(
1 −

∫ t

0
g(s)ds

) ∫
Ω

|∇u|2dx +
1
2

(g ◦ ∇u)(t) +
1
p

∫
Ω

|u|pdx
}

= −

∫
Ω

|∇ut(t)|2dx

+
1
2

∫ t

0
g′(t − s)

∫
Ω

|∇u(s) − ∇u(t)|2dxds −
1
2

g(t)
∫

Ω

|∇u(t)|2dx + 2
∫

Ω

|u|p−2uutdx.

From (2.5), the above identity can be rewritten as

ϕ′(t) = −‖∇ut(t)‖2 −
1
2

g(t)‖∇u(t)‖2 +
1
2

(g′ ◦ ∇u)(t) + 2
∫

Ω

|u|p−2uutdx. (2.10)

Since g′(s) 6 0 and g(s) > 0, it follows from (2.10) that

ϕ′(t) 6 −‖∇ut(t)‖2 + 2
∫

Ω

|u|p−2uutdx.
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Using Hölder inequality, we have

ϕ′(t) 6 −‖∇ut(t)‖2 + 2‖u‖p−1
p ‖ut‖p. (2.11)

Next, we are going to estimate the second term on the right-hand side of (2.11).
Firstly, we consider the case n > 3. Using interpolation inequality yields

‖ut‖p 6 ‖ut‖
2n−p(n−2)

2p

2 ‖ut‖
n(p−2)

2p
2n

n−2
. (2.12)

For any ε > 0, r, s, θ > 1, we have the following Young inequality

abc 6
ε

r
ar +

ε−
s

2r

s
bs +

ε−
θ
2r

θ
cθ,

1
r

+
1
s

+
1
θ

= 1. (2.13)

Combing (2.12) with (2.13) gives

2‖u‖p−1
p ‖ut‖p 6 2‖u‖p−1

p ‖ut‖
2n−p(n−2)

2p

2 ‖ut‖
n(p−2)

2p
2n

n−2

6
ε

r
‖ut‖

2
2n

n−2
+
ε−

s
2r

s
‖ut‖

2n−p(n−2)
2p s

2 +
ε−

θ
2r 2θ

θ
‖u‖θ(p−1)

p , (2.14)

with

r =
4p

n(p − 2)
> 1,

s =
4p(2n − np + 6p − 4)

(2n − np + 2p)(2n − np + 4p)
>

4p
2n − np + 2p

>
4p
2p

= 2,

θ =
2n − np + 2p

4(p − 1)
s =

p(2n − np + 6p − 4)
(p − 1)(2n − np + 4p)

>
2n − np + 6p − 4

2n − np + 4p
> 1.

Applying Sobolev inequality to the first term on the right-hand side of (2.13), we have

‖ut‖
2

2n
n−2
6 C2

1‖∇ut‖
2
2, (2.15)

where C1 is the best constant of the Sobolev embedding H1
0(Ω) ↪→ L

2n
n−2 (Ω).

Recalling (2.5), we have

1
p
‖u‖p

p 6
1
2
‖ut‖

2
2 +

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 +

1
2

(g ◦ ∇u)(t) +
1
p
‖u‖p

p = ϕ(t), (2.16)

1
2
‖ut‖

2
2 6

1
2
‖ut‖

2
2 +

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 +

1
2

(g ◦ ∇u)(t) +
1
p
‖u‖p

p = ϕ(t). (2.17)

Plugging (2.15)–(2.17) into (2.14), it follows that

2‖u‖p−1
p ‖ut‖p 6

εC2
1

r
‖∇ut‖

2
2 +

ε−
s

2r

s
‖ut‖

2n−p(n−2)
2p s

2 +
ε−

θ
2r 2θ

θ
‖u‖θ(p−1)

p

6
εC2

1

r
‖∇ut‖

2
2 +

ε−
s

2r

s
2

(2n−np+2p)s
4p [ϕ(t)]

(2n−np+2p)s
4p +

ε−
θ
2r 2θ

θ
p
θ(p−1)

p [ϕ(t)]
θ(p−1)

p . (2.18)
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Noting that
(2n − np + 2p)s

4p
=
θ(p − 1)

p
=

2n − np + 6p − 4
2n − np + 4p

> 1,

(2.18) can be rewritten as

2‖u‖p−1
p ‖ut‖p 6

εC2
1

r
‖∇ut‖

2
2 +

[
2γ

s
ε−

s
2r +

pγ2θ

θ
ε−

θ
2r

]
[ϕ(t)]γ. (2.19)

where
γ =

2n − np + 6p − 4
2n − np + 4p

> 1. (2.20)

Inserting (2.19) into (2.11), we obtain

ϕ′(t) 6
(
εC2

1

r
− 1

)
‖∇ut‖

2
2 +

[
2γ

s
ε−

s
2r +

pγ2θ

θ
ε−

θ
2r

]
[ϕ(t)]γ. (2.21)

Taking ε =
4p

n(p−2)C2
1

in (2.21) leads to
ϕ′(t) 6 K1[ϕ(t)]γ. (2.22)

where

K1 =
2n − np + 2p

pγ22−γ

[
n(p − 2)C2

1

4p

] nγ(p−2)
2n−np+2p

+ 2
pγ

p−1
p − 1
γp1−γ

[
n(p − 2)C2

1

4p

] nγ(p−2)
8(p−1)

. (2.23)

Integrating (2.22) from 0 to t results in

1
1 − γ

{
[ϕ(t)]1−γ − [ϕ(0)]1−γ

}
6 K1t. (2.24)

Thus, letting t → t∗ and taking into account (2.7), we have the lower bound for t∗

t∗ >
1

K1(γ − 1)
[ϕ(0)]1−γ =

2n − np + 4p
2K1(p − 2)

[ϕ(0)]
2p−4

2n−np+4p .

Next, we continue to estimate (2.11) for the case n = 1. Using Hölder inequality and Sobolev
inequality, we have

‖ut‖
p
p 6 ‖ut‖

p−2
2 ‖ut‖

2
∞ 6 ‖ut‖

p−2
2 (C2‖∇ut‖2)2, (2.25)

where C2 is the best constant of the Sobolev embedding H1
0(Ω) ↪→ L∞(Ω).

Using again (2.13), we arrive at

2‖u‖p−1
p ‖ut‖p 6 2C

2
p

2 ‖u‖
p−1
p ‖∇ut‖

p−2
p

2 ‖ut‖
2p−np+2n

2p

2

6
ε

p
‖∇ut‖

2
2 +

ε−
s

2r

s
‖ut‖

(2p−np+2n)s
2p

2 +
ε−

θ
2r

θ
2θCθ

2‖u‖
θ(p−1)
p , (2.26)

with

r = p > 2,
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s =
p(3p − 4)

(p − 1)(p − 2)
=

2p(p − 2) + p2

(p − 1)(p − 2)
>

2p
p − 1

= 2,

θ =
p(3p − 4)
2(p − 1)2 s =

3(p − 1)2 + 2p − 3
2(p − 1)2 >

3
2
.

Combining (2.11), (2.16), (2.17) with (2.26) yields

ϕ′(t) 6 (
ε

p
− 1)‖∇ut‖

2
2 +

ε−
s

2r

s
‖ut‖

(p−2)s
p

2 +
ε−

θ
2r

θ
2θC

2θ
p

2 ‖u‖
θ(p−1)
p

6 (
ε

p
− 1)‖∇ut‖

2
2 +

ε− s
2r

s
2

(p−2)s
2p +

ε−
θ
2r

θ
2θC

2θ
p

2 p
θ(p−1)

p

 [ϕ(t)]
3p−4

2(p−1) . (2.27)

Taking ε = p in (2.27), we have
ϕ′(t) 6 K2[ϕ(t)]

3p−4
2(p−1) , (2.28)

where

K2 =
(p − 1)(p − 2)

p(3p − 4)
(p2p−2)

3p−4
2(p−1)(p−2)

[
1 +

2(p − 1)
p − 2

p
2p2−9p+8

2(p−1)(p−2) (2C2)
3p−4

2(p−1)2

]
. (2.29)

Noting that 3p−4
2(p−1) > 1 and integrating (2.28) from 0 to t∗ results in

2(p − 1)
p − 2

[ϕ(0)]
2−p

2(p−1) 6 K2t∗,

which implies that

t∗ >
2(p − 1)

K2(p − 2)
[ϕ(0)]

2−p
2(p−1) .

Finally, we estimate (2.11) for the case n = 2. Using interpolation theorem [22], we have

‖ut‖p 6 N‖∇ut‖
p−2

p

2 ‖ut‖
2
p

2 , (2.30)

where K is an embedding constant.
Using again (2.13), we arrive at

2‖u‖p−1
p ‖ut‖p 6 2N‖u‖p−1

p ‖∇ut‖
p−2

p

2 ‖ut‖
2
p

2

6
ε

r
‖∇ut‖

(p−2)r
p

2 +
ε−

s
2r

s
‖ut‖

2s
p

2 +
ε−

θ
2r

θ
2θNθ‖u‖θ(p−1)

p ,

=
(p − 2)ε

2p
‖∇ut‖

2
2 +

ε−
s

2r

s
‖ut‖

4p
p+2

2 +
ε−

θ
2r

θ
2θNθ‖u‖

2p2
p+2
p , (2.31)

with

r =
2p

p − 2
> 2, s =

2p2

p + 2
> 2, θ =

2p2

(p − 1)(p + 2)
>

2p
p + 2

> 1.

Combining (2.11), (2.16), (2.17) with (2.31) yields

ϕ′(t) 6
[ (p − 2)ε

2p
− 1

]
‖∇ut‖

2
2 +

ε−
s

2r

s
‖ut‖

4p
p+2

2 +
ε−

θ
2r

θ
2θKθ‖u‖

2p2
p+2
p

AIMS Mathematics Volume 3, Issue 4, 514–523



521

6
[ (p − 2)ε

2p
− 1

]
‖∇ut‖

2
2 +

ε− s
2r

s
2

2p
p+2 +

ε−
θ
2r

θ
2θNθp

2p
p+2

 [ϕ(t)]
2p
p+2 . (2.32)

Taking ε =
2p
p−2 in (2.32), we have

ϕ′(t) 6 K3[ϕ(t)]
2p
p+2 , (2.33)

where

K3 =
p + 2

p2

(
2p

p − 2

) −p(p−2)
2(p+2)

2
p−2
p+2

1 + (p − 1)
(

2p
p − 2

) p(p−2)2
2(p−1)(p+2)

2
2p

(p−1)(p+2) N
2p2

(p−1)(p+2) p
2p
p+2

 . (2.34)

Noting that 2p
p+2 > 1 and integrating (2.33) from 0 to t∗ results in

p − 2
p + 2

[ϕ(0)]
2−p
p+2 6 K3t∗,

which implies that

t∗ >
p − 2

K3(p + 2)
[ϕ(0)]

2−p
p+2 .

The proof is complete. �

Remark 1. From the proof of (2.14), we observe that it is clear that 2n−np+2p = 0 when p = 2n
n−2 for

n > 3. In this case, the inequality (2.14) doesn’t hold. Thus we need to develop new ideas to restructure
this inequality.

Theorem 2.4. Let ϕ(t) and ϕ(0) be defined in (2.5) and (2.6). Suppose that the conditions of Theorem
2.2 hold. Then the solution of (1.1) blows up in finite time t∗, which is bounded below by

t∗ >
∫ ∞

ϕ(0)

dη

M1η
α(p−1)
(α−1)p + M2

,

where
1 < α < 2, M1 =

α

α − 1
2

α
α−1α−

1
α−1 p

α(p−1)
p(α−1) , M2 =

2
2 − α

(
α

2
)

α
2−α B

2α
2−α
s

and Bs is the best constant of the Sobolev embedding H1
0(Ω) ↪→ Lp(Ω).

Proof. As already mentioned, going back to (2.11), we need to estimate the second term on the right
hand side of (2.11). In what follows, we are going to estimate it in a different way.

For any ε > 0, r > 1, s > 1, we have the following known Young inequality

ab 6
ε

r
ar +

ε−
s
r

s
bs,

1
r

+
1
s

= 1. (2.35)

By means of the inequality (2.35) with r = α; s = α
α−1 , ε = α, it follows that

2‖u‖p−1
p ‖ut‖p 6 C3(‖u‖p

p)
α(p−1)
p(α−1) + ‖ut‖

α
p, (2.36)
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where C3 = α
α−12

α
α−1α−

1
α−1 .

We now focus our attention on the second term on the right in (2.36). Since 1 < α < 2, using
Sobolev inequality and (2.35) with r = 2

α
, s = 2

2−α , ε = 2
α
, we arrive at

‖ut‖
α
p 6 Bα

s ‖∇ut‖
α
2 6 ‖∇ut‖

2
2 + M2, (2.37)

where M2 = 2
2−α (α2 )

α
2−α B

2α
2−α
s , Bs is the best constant of the Sobolev embedding H1

0(Ω) ↪→ Lp(Ω).
Inserting (2.37) into (2.36) yields

2‖u‖p−1
p ‖ut‖p 6 C3(‖u‖p

p)
α(p−1)
p(α−1) + ‖∇ut‖

2
2 + M2. (2.38)

Combining (2.11), (2.16) with (2.38), we get

ϕ′(t) 6 M1[ϕ(t)]
α(p−1)
p(α−1) + M2, (2.39)

where M1 = C3 p
α(p−1)
p(α−1) .

Integrating (2.39) from 0 to t yields∫ ϕ(t)

ϕ(0)

dη

M1η
α(p−1)
p(α−1) + M2

6 t,

from which we deduce a lower bound for t∗, namely,∫ ∞

ϕ(0)

dη

M1η
α(p−1)
p(α−1) + M2

6 t∗.

The proof is complete. �
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