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Abstract: We study the problem (−∆)s u = −au−γ + λh in Ω, u = 0 in Rn \ Ω, u > 0 in Ω, where
0 < s < 1,Ω is a bounded domain inRn with C1,1 boundary, a and h are nonnegative bounded functions,
h . 0, and λ > 0. We prove that if γ ∈ (0, s) then, for λ positive and large enough, there exists a weak
solution such that c1ds

Ω
≤ u ≤ c2ds

Ω
in Ω for some positive constants c1 and c2. A somewhat more

general result is also given.
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1. Introduction and statement of the main results

Elliptic problems with singular nonlinearities appear in many nonlinear phenomena, for instance,
in the study of chemical catalysts process, non-Newtonian fluids, and in the study of the temperature
of electrical conductors whose resistance depends on the temperature (see e.g., [3, 6, 10, 15] and the
references therein). The seminal work [7] is the start point of a large literature concerning singular
elliptic problems, see for instance, [1, 3, 5, 6, 8, 9, 10, 13, 15, 17, 18, 21, 22, 23, 24], and [30]. For
additional references and a systematic study of singular elliptic problems see also [26].

In [10], Diaz, Morel and Oswald considered problems of the form
−∆u = −u−γ + λh (x) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

(1.1)

where Ω is a bounded and regular enough domain, 0 < γ < 1, λ > 0 and h ∈ L∞ (Ω) is a nonnegative
and nonidentically zero function. They proved (see [10], Theorem 1, Corollary 1, Lemma 2 and
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Theorem 3) that there exists λ0 > 0 such that. for λ > λ0, problem (1.1) has a unique maximal solution
u ∈ H1

0 (Ω) and has no solution when λ < λ0.

Concerning nonlocal singular problems, Barrios, De Bonis, Medina, and Peral proved in [2] that if
Ω is a bounded and regular enough domain in Rn, 0 < s < 1, n > 2s, f is a nonnegative function in a
suitable Lebesgue space, λ > 0, M > 0 and 1 < p < n+2s

n−2s , then the problem
(−∆)s u = λ f (x) u−γ + Mup in Ω,

u = 0 on Rn \Ω,

u > 0 in Ω,

(1.2)

has a solution, in a suitable weak sense whenever λ > 0 and M > 0, and that, if M = 1 and f = 1,
then there exists Λ > 0 such that (1.2) has at least two solutions when λ < Λ and has no solution when
λ > Λ.

A natural question is to ask if an analogous of the quoted result of [10] hold in the nonlocal case,
i.e., when −∆ is replaced by the fractional laplacian (−∆)s , s ∈ (0, 1) , and with the boundary condition
u = 0 on ∂Ω replaced by u = 0 on Rn \ Ω. Our aim in this paper is to obtain such a result. Note that
the approach of [10] need to be modified in order to be used in the fractional case. Indeed, a step in
[10] was to observe that, if ϕ1 denotes a positive principal eigenfunction for −∆ on Ω, with Dirichlet
boundary condition, then

− ∆ϕ
2

1+γ

1 =
2

1 + γ
λ1ϕ

2
1+γ

1 −
2 (1 − γ)
(γ + 1)2 |∇ϕ1|

2 ϕ
−

2γ
1+γ

1 in Ω, (1.3)

where λ1 is the corresponding principal eigenvalue. From this fact, and using the properties of a

principal eigenfunction, Diaz, Morel and Oswald proved that, for ε positive and small enough, εϕ
2

1+γ

1 is
a subsolution of problem (1.1). Since formula (1.3), is not avalaible for the principal eigenfunction of
(−∆)s , the arguments of [10] need to be modified in order to deal with the fractional case.
Let us state the functional setting for our problem. For s ∈ (0, 1) and n ∈ N, let

H s (Rn) :=
{

u ∈ L2 (Rn) :
∫
Rn×Rn

|u (x) − u (y)|2

|x − y|n+2s dxdy < ∞
}
,

and for u ∈ H s (Rn) , let ‖u‖Hs(Rn) :=
(∫
Rn u2 +

∫
Rn×Rn

|u(x)−u(y)|2

|x−y|n+2s dxdy
) 1

2
. Let Ω be a bounded domain in Rn

with C1,1 boundary and let

Xs
0 (Ω) := {u ∈ H s (Rn) : u = 0 a.e. in Rn \Ω} ,

and for u ∈ Xs
0 (Ω) , let ‖u‖Xs

0(Ω) :=
(∫
Rn×Rn

|u(x)−u(y)|2

|x−y|n+2s dxdy
) 1

2
.

With these norms, H s (Rn) and Xs
0 (Ω) are Hilbert spaces (see e.g., [29], Lemma 7), C∞c (Ω) is dense

in Xs
0 (Ω) (see [16], Theorem 6). Also, Xs

0 (Ω) is a closed subspace of H s (Rn), and from the fractional
Poincaré inequality (as stated e.g., in [11], Theorem 6.5; see Remark 2.1 below), if n > 2s then ‖.‖Xs

0(Ω)

and ‖.‖Hs(Rn) are equivalent norms on Xs
0 (Ω) . For f ∈ L1

loc (Ω) we say that f ∈
(
Xs

0 (Ω)
)′

if there exists
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a positive constant c such that
∣∣∣∫

Ω
fϕ

∣∣∣ ≤ c ‖u‖Xs
0(Ω) for any ϕ ∈ Xs

0 (Ω) . For f ∈
(
Xs

0 (Ω)
)′

we will write
((−∆)s)−1 f for the unique weak solution u (given by the Riesz theorem) of the problem{

(−∆)s u = f in Ω,

u = 0 in Rn \Ω.
(1.4)

Here and below, the notion of weak solution that we use is the given in the following definition:

Definition 1.1. Let s ∈ (0, 1) , let f : Ω→ R be a Lebesgue measurable function such that fϕ ∈ L1 (Ω)
for any ϕ ∈ Xs

0 (Ω) . We say that u : Ω→ R is a weak solution to the problem{
(−∆)s u = f in Ω,

u = 0 in Rn \Ω

if u ∈ Xs
0 (Ω) , u = 0 in Rn \Ω and, for any ϕ ∈ Xs

0 (Ω) ,∫
Rn×Rn

(u (x) − u (y)) (ϕ (x) − ϕ (y))
|x − y|n+2s dxdy =

∫
Ω

fϕ.

For u ∈ Xs
0 (Ω) and f ∈ L1

loc (Ω) , we will write (−∆)s u ≤ f in Ω (respectively (−∆)s u ≥ f in Ω) to
mean that, for any nonnegative ϕ ∈ H s

0 (Ω) , it hold that fϕ ∈ L1 (Ω) and∫
Rn×Rn

(u (x) − u (y)) (ϕ (x) − ϕ (y))
|x − y|n+2s dxdy ≤

∫
Ω

fϕ (resp. ≥
∫

Ω

fϕ).

For u, v ∈ Xs
0 (Ω) , we will write (−∆)s u ≤ (−∆)s v in Ω (respectively (−∆)s u ≥ (−∆)s v in Ω ), to mean

that (−∆)s (u − v) ≤ 0 in Ω (resp. (−∆)s (u − v) ≥ 0 in Ω).

Let
E :=

{
u ∈ Xs

0 (Ω) : cds
Ω ≤ u ≤ c′ds

Ω a.e. in Ω, for some positive constants c and c′
}

where, for x ∈ Ω, dΩ (x) := dist (x, ∂Ω) . With these notations, our main results read as follows:

Theorem 1.2. Let Ω be a bounded domain in Rn with C1,1 boundary, let s ∈ (0, 1) , and assume
n > 2s. Let h ∈ L∞ (Ω) be such that 0 ≤ h . 0 in Ω (i.e., |{x ∈ Ω : h (x) > 0}| > 0) and let
g : Ω × (0,∞)→ [0,∞) be a function satisfying the following conditions g1)-g5)
g1) g : Ω × (0,∞) → [0,∞) is a Carathéodory function, g (., s) ∈ L∞ (Ω) for any s > 0 and
limσ→∞ ‖(g (., σ))‖∞ = 0.
g2) σ→ g (x, σ) is non increasing on (0,∞) a.e. x ∈ Ω.

g3) g
(
., σds

Ω

)
∈

(
Xs

0 (Ω)
)′

and d−s
Ω

((−∆)s)−1
(
ds

Ω
g
(
., σds

Ω

))
∈ L∞ (Ω) for all σ > 0.

g4) It hold that:
limσ→∞

∥∥∥∥(σds
Ω

)−1
((−∆)s)−1

(
ds

Ω
g
(
., σds

Ω

))∥∥∥∥
∞

= 0, and

limσ→∞

∥∥∥d−s
Ω

((−∆)s)−1 (g (., σ))
∥∥∥

L∞(Ω) = 0.

g5) ds
Ω

g
(
., σds

Ω

)
∈ L2 (Ω) for any σ > 0.

Consider the problem 
(−∆)s u = −g (., u) + λh in Ω,

u = 0 in Rn \Ω,

u > 0 in Ω

(1.5)
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Then there exists λ∗ ≥ 0 such that:
i) If λ > λ∗ then (1.5) has a weak solution u(λ) ∈ E, which is maximal in the following sense: If v ∈ E
satisfies (−∆)s v ≤ −g (., v) + λh in Ω, then u(λ) ≥ v a.e. in Ω .
ii)If λ < λ∗, no weak solution exists in E.
iii) If, in addition, there exists b ∈ L∞ (Ω) such that 0 ≤ b . 0 in Ω and g (., s) ≥ bs−β a.e. in Ω for any
s ∈ (0,∞) , then λ∗ > 0.

Theorem 1.2 allows g (x, s) to be singular at s = 0. In fact, in Lemma 3.2, using some estimates from
[4] for the Green function of (−∆)s in Ω (with homogeneous Dirichlet boundary condition on Rn \ Ω),
we show that if g (x, s) = as−β with a a nonnegative function in L∞ (Ω) and β ∈ [0, s) , then g satisfies
the assumptions of Theorem 1.2. Thus, as a consequence of Theorem 1.2, we obtain the following:

Theorem 1.3. Let Ω, s, and h be as in the statement of Theorem 1.2, and let g : Ω × (0,∞)→ [0,∞) .
Then the assertions i)-iii) of Theorem 1.2 remain true if we assume, instead of the conditions g1)-g5),
that the following conditions g6) and g7) hold:
g6) g : Ω × (0,∞) → [0,∞) is a Carathéodory function and s → g (x, s) is nonincreasing for a.e.
x ∈ Ω.

g7) There exist positive constants a and β ∈ [0, s) such that g (., s) ≤ as−β a.e. in Ω for any s ∈ (0,∞) .

Let us sketch our approach: In Section 2 we consider, for ε > 0, the following approximated problem
(−∆)s u = −g (., u + ε) + λh in Ω,

u = 0 in Rn \Ω,

u > 0 in Ω.

(1.6)

Let us mention that, in order to deal with problems involving the (p; q)-Laplacian and a convection
term, this type of approximation was considered in [14] (see problem Pε therein).
Lemma 2.5 gives a positive number λ0, independent of ε and such that, for λ = λ0, problem (1.6) has
a weak solution wε. From this result, and from some properties of the function wε, in Lemma 2.11 we
show that, for λ ≥ λ0 and for any ε > 0, there exists a weak solution uε of problem (1.6), with the
following properties:
a) cds

Ω
≤ uε ≤ c′ds

Ω
for some positive constants c and c′ independent of ε,

b) uε ≤ u, where u is the solution of the problem (−∆)s u = λh in Ω, u = 0 in Rn \Ω,

c) uε ≥ ψ for any ψ ∈ Xs
0 (Ω) such that (−∆)s ψ = −g (., ψ + ε) + λh in Ω.

In section 3 we prove Theorems 1.2 and 1.3. To prove Theorem 1.2, we consider a decreasing sequence{
ε j

}
j∈N

such that lim j→∞ ε j = 0, and we show that, for λ ≥ λ0, the sequence of functions
{
uε j

}
j∈N

given
by Lemma 2.11 converges, in Xs

0 (Ω) , to a weak solution u of problem (1.5) which has the properties
required by the theorem. An adaptation of some of the arguments of [10] gives that, if problem (1.5)
has a weak solution in E, then it has a maximal (in the sense stated in the theorem) weak solution in
E and that if for some λ = λ′ (1.5) has a weak solution in E, then it has a weak solution in E for any
λ ≥ λ′. Finally, the assertion iii) of Theorem 1.2 is proved with the same argument given in [10].

2. Preliminaries and auxiliary results

We fix, from now on, h ∈ L∞ (Ω) such that 0 ≤ h . 0 in Ω. We assume also from now on (except in
Lemma 3.2) that g : Ω × (0,∞)→ [0,∞) satisfies the assumptions g1)-g5 of Theorem 1.2.

AIMS Mathematics Volume 3, Issue 4, 464–484



468

In the next remark we collect some general facts concerning the operator (−∆)s.

Remark 2.1. i) (see e.g., [27], Proposition 4.1 and Corollary 4.2) The following comparison principle
holds: If u, v ∈ Xs

0 (Ω) and (−∆)s u ≥ (−∆)s v in Ω then u ≥ v in Ω. In particular, the following
maximum principle holds: If v ∈ Xs

0 (Ω) , (−∆)s v ≥ 0 in Ω and v ≥ 0 in Rn \Ω, then v ≥ 0 in Ω.

ii) (see e.g., [27], Lemma 7.3) If f : Ω → R is a nonnegative and not identically zero measurable
function in f ∈

(
Xs

0 (Ω)
)′
, then the weak solution u of problem (1.4) satisfies, for some positive constant

c,
u ≥ cds

Ω in Ω. (2.1)

iii) (see e.g., [28], Proposition 1.1) If f ∈ L∞ (Ω) then the weak solution u of problem (1.4) belongs to
C s (Rn) . In particular, there exists a positive constant c such that

|u| ≤ cds
Ω in Ω. (2.2)

iv) (Poincaré inequality, see [11], Theorem 6.5) Let s ∈ (0, 1) and let 2∗s := 2n
n−2s . Then there exists

a positive constant C = C (n, s) such that, for any measurable and compactly supported function f :
Rn → R,

‖ f ‖L2∗s (Rn) ≤ C
∫
Rn×Rn

( f (x) − f (y))2

|x − y|n+sp dxdy.

v) If v ∈ L(2∗s)′ (Ω) then v ∈
(
Xs

0 (Ω)
)′
, and ‖v‖(Xs

0(Ω))′ ≤ C ‖v‖(2∗s)′ , with C as in i). Indeed, for

ϕ ∈ Xs
0 (Ω) , from the Hölder inequality and iii),

∫
Ω
|vϕ| ≤ ‖v‖(2∗s)′ ‖ϕ‖2∗s ≤ C ‖v‖(2∗s)′ ‖ϕ‖Xs

0(Ω) .

vi) (Hardy inequality, see [25], Theorem 2.1) There exists a positive constant c such that, for any
ϕ ∈ Xs

0 (Ω) , ∥∥∥d−s
Ω ϕ

∥∥∥
2
≤ c ‖ϕ‖Xs

0(Ω) . (2.3)

Remark 2.2. Let z∗ ∈ H s (Rn) be the solution of the problem{
(−∆)s z∗ = τ1h in Ω

z∗ = 0 in Rn \Ω,
(2.4)

with τ1 chosen such that ‖z∗‖L∞(Rn) = 1. Since h ∈ L∞ (Rn) , Remark 2.1 iii) gives z∗ ∈ C (Rn) (see also
[12], Theorem 1.2). Thus, since supp (z∗) ⊂ Ω and z∗ ∈ C

(
Ω
)
, we have z∗ ∈ L∞ (Rn) . Moreover, by

Remark 2.1 ii), there exists a positive constant c∗ such that

z∗ ≥ c∗ds
Ω in Ω. (2.5)

Remark 2.3. There exist positive numbers M0 and M1 such that

1
2

c∗M1 ≥

∥∥∥∥∥∥d−s
Ω ((−∆)s)−1

(
g
(
.,

1
2

c∗M1ds
Ω

))∥∥∥∥∥∥
∞

, (2.6)

M1 < M0,

1
2

c∗M1 ≥
∥∥∥d−s

Ω ((−∆)s)−1 (g (.,M0))
∥∥∥

L∞(Ω) .
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Indeed, by g4), limσ→∞

∥∥∥∥(σds
Ω

)−1
((−∆)s)−1

(
ds

Ω
g
(
., σds

Ω

))∥∥∥∥
∞

= 0 and so the first one of the above
inequalities hold for M1 large enough. Fix such a M1. Since, from g4),
limσ→∞

∥∥∥d−s
Ω

((−∆)s)−1 (g (., σ))
∥∥∥

L∞(Ω) = 0, the remaining inequalities of (2.6) hold for M0 large
enough.

Lemma 2.4. Let ε > 0 and let z∗, τ1 and c∗ be as in Remark 2.2. Let M0 and M1 be as in Remark 2.3.
Let z := M1z∗ and let w0,ε : Rn → R be the constant function w0,ε = M0. Then there exist sequences{
w j,ε

}
j∈N

and
{
ζ j,ε

}
j∈N

in Xs
0 (Ω) ∩ L∞ (Ω) such that, for all j ∈ N:

i) w j−1,ε ≥ w j,ε ≥ 0 in Rn,

ii) w j,ε ≥ 1
2c∗M1ds

Ω
in Ω,

iii) w j,ε is a weak solution of the problem (−∆)s w j,ε = −g
(
.,w j−1,ε + ε

)
+ τ1M1h in Ω,

w j,ε = 0 in Rn \Ω.
(2.7)

iv) w j,ε = z − ζ j,ε in Rn and ζ j,ε is a weak solution of the problem (−∆)s ζ j,ε = g
(
.,w j−1,ε + ε

)
in Ω,

ζ j,ε = 0 in Rn \Ω.
(2.8)

v)
∥∥∥w j,ε

∥∥∥
Xs

0(Ω) ≤ c for some positive constant c independent of j and ε.

Proof. The sequences
{
w j,ε

}
j∈N

and
{
ζ j,ε

}
j∈N

with the properties i)-v) will be constructed inductively.

Let ζ1,ε ∈ X1
0 (Ω) be the solution of the problem (−∆)s ζ1,ε = g

(
.,w0,ε + ε

)
in Ω

ζ1,ε = 0 in Rn \Ω

(thus iv) holds for j = 1). From g1) and g2) we have 0 ≤ g
(
.,w0,ε + ε

)
≤ g (., ε) ∈ L∞ (Ω) . Thus

g
(
.,w0,ε + ε

)
∈ L∞ (Ω) . Then, by Remark 2.1 iii), ζ1,ε ∈ C (Rn) . Therefore, since supp

(
ζ1,ε

)
⊂ Ω, we

have ζ1,ε ∈ L∞ (Ω) . By g1), g (.,M0) ∈ L∞ (Ω) and so g (.,M0) ∈
(
X1

0 (Ω)
)′
. Let

u0 := ((−∆)s)−1 (g (.,M0)) . Then, by g1) and g3), d−s
Ω

u0 ∈ L∞ (Ω) . We have, in weak sense, (−∆)s
(
ζ1,ε − u0

)
= g

(
.,w0,ε + ε

)
− g (.,M0) ≤ 0 in Ω

ζ1,ε − u0 = 0 in Rn \Ω.

Then, by the maximum principle of Remark 2.1 i),

0 ≤ ζ1,ε ≤ u0 ≤
∥∥∥d−s

Ω u0

∥∥∥
L∞(Ω) ds

Ω in Ω. (2.9)

Let z := M1z∗. By Remark 2.2, z ∈ H s (Rn) ∩C
(
Ω
)

and

z ≥ c∗M1ds
Ω in Ω. (2.10)
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Also, z ≤ M1 in Ω, and z is a weak solution of the problem{
(−∆)s z = τ1M1h in Ω,

z = 0 in Rn \Ω.

Let w1,ε := z−ζ1,ε. Then w1,ε ∈ H s (Rn) and w1,ε = 0 in Rn \Ω. Thus w1,ε ∈ Xs
0 (Ω) . Also w1,ε ∈ L∞ (Ω) .

Since ζ1,ε ≥ 0 in Ω, we have

w0,ε − w1,ε = M0 − z + ζ1,ε ≥ M0 − z ≥ M0 − M1 > 0 in Ω.

Then w1,ε ≤ w0,ε in Ω. Thus i) holds for j = 1. Now, in weak sense,
(−∆)s w1,ε = (−∆)s

(
z − ζ1,ε

)
= τ1M1h − (−∆)s

(
ζ1,ε

)
= −g

(
.,w0,ε + ε

)
+ τ1M1h in Ω,

w1,ε = 0 in Rn \Ω,

and so iii) holds for j = 1. Also, from (2.9), (2.10), and taking into account that (2.6),

w1,ε = z − ζ1,ε ≥ c∗M1ds
Ω −

∥∥∥d−s
Ω ((−∆)s)−1 (g (.,M0))

∥∥∥
L∞(Ω) ds

Ω

≥
1
2

c∗M1ds
Ω in Ω.

and then w1,ε ≥ 1
2c∗M1ds

Ω
in Ω. Thus ii) holds for j = 1.

Suppose constructed, for k ≥ 1, functions w1,ε, ..., wk,ε and ζ1,ε, ..., ζk,ε, belonging to Xs
0 (Ω) ∩ L∞ (Ω) ,

and with the properties i)-iv). Let ζk+1,ε ∈ Xs
0 (Ω) be the solution of the problem (−∆)s ζk+1,ε = g

(
.,wk,ε + ε

)
in Ω,

ζk+1,ε = 0 on Rn \Ω.
(2.11)

(and so iv) holds for j = k + 1) and let wk+1,ε := z − ζk+1,ε. Then wk+1,ε ∈ H s (Rn) and wk+1,ε = 0 in
Rn \Ω. Thus wk+1,ε ∈ Xs

0 (Ω) . Also,

wk,ε − wk+1,ε = ζk+1,ε − ζk,ε in Rn (2.12)

and  (−∆)s
(
ζk+1,ε − ζk,ε

)
= g

(
.,wk,ε + ε

)
− g

(
.,wk−1,ε + ε

)
≥ 0 in Ω,

ζk+1,ε − ζk,ε = 0 in Rn \Ω,

the last inequality because, by g1), s → g (., s) is nonincreasing and (by our inductive hypothesis)
wk,ε ≤ wk−1,ε in Ω. Then, by the maximum principle, ζk+1,ε − ζk,ε ≥ 0 in Rn. Therefore, by (2.12),
wk,ε ≥ wk+1,ε in Rn,and then i) holds for j = k + 1. Also, (−∆)s wk+1,ε = (−∆)s z − (−∆)s ζk+1,ε = −g

(
.,wk,ε + ε

)
+ τ1M1h in Ω,

wk+1,ε = 0 in Rn \Ω.

Then iii) holds for j = k + 1. By g4), g
(
., 1

2c∗M1ds
Ω

)
∈

(
Xs

0 (Ω)
)′
. Let u1 := ((−∆)s)−1

(
g
(
., 1

2c∗M1ds
Ω

))
∈

Xs
0 (Ω) . By the inductive hypothesis we have wk,ε ≥ 1

2c∗M1ds
Ω

in Ω. Now,
(−∆)s

(
ζk+1,ε − u1

)
= g

(
.,wk,ε + ε

)
− g

(
., 1

2c∗M1ds
Ω

)
≤ 0 in Ω,

ζk+1,ε − u1 = 0 on Rn \Ω,
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then the comparison principle gives ζk+1,ε ≤ u1. Thus, in Ω,

wk+1,ε = z − ζk+1,ε ≥ c∗M1ds
Ω − u1

= c∗M1ds
Ω − ((−∆)s)−1

(
g
(
.,

1
2

c∗M1ds
Ω

))
≥ c∗M1ds

Ω −

∥∥∥∥∥∥d−s
Ω ((−∆)s)−1

(
g
(
.,

1
2

c∗M1ds
Ω

))∥∥∥∥∥∥
∞

ds
Ω ≥

1
2

c∗M1ds
Ω,

the last inequality by (2.6). Thus ii) holds for j = k + 1. This complete the inductive construction of
the sequences

{
w j,ε

}
j∈N

and
{
ζ j,ε

}
j∈N

with the properties i)-iv).

To see v), we take ζ j,ε as a test function in (2.8). Using ii), the Hölder inequality, the Poincaré inequality
of Remark 2.1 iv), we get, for any j ∈ N,

∥∥∥ζ j,ε
∥∥∥2

Xs
0(Ω) =

∫
Ω

g
(
.,w j−1,ε + ε

)
ζ j,ε ≤

∫
Ω

g
(
.,

1
2

c∗M1ds
Ω

)
ζ j,ε

=

∫
Ω

ds
Ωg

(
.,

1
2

c∗M1ds
Ω

)
d−s

Ω ζ
j,ε

≤

∥∥∥∥∥∥ds
Ωg

(
.,

1
2

c∗M1ds
Ω

)∥∥∥∥∥∥
2

∥∥∥d−s
Ω ζ

j,ε
∥∥∥

2
≤ c

∥∥∥ζ j,ε
∥∥∥

Xs
0(Ω) .

where c is a positive constant c independent of j and ε, and where, in the last inequality, we have used
g5). Then

∥∥∥ζ j,ε
∥∥∥

Xs
0(Ω) has an upper bound independent of j and ε. Since w j,ε = z−ζ j,ε, the same assertion

holds for w j,ε. �

Lemma 2.5. Let ε > 0 and let τ1 and c∗ be as in Remark 2.2. Let M0 and M1 be as in Remark 2.3 and
let

{
w j,ε

}
j∈N

and
{
ζ j,ε

}
j∈N

be as in Lemma 2.4. Let wε := lim j→∞ w j,ε and let ζε := lim j→∞ ζ
j,ε. Then

i) wε and ζε belong to H s (Rn) ∩C
(
Ω
)
,

ii) 1
2c∗M1ds

Ω
≤ wε ≤ M0 in Ω, and there exists a positive constant c independent of ε such that wε ≤ cds

Ω

in Ω.

iii) wε satisfies, in weak sense, {
−∆wε = −g (.,wε + ε) + τ1M1h in Ω,

wε = 0 in Rn \Ω.
(2.13)

iv) ζε satisfies, in weak sense, {
(−∆)s ζε = g (.,wε + ε) in Ω,

ζε = 0 in Rn \Ω.
(2.14)

Proof. Let z∗ be as in Remark 2.2, and let z := M1z∗. Let M0 and M1 be as in Remark 2.3. By
Lemma 2.4,

{
w j,ε

}
j∈N

is a nonincreasing sequence of nonnegative functions in Rn, and so there exists

wε = lim j→∞ w j,ε. Since ζ j,ε = z − w j−1,ε, there exists also ζε = lim j→∞ ζ
j,ε. Again by Lemma 2.4 we

have, for any j ∈ N, 0 ≤ w j,ε = z − ζ j,ε ≤ z ∈ L∞ (Ω) . Thus, by the Lebesgue dominated convergence
theorem, {

w j,ε
}

j∈N
converges to wε in Lp (Ω) for any p ∈ [1,∞) , (2.15)
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and so
{
g
(
.,w j,ε + ε

)}
j∈N

converges to g (.,wε + ε) in Lp (Ω) for any p ∈ [1,∞) . We claim that

ζε ∈ Xs
0 (Ω) and

{
ζ j,ε

}
j∈N

converges in Xs
0 (Ω) to ζε. (2.16)

Indeed, for j, k ∈ N, from (2.8), (−∆)s
(
ζ j,ε − ζk,ε

)
= g

(
.,w j−1,ε + ε

)
− g

(
.,wk−1,ε + ε

)
in Ω,

ζ j,ε − ζk,ε = 0 in Rn \Ω.
(2.17)

We take ζ j,ε − ζk,ε as a test function in (2.17) to obtain∥∥∥ζ j,ε − ζk,ε
∥∥∥2

Xs
0(Ω) =

∫
Ω

(
ζ j,ε − ζk,ε

) (
g
(
.,w j−1,ε + ε

)
− g

(
.,wk−1,ε + ε

))
≤

∥∥∥ζ j,ε − ζk,ε
∥∥∥

2∗s

∥∥∥∥g
(
.,w j−1,ε + ε

)
− g

(
.,wk−1,ε + ε

)∥∥∥∥(2∗s)′

where 2∗s := 2n
n−2s . Then∥∥∥ζ j,ε − ζk,ε

∥∥∥
Xs

0(Ω) ≤ c
∥∥∥∥g

(
.,w j−1,ε + ε

)
− g

(
.,wk−1,ε + ε

)∥∥∥∥(2∗s)′
.

where c is a constant independent of j and k. Since
{
g
(
.,w j−1,ε + ε

)}
j∈N

converges to g (.,wε + ε) in

L(2∗s)′ (Ω) , we get
lim

j,k→∞

∥∥∥ζ j,ε − ζk,ε
∥∥∥

Xs
0(Ω) = 0,

and thus
{
ζ j,ε

}
j∈N

converges in Xs
0 (Ω) . Since

{
ζ j,ε

}
j∈N

converges to ζε in pointwise sense, (2.16) follows.

Also, w j,ε = z − ζ j,ε, and then
{
w j,ε

}
j∈N

converges to wε,ρ in Xs
0 (Ω) . Thus

wε ∈ Xs
0 (Ω) and

{
w j,ε

}
j∈N

converges in Xs
0 (Ω) to wε. (2.18)

To prove (2.14) observe that, from (2.8), we have, for any ϕ ∈ Xs
0 (Ω) and j ∈ N,∫

Rn×Rn

(
ζε, j (x) − ζε, j (y)

)
(ϕ (x) − ϕ (y))

|x − y|n+2s dxdy =

∫
Ω

g
(
.,wε, j−1 + ε

)
ϕ. (2.19)

Taking lim j→∞ in (2.19) and using (2.16) and (2.15), we obtain (2.14). From (2.14) and since, by
g1) and g2), g (.,wε + ε) ∈ L∞ (Ω) , Remark 2.1 iii) gives that, in addition, ζε ∈ C

(
Ω
)

(and so, since

wε = z − ζε, then also wε ∈ C
(
Ω
)
).

Let us see that (2.13) holds. Let ϕ ∈ Xs
0 (Ω) . From (2.7), we have, for any j ∈ N,∫

Rn×Rn

(
w j,ε (x) − w j,ε (y)

)
(ϕ (x) − ϕ (y))

|x − y|n+2s dxdy (2.20)

=

∫
Ω\Bρ(y)

(
−g

(
.,w j−1,ε + ε

)
+ τ1M1h

)
ϕ.
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Since ϕ ∈ Xs
0 (Ω) and

{
w j,ε

}
j∈N

converges to wε in Xs
0 (Ω) we have

lim
j→∞

∫
Rn×Rn

(
w j,ε (x) − w j,ε (y)

)
(ϕ (x) − ϕ (y))

|x − y|n+2s dxdy (2.21)

=

∫
Rn×Rn

(wε (x) − wε (y)) (ϕ (x) − ϕ (y))
|x − y|n+2s dxdy.

Also, wε (x) = lim j→∞ w j,ε (x) for any x ∈ Ω, and∣∣∣∣g (
.,w j−1,ε + ε

)
ϕ
∣∣∣∣ ≤ g (., ε) |ϕ| ∈ L1 (Ω) ,

and clearly |τ1M1hϕ| ∈ L1 (Ω) . Then, by the Lebesgue dominated convergence theorem,

lim
j→∞

∫
Ω

(
−g

(
.,w j−1,ε + ε

)
+ τ1M1h

)
ϕ =

∫
Ω

(−g (.,wε + ε) + τ1M1h)ϕ. (2.22)

Now (2.13) follows from (2.20), (2.21) and (2.22). Finally, by Lemma 2.4 we have, for all j ∈ N,
1
2c∗M1ds

Ω
≤ w j,ε in Ω and so the same inequality hold with w j,ε replaced by wε. Also, since w j,ε ≤ z0 in

Ω we have w j,ε ≤ cds
Ω

with c independent of j and ε. �

Remark 2.6. Let G : Ω × Ω → R∪ {∞} be the Green function for (−∆)s in Ω, with homogeneous
Dirichlet boundary condition on Rn \ Ω. Then, for f ∈ C

(
Ω
)

the solution u of problem (1.4) is given
by u (x) =

∫
Ω

G (x, y) f (y) dy for x ∈ Ω and by u (x) = 0 for x ∈ Rn \ Ω. Let us recall the following
estimates from [4]:
i) (see [4], Theorems 1.1 and 1.2) There exist positive constants c and c′, depending only on Ω and s,
such that for x; y ∈ Ω,

G(x, y) ≤ c
dΩ (x)s

|x − y|n−s , (2.23)

G(x, y) ≤ c
dΩ (x)s

dΩ (y)s
1

|x − y|n−2s , (2.24)

G(x, y) ≤ c
dΩ (x)s dΩ (y)s

|x − y|n
(2.25)

G(x, y) ≥ c′
1

|x − y|n−2s if |x − y| ≤ max
{

dΩ (x)
2

,
dΩ (y)

2

}
(2.26)

G(x, y) ≥ c′
dΩ (x)s dΩ (y)s

|x − y|n
if |x − y| > max

{
dΩ (x)

2
,

dΩ (y)
2

}
(2.27)

ii) From i) it follows that there exists a positive constant c′′, depending only on Ω and s, such that for
x; y ∈ Ω,

G(x; y) ≥ c′′dΩ (x)s dΩ (y)s . (2.28)

Indeed:
If |x − y| > max

{
dΩ(x)

2 , dΩ(y)
2

}
then, from (2.27), G(x; y) ≥ c′ dΩ(x)sdΩ(y)s

|x−y|n and so G(x; y) ≥ c′ dΩ(x)sdΩ(y)s

(diam(Ω))n .

If |x − y| ≤ max
{

dΩ(x)
2 , dΩ(y)

2

}
then either |x − y| ≤ dΩ(x)

2 or |x − y| ≤ dΩ(y)
2 . If |x − y| ≤ dΩ(x)

2 consider z ∈ ∂Ω
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such that dΩ (y) = |z − y| . then dΩ (y) = |z − y| ≥ |x − z| − |x − y| ≥ dΩ (x) − |x − y| ≥ 1
2dΩ (x) . Then

dΩ (y) ≥ 1
2dΩ (x) ≥ |x − y| . Thus, since also |x − y| ≤ dΩ(x)

2 , we have |x − y| ≤ 1
√

2
(dΩ (x) dΩ (y))

1
2 , and

so, from (2.26), G(x, y) ≥ c′ 1
|x−y|n−2s ≥ c′ 1(

1√
2

(dΩ(x)dΩ(y))
1
2
)n−2s = 2

n
2−sc′ ds

Ω
(x)ds

Ω
(y)

(dΩ(x)dΩ(y))
n
2
≥ 2

n
2 −sc′

(diam(Ω))n ds
Ω

(x) ds
Ω

(y) .

If |x − y| ≤ dΩ(y)
2 , by interchanging the roles of x and y in the above argument, the same conclusion is

reached.
iii) If 0 < β < s, then

G(x, y) ≤ c
dΩ (x)s dΩ (y)β

|x − y|n−s+β . (2.29)

Indeed, If dΩ (y) ≥ |x − y| then, from (2.23),

G(x, y) ≤ c
dΩ (x)s

|x − y|n−s = c
dΩ (x)s dΩ (y)β

|x − y|n−s dΩ (y)β
≤ c

dΩ (x)s dΩ (y)β

|x − y|n−s+β ,

and if dΩ (y) ≤ |x − y| then, from (2.27),

G(x, y) ≤ c
dΩ (x)s dΩ (y)s

|x − y|n
= c

dΩ (x)s dΩ (y)β dΩ (y)s−β

|x − y|n−s+β
|x − y|s−β

≤ c
dΩ (x)s dΩ (y)β

|x − y|n−s+β ,

iv) If f ∈ C
(
Ω
)

then the unique solution u ∈ Xs
0 (Ω) of problem (1.4) is given by

u (x) :=
∫

Ω
G (x, y) f (y) dy for x ∈ Ω, and u (x) := 0 for x ∈ Rn \Ω.

Lemma 2.7. Let a ∈ L∞ (Ω) and let β ∈ [0, s) . Then ad−β
Ω
∈

(
Xs

0 (Ω)
)′

and the weak solution u ∈ Xs
0 (Ω)

of the problem {
(−∆)s u = ad−β

Ω
in Ω,

u = 0 in Rn \Ω
(2.30)

satisfies d−s
Ω

u ∈ L∞ (Ω) .

Proof. Let ϕ ∈ Xs
0 (Ω) . By the Hölder and Hardy inequalities we have

∫
Ω

∣∣∣ad−β
Ω
ϕ
∣∣∣ =

∫
Ω

∣∣∣ads−β
Ω

d−s
Ω
ϕ
∣∣∣ ≤

‖a‖∞
∥∥∥ds−β

Ω

∥∥∥
2

∥∥∥d−s
Ω
ϕ
∥∥∥

2
≤ c ‖ϕ‖Xs

0(Ω) with c a positive constant independent of ϕ. Thus ad−β
Ω
∈

(
Xs

0 (Ω)
)′
.

Let u ∈ Xs
0 (Ω) be the unique weak solution (given by the Riesz Theorem) of problem (2.30) and

consider a decreasing sequence
{
ε j

}
j∈N

in (0, 1) such that lim j→∞ ε j = 0. For j ∈ N, let uε j ∈ Xs
0 (Ω) be

the weak solution of the problem  (−∆)s uε j = a
(
dΩ + ε j

)−β
in Ω,

uε j = 0 in Rn \Ω.
(2.31)

Thus uε j =
∫

Ω
G (., y) a (y)

(
dΩ (y) + ε j

)−β
dy in Ω, where G is the Green function for (−∆)s in Ω, with

homogeneous Dirichlet boundary condition on Rn \ Ω. Since β < s we have
∫

Ω

1
|x−y|n−s+β dy < ∞. Thus,

recalling (2.29), there exists a positive constant c such that, for any j ∈ N and (x, y) ∈ Ω ×Ω,

0 ≤ G (x, y) a (y)
(
dΩ (y) + ε j

)−β
≤ c

ds
Ω

(x) dβ
Ω

(y)

|x − y|n−s+β

(
dΩ (y) + ε j

)−β
AIMS Mathematics Volume 3, Issue 4, 464–484



475

≤ cds
Ω (x)

1
|x − y|n−s+β ∈ L1 (Ω, dy) .

Since also lim j→∞G (x, y) a (y)
(
dΩ (y) + ε j

)−β
= G (x, y) a (y) d−β

Ω
(y) for a.e. y ∈ Ω, by the Lebesgue

dominated convergence theorem,
{
uε j (x)

}
j∈N

converges to
∫

Ω
G (x, y) a (y) d−β

Ω
(y) dy for any x ∈ Ω. Let

u (x) := lim j→∞ uε j (x) . Thus u (x) =
∫

Ω
G (x, y) a (y) d−β

Ω
(y) dy. Again from (2.29), u ≤ cds

Ω
a.e. in Ω,

with c constant c independent of x. Now we take uε j as a test function in (2.31) to obtain that

∫
Ω×Ω

(
uε j (x) − uε j (y)

)2

|x − y|n+2s =

∫
Rn×Rn

(
uε j (x) − uε j (y)

)2

|x − y|n+2s

=

∫
Ω

uε j (y)
(
dΩ (y) + ε j

)−β
dy

≤ c
∫

Ω

ds
Ω (y) (dΩ (y) + ε) j−βdy ≤ c′

∫
Ω

ds−β
Ω

(y) dy = c′′,

with c and c′ constants independent of j. For j ∈ N, let Uε j and U be the functions, defined on Rn ×Rn,

by
Uε j (x, y) := uε j (x) − uε j (y) , U (x, y) := u (x) − u (y) .

Then
{
Uε j

}
j∈N

is bounded in H = L2
(
Rn × Rn, 1

|x−y|n+2s dxdy
)
. Thus, after pass to a subsequence if

necessary, we can assume that
{
Uε j

}
j∈N

is weakly convergent in H to some V ∈ H . Since
{
Uε j

}
j∈N

converges pointwise to U on Rn × Rn, we conclude that U ∈ H and that
{
Uε j

}
j∈N

converges weakly to
U inH . Thus u ∈ Xs

0 (Ω) and, for any ϕ ∈ Xs
0 (Ω) ,∫

Rn×Rn

(u (x) − u (y)) (ϕ (x) − ϕ (y))
|x − y|n+2s dxdy

= lim
j→∞

∫
Rn×Rn

(
uε j (x) − uε j (y)

)
(ϕ (x) − ϕ (y))

|x − y|n+2s dxdy

= lim
j→∞

∫
Ω

a
(
dΩ + ε j

)−β
ϕ =

∫
Ω

ad−β
Ω
ϕ,

Then u is the weak solution of (2.30). Finally, since for all j, uε j ≤ c′ds
Ω

a.e. in Ω, we have u ≤ c′ds
Ω

a.e. in Ω. �

Lemma 2.8. Let λ > 0 and let ε ≥ 0. Suppose that
{
u j

}
j∈N
⊂ Xs

0 (Ω) is a nonincreasing sequence with
the following properties i) and ii):
i) There exist positive constants c and c′ such that cds

Ω
≤ u j ≤ c′ds

Ω
a.e. in Ω for any j ∈ N.

ii) for any j ∈ N, u j is a weak solution of the problem
(−∆)s u j = −g

(
., u j + ε

)
+ λh in Ω,

u j = 0 in Rn \Ω,

u j > .0 in Ω

(2.32)
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Then
{
u j

}
j∈N

converges in Xs
0 (Ω) to a weak solution u of the problem


(−∆)s u = −g (., u + ε) + λh in Ω,

u j = 0 in Rn \Ω,

u > 0 in Ω,

(2.33)

which satisfies cds
Ω
≤ u ≤ c′ds

Ω
a.e. in Ω. Moreover, the same conclusions holds if, instead of ii), we

assume the following ii’):
ii’) for any j ≥ 2, u j is a weak solution of the problem

(−∆)s u j = −g
(
., u j−1 + ε

)
+ λh in Ω,

u j = 0 in Rn \Ω,

u j > 0 in Ω.

Proof. Assume i) and ii). For x ∈ Rn, let u (x) := lim j→∞ u j (x) . For j, k ∈ N we have, in weak sense, (−∆)s
(
u j − uk

)
= g (., uk + ε) − g

(
u j + ε

)
in Ω,

u j − uk = 0 in Rn \Ω.
(2.34)

We take u j − uk as a test function in (2.34) to get

∥∥∥u j − uk

∥∥∥2

Xs
0(Ω) =

∫
Ω

(
g (., uk + ε) − g

(
., u j + ε

)) (
u j − uk

)
(2.35)

=

∫
Ω

ds
Ω

(
g (., uk + ε) − g

(
., u j + ε

))
d−s

Ω

(
u j − uk

)
≤

∥∥∥∥d−s
Ω

(
u j − uk

)∥∥∥∥
2

∥∥∥∥ds
Ω

(
g (., uk + ε) − g

(
., u j + ε

))∥∥∥∥
2
.

By the Hardy inequality,
∥∥∥∥d−s

Ω

(
u j − uk

)∥∥∥∥
2
≤ c′′

∥∥∥u j − uk

∥∥∥
Xs

0(Ω) where c′′ is a constant independent of j
and k. Thus, from (2.35),∥∥∥u j − uk

∥∥∥
Xs

0(Ω) ≤ c′′
∥∥∥∥ds

Ω

(
g (., uk + ε) − g

(
., u j + ε

))∥∥∥∥
2
. (2.36)

Now, lim j,k→∞

∣∣∣∣ds
Ω

(
g (., uk + ε) − g

(
., u j + ε

))∣∣∣∣2 = 0 a.e. in Ω. Also, since ul ≥ cds
Ω

a.e. in Ω for any
l ∈ N, and taking into account g5) and g2),∣∣∣∣ds

Ω

(
g (., uk + ε) − g

(
., u j + ε

))∣∣∣∣2 ≤ c′
(
ds

Ωg
(
., cds

Ω

))2
∈ L1 (Ω) ,

where c′ is a constant independent of j and k. Then, by the Lebesgue dominated convergence theorem
lim j,k→∞

∥∥∥∥ds
Ω

(
g (., uk + ε) − g

(
., u j + ε

))∥∥∥∥
2

= 0. Therefore, from (2.36), lim j,k→∞

∥∥∥u j − uk

∥∥∥
Xs

0(Ω) = 0 and

so
{
u j

}
j∈N

converges in Xs
0 (Ω) to some u∗ ∈ Xs

0 (Ω) . Then, by the Poincaré inequality of Remark 2.1

iv),
{
u j

}
j∈N

converges to u∗ in L2∗s (Ω) , and thus there exists a subsequence
{
u jk

}
k∈N

that converges to u∗
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a.e. in Ω. Since
{
u jk

}
k∈N

converges pointwise to uε, we conclude that u∗ = u. Then
{
u j

}
j∈N

converges to
uε in Xs

0 (Ω) . Now, for ϕ ∈ Xs
0 (Ω) and j ∈ N,∫

Rn×Rn

(
u j (x) − u j (y)

)
(ϕ (x) − ϕ (y))

|x − y|n+2s dxdy =

∫
Ω

(
−g

(
., u j + ε

)
+ λh

)
ϕ. (2.37)

Since
{
u j

}
j∈N

converges to u in Xs
0 (Ω) , we have

lim
j→∞

∫
Rn×Rn

(
u j (x) − u j (y)

)
(ϕ (x) − ϕ (y))

|x − y|n+2s dxdy (2.38)

=

∫
Rn×Rn

(u (x) − u (y)) (ϕ (x) − ϕ (y))
|x − y|n+2s dxdy.

On the other hand,
∣∣∣∣(−g

(
., u j + ε

)
+ λh

)
ϕ
∣∣∣∣ ≤ (g (., cdΩ) + λ ‖h‖∞) |ϕ| ∈ L1 (Ω) (with c as in i)). Also,{(

−g
(
u j + ε

)
+ λh

)
ϕ
}

j∈N
converges to (−g (u + ε) + λh)ϕ a.e. in Ω. Then, by the Lebesgue dominated

convergence theorem,

lim
j→∞

∫
Ω

(
−g

(
., u j + ε

)
+ λh

)
ϕ =

∫
Ω

(−g (., u + ε) + λh)ϕ. (2.39)

From (2.37), (2.38) and (2.39) we get, for any ϕ ∈ Xs
0 (Ω) ,∫

Rn×Rn

(u (x) − u (y)) (ϕ (x) − ϕ (y))
|x − y|n+2s dxdy =

∫
Ω

(−g (., u + ε) + λh)ϕ.

and so u is a weak solution of problem (2.33) which clearly satisfies cds
Ω
≤ u ≤ c′ds

Ω
a.e. in Ω. If instead

of ii) we assume ii’), the proof is the same. Only replace, for j ≥ 2, k ≥ 2 and in each appearance,
g
(
., u j

)
and g (., uk) by g

(
., u j−1

)
and g (., uk−1) respectively. �

Lemma 2.9. Let λ > 0, and let u be the weak solution of{
(−∆)s u = λh in Ω,

u = 0 in Rn \Ω.
(2.40)

Assume that, for each ε > 0, we have a function ṽε ∈ Xs
0 (Ω) satisfying, in weak sense,{

(−∆)s ṽε ≤ −g (., ṽε + ε) + λh in Ω,

ṽε = 0 in Rn \Ω.
(2.41)

and such that ṽε ≥ cds
Ω

a.e. in Ω, where c is a positive constant independent of ε. Then for any ε > 0
there exists a sequence

{
u j

}
j∈N
⊂ Xs

0 (Ω) such that:
i) u1 = u and u j ≤ u j−1 for any j ≥ 2.
ii) ṽε ≤ u j ≤ u for all j ∈ N.
iii) For any j ≥ 2, u j satisfies, in weak sense, (−∆)s u j = −g

(
., u j−1 + ε

)
+ λh in Ω,

u j = 0 in Rn \Ω.

iv) There exist positive constants c and c′independent of ε and j such that, for all j, cds
Ω
≤ u j ≤ c′ds

Ω

a.e. in Ω.
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Proof. By Remark 2.1 iii), there exists a positive constant c′ such that u ≤ c′ds
Ω

in Ω. We construct
inductively a sequence

{
u j

}
j∈N

satisfying the assertions i)-iii) of the lemma: Let u1 := u. Thus, in weak
sense, (−∆)s u1 = λh ≥ −g (., ṽε + ε) + λh in Ω. Thus (−∆)s (u1 − ṽε) ≥ 0 in Ω. Then, by the maximum
principle in Remark 2.1 i), u1 ≥ ṽε in Ω, and so u1 ≥ cds

Ω
in Ω. Then, for some positive constant c′′,

|−g (., u1 + ε) + λh| ≤ c′′
(
1 + g

(
., cds

Ω

))
in Ω and, by g1), g

(
., cds

Ω

)
∈ L∞ (Ω) . Thus there exists a weak

solution u2 ∈ Xs
0 (Ω) to the problem{

(−∆)s u2 = −g (., u1 + ε) + λh in Ω,

u2 = 0 in Rn \Ω.

Since, in weak sense, (−∆)s u2 ≤ λh = (−∆)s u1 in Ω, the maximum principle in Remark 2.1 i) gives
u2 ≤ u1 in Ω. Since u1 ≥ ṽε in Ω we have, in weak sense, (−∆)s u2 = −g (., u1 + ε)+λh ≥ −g (., ṽε + ε)+

λh in Ω. Also, (−∆)s ṽε ≤ −g (., ṽε + ε)+λh in Ω and so, by the maximum principle, u2 ≥ ṽε in Ω. Then
i)-iii) hold for j = 1.
Supposed constructed u1, ..., uk such that i)-iii) hold for 1 ≤ j ≤ k. Then, for some positive constant
c′′′, |−g (., uk + ε) + λh| ≤ c′′

(
1 + g

(
., cds

Ω

))
in Ω and so, as before, there exists a weak solution uk+1 ∈

Xs
0 (Ω) to the problem {

(−∆)s uk+1 = −g (., uk + ε) + λh in Ω,

uk+1 = 0 in Rn \Ω.

By our inductive hypothesis, uk ≥ ṽε in Ω. Then, in weak sense, (−∆)s uk+1 = −g (., uk + ε) + λh ≥
−g (., ṽε + ε) + λh ≥ (−∆)s ṽε in Ω and thus, by the maximum principle, uk+1 ≥ ṽε in Ω. If k = 2
we have uk ≤ uk−1 in Ω. If k > 2, by the inductive hypothesis we have, in weak sense, (−∆)s uk =

−g (., uk−1 + ε) + λh ≤ −g (., uk−2 + ε) + λh in Ω. Also, (−∆)s uk = −g (., uk−1 + ε) + λh in Ω. Thus, by
the maximum principle, uk+1 ≤ uk in Ω. Again by the inductive hypothesis uk ≤ u in Ω and then, since
uk+1 ≤ uk in Ω, we get uk+1 ≤ u in Ω.

Since for all j, vε ≤ u j ≤ u in Ω, iv) follows from the facts that u ≤ c′ds
Ω

in Ω, and that ṽε ≥ cds
Ω

in Ω,

with c and c′ positive constants independent of ε and j. �

Lemma 2.10. Let λ > 0. Assume that we have, for each ε > 0, a function ṽε ∈ Xs
0 (Ω) satisfying, in

weak sense, (2.41), and such that ṽε ≥ cds
Ω

a.e. in Ω, with c a positive constant independent of ε. Then
for any ε > 0 there exists a weak solution uε of the problem

(−∆)s uε = −g (., uε + ε) + λh in Ω,

uε = 0 in Rn \Ω,

uε > 0 in Ω.

(2.42)

such that:
i) uε ≥ ṽε and there exist positive constants c and c′ independent of ε such that cds

Ω
≤ uε ≤ c′ds

Ω
in Ω,

ii) If uε ∈ Xs
0 (Ω) and (−∆)s uε ≤ −g

(
., uε + ε

)
+ λh in Ω, then uε ≤ uε in Ω,

iii) If 0 < ε < η then uε ≤ uη.

Proof. Let
{
u j

}
j∈N

be as given by Lemma 2.9. For x ∈ Ω, let uε (x) := lim j→∞ u j (x) . By Lemma 2.8,{
u j

}
j∈N

converges to uε in Xs
0 (Ω) and uε is a weak solution to (2.42). From Lemma 2.9 iv) we have

uε ≥ ṽε in Ω and cds
Ω
≤ uε ≤ c′ds

Ω
in Ω, for some positive constants c and c′ independent of ε. Then
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i) holds. If uε ∈ Xs
0 (Ω) and (−∆)s uε ≤ −g

(
., uε + ε

)
+ λh in Ω, then (−∆)s uε ≤ λh = (−∆)s u1 in Ω,

and so uε ≤ u1. Thus (−∆)s uε ≤ −g
(
., uε + ε

)
+ λh ≤ −g (., u1 + ε) + λh = (−∆)s u2, then uε ≤ u2 and,

iterating this procedure, we obtain that uε ≤ u j for all j. Then uε ≤ uε. Thus ii) holds. Finally, iii) is
immediate from ii). �

Lemma 2.11. Let ε > 0 and let τ1 and M1 be as in Remarks 2.2, and 2.3 respectively. Let wε be as in
Lemma 2.5. Then, for λ ≥ τ1M1, there exists a weak solution uε ∈ Xs

0 (Ω) of problem (2.42) such that
i) uε ≥ wε and there exist positive constants c and c′, both independent of ε, such that cds

Ω
≤ uε ≤ c′ds

Ω

in Ω,

ii) If uε ∈ Xs
0 (Ω) and (−∆)s uε ≤ −g

(
., uε + ε

)
+ λh in Ω, then uε ≤ uε in Ω,

iii) If 0 < ε1 < ε2 then uε1 ≤ uε2 .

Proof. Let λ ≥ τ1M1 and let wε be as in Lemma 2.5. We have, in weak sense,{
−∆wε = −g (.,wε + ε) + τ1M1h in Ω,

wε = 0 on Rn \Ω,

Also, −g (.,wε + ε)+τ1M1h ≤ −g (.,wε + ε)+λh in Ω, and cds
Ω
≤ wε ≤ c′ds

Ω
in Ω,with c and c′ positive

constants independent of ε. Then the lemma follows from Lemma 2.10. �

3. Proof of the main results

Lemma 3.1. Let λ > 0. If problem (1.5) has a weak solution in E, then it has a weak solution u ∈ E
satisfying u ≥ ψ a.e. in Ω for any ψ ∈ E such that −∆ψ ≤ −g (., ψ) + λh in Ω.

Proof. Let u∗ ∈ E be a weak solution of (1.5), and let u be as in (2.40). By the comparison principle
u∗ ≤ u in Ω. We construct inductively a sequence

{
u j

}
j∈N
⊂ E with the following properties: u1 = u and

i) u∗ ≤ u j ≤ u for all j ∈ N
ii) g

(
., u j

)
∈

(
Xs

0 (Ω)
)′

for all j ∈ N.
iii) u j ≤ u j−1 for all j ≥ 2.
iv) For all j ≥ 2  (−∆)s u j = −g

(
., u j−1

)
+ λh in Ω,

u j = 0 on Rn \Ω.

To do it, define u1 =: u. Thus u1 ∈ E. By the comparison principle, u∗ ≤ u, i.e., u∗ ≤ u1. By Remark
2.1 there exist positive constants c and c′ such that cds

Ω
≤ u ≤ c′ds

Ω
in Ω. Thus |−g (., u) + λh| ≤

g
(
., cds

Ω

)
+ λ ‖h‖∞ and so −g (., u1) + λh ∈

(
Xs

0 (Ω)
)′
. Thus i) and ii) hold for j = 1. Define u2 as the

weak solution of {
(−∆)s u2 = −g (., u1) + λh in Ω,

u2 = 0 on Rn \Ω.

Then, in weak sense, {
(−∆)s u2 ≤ (−∆)s u1 in Ω,

u2 = 0 = u1 on Rn \Ω.
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and so u2 ≤ u1 = u a.e. in Ω. Since u1 ≥ u∗, we have, in weak sense,{
(−∆)s u2 = −g (., u1) + λh ≥ −g (., u∗) + λh = (−∆)s u∗ in Ω,

u2 = 0 = u∗ on Rn \Ω.

and then u2 ≥ u∗ a.e. in Ω. Thus u∗ ≤ u2 ≤ u. In particular this gives u2 ∈ E. Let c′′ > 0 such that
u∗ ≥ c′′dΩ in Ω. Now, |−g (., u2) + λh| ≤ g (., u2) + λh ≤ g (., u∗) + λh ≤ g

(
., c′′ds

Ω

)
+ λ ‖h‖∞ and so

−g (., u2) + λh ∈
(
Xs

0 (Ω)
)′
. Thus i)-iv) hold for j = 2. Suppose constructed, for 2 ≤ j ≤ k, functions

u j ∈ E with the properties i)-iv). Define uk+1 by{
(−∆)s uk+1 = −g (., uk) + λh in Ω,

uk+1 = 0 on Rn \Ω.

Thus, by the comparison principle, uk+1 ≤ u. Also, by the inductive hypothesis, uk ≥ u∗, then{
(−∆)s uk+1 = −g (., uk) + λh ≥ −g (., u∗) + λh in Ω,

uk+1 = 0 = u∗ on Rn \Ω.

and so uk+1 ≥ u∗. Then u∗ ≤ uk+1 ≤ u. In particular uk+1 ∈ E. Again by the inductive hypothesis,
uk ≤ uk−1. Then {

(−∆)s uk+1 = −g (., uk) + λh ≤ −g (., uk−1) + λh = (−∆)s uk in Ω,

uk+1 = 0 = uk on Rn \Ω.

and so uk+1 ≤ uk. Also, |−g (., uk+1) + λh| ≤ g (., uk+1) + λh ≤ g (., u∗) + λh ≤ g
(
., c′′ds

Ω

)
+ λ ‖h‖∞ and so

−g (., u2) + λh ∈
(
Xs

0 (Ω)
)′
. Thus i)-iv) hold for j = k + 1, which completes the inductive construction

of the sequence
{
u j

}
j∈N
. For x ∈ Rn let u (x) := lim j→∞ u j (x) . By i) we have c′′ds

Ω
≤ u j ≤ c′ds

Ω
in

Ω for all j ∈ N, and so c′′ds
Ω
≤ u ≤ c′ds

Ω
in Ω. By Lemma 2.8

{
u j

}
j∈N

converges in Xs
0 (Ω) to some

weak solution u∗∗ ∈ Xs
0 (Ω) of problem (1.5). Thus, by the Poincaré inequality,

{
u j

}
j∈N

converges to u∗∗

in L2∗s (Ω) , which implies u = u∗∗. Thus u ∈ Xs
0 (Ω) and u is a weak solution of problem (1.5). Since

c′′ds
Ω
≤ u j ≤ c′ds

Ω
in Ω for all j, we have c′′ds

Ω
≤ u ≤ c′ds

Ω
in Ω. Thus u ∈ E. Let ψ ∈ E such that

−∆ψ ≤ −g (., ψ) + λh in Ω. By the comparison principle, ψ ≤ u a.e. in Ω. An easy induction shows that
ψ ≤ u j for all j. Indeed, by the comparison principle, ψ ≤ u = u1. Then{

(−∆)s ψ ≤ −g (., ψ) + λh ≤ −g (., u1) + λh = (−∆)s u2 in Ω,

ψ = 0 = u2 on Rn \Ω.

Thus, again by the comparison principle, ψ ≤ u2. Suppose that k ≥ 2 and ψ ≤ uk. Then, in weak sense,{
(−∆)s ψ ≤ −g (., ψ) + λh ≤ −g (., uk) + λh = (−∆)s uk+1 in Ω,

ψ = 0 = uk+1 on Rn \Ω,

which gives ψ ≤ uk+1. Thus ψ ≤ u j for all j, and so ψ ≤ u. �
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Proof of Theorem 1. Let
{
ε j

}
j∈N
⊂ (0,∞) be a decreasing sequence such that lim j→∞ ε j = 0. For

λ ≥ τ1M1 and j ∈ N, let uε j be the weak solution of problem (2.42), given by Lemma 2.11, taking there
ε = ε j. Then

{
uε j

}
j∈N

is a nonincreasing sequence in Xs
0 (Ω) and there exist positive constants c and c′

such that cds
Ω
≤ u j ≤ c′ds

Ω
in Ω for all j ∈ N. Therefore, by Lemma 2.8,

{
uε j

}
j∈N

converges in Xs
0 (Ω) to

some weak solution u ∈ Xs
0 (Ω) of problem (1.5). Let

T :=
{
λ > 0 : problem (1.5) has a weak solution u ∈ E

}
.

Thus λ ∈ T whenever λ ≥ τ1M1. Consider now an arbitrary λ ∈ T , and let λ′ > λ. Let u ∈ E be a weak
solution of the problem {

(−∆)s u = −g (., u) + λh in Ω,

u = 0 on Rn \Ω.

Let
{
ε j

}
j∈N
⊂ (0,∞) be a decreasing sequence such that lim j→∞ ε j = 0. We have, in weak sense,

 (−∆)s u = −g (., u) + λh ≤ −g
(
., u + ε j

)
+ λ′h in Ω,

u = 0 on Rn \Ω.

Then, by Lemma 2.9, used with ε = ε j, ṽε j = u, and with λ replaced by λ′, there exists a nonincreasing
sequence

{̃
uε j

}
j∈N
⊂ Xs

0 (Ω) such that

 (−∆)s ũε j = −g
(
., ũε j + ε j

)
+ λ′h in Ω,

ũε j = 0 in Rn \Ω,

satisfying that ũε j ≥ u for all j ∈ N, and cds
Ω
≤ ũε j ≤ c′ds

Ω
in Ω for some positive constants c and c′

independent of j. Let ũ := lim j→∞ ũε j . Proceeding as in the first part of the proof, we get that ũ ∈ E and
that ũ is a weak solution of problem (1.5). Then λ′ ∈ T whenever λ′ > λ for some λ ∈ T . Thus there
exists λ∗ ≥ 0 such that (λ∗,∞) ⊂ T ⊂ [λ∗,∞) .
By Lemma 3.1, for any λ ∈ T there exists a weak solution u ∈ E of problem (1.5) such that u ≥ ψ a.e.
in Ω for any ψ ∈ E such that (−∆)s ψ ≤ −g (., ψ) + λh in Ω.

Suppose now that g (., s) ≥ bs−β a.e. in Ω for any s ∈ (0,∞) for some b ∈ L∞ (Ω) such that 0 ≤ b . 0
in Ω. Then there exist a constant η0 > 0 and a measurable set Ω0 ⊂ Ω such that |Ω0| > 0 and b ≥ η0

in Ω0. Let λ1 be the principal eigenvalue for (−∆)s in Ω with Dirichlet boundary condition ϕ1 = 0 on
Rn \Ω, and let ϕ1 ∈ Xs

0 (Ω) be an associated positive principal eigenfunction. Then

λ1

∫
Ω

ϕϕ1 =

∫
Rn×Rn

(ϕ (x) − ϕ (y)) (ϕ1 (x) − ϕ1 (y))
|x − y|n+2s dxdy

and ϕ1 > 0 a.e. in Ω (see e.g., [25], Theorem 3.1). Let λ ∈ T and let u ∈ E be a weak solution of (1.5).
Thus

λ1

∫
Ω

uϕ1 =

∫
Rn×Rn

(u (x) − u (y)) (ϕ1 (x) − ϕ1 (y))
|x − y|n+2s dxdy
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=

∫
Ω

(−ϕ1g (., u) + λhϕ1) ≤
∫

Ω

(
−bu−βϕ1 + λhϕ1

)
and so

λ

∫
Ω

hϕ1 ≥

∫
Ω0

(
λ1u + bu−β

)
ϕ1 ≥ inf

s>0

(
λ1s + η0s−β

) ∫
Ω0

ϕ1

thus λ ≥ inf s>0

(
λ1s + η0s−β

) (∫
Ω

hϕ1

)−1 ∫
Ω0
ϕ1 for any λ ∈ T . Then λ∗ > 0. �

Lemma 3.2. Let g : Ω × (0,∞) → [0,∞) be a Carathéodory function. Assume that s → g (x, s) is
nonincreasing for a.e. x ∈ Ω, and that,for some a ∈ L∞ (Ω) and β ∈ [0, s) , g (., s) ≤ as−β a.e. in Ω for
any s ∈ (0,∞) . Then g satisfies the conditions g1)-g5) of Theorem 1.2.

Proof. Clearly g satisfies g1) and g2). Let σ > 0. By Lemma 2.7,
0 ≤ g

(
., σds

Ω

)
≤ aσ−βd−sβ

Ω
∈

(
Xs

0 (Ω)
)′

and so g
(
., σds

Ω

)
∈

(
Xs

0 (Ω)
)′
. Also, from the comparison

principle, 0 ≤ ((−∆)s)−1
(
ds

Ω
g
(
., σads

Ω

))
≤ ((−∆)s)−1

(
σ−βads−β

Ω

)
in Ω, and, since ads−β

Ω
∈ L∞ (Ω) , by

Remark 2.1 iii), there exists a positive constant c such that ((−∆)s)−1
(
σads−β

Ω

)
≤ cds

Ω
in Ω. Thus

d−s
Ω

((−∆)s)−1
(
ds

Ω
g
(
., σds

Ω

))
∈ L∞ (Ω) . Then g satisfies g3). In particular,

d−s
Ω

((−∆)s)−1
(
ds

Ω
g
(
., ds

Ω

))
∈ L∞ (Ω) . Since,for σ ≥ 1,

0 ≤
(
σds

Ω

)−1 ((−∆)s)−1 (
ds

Ωg
(
., σds

Ω

))
≤ σ−1d−s

Ω ((−∆)s)−1 (
ds

Ωg
(
., ds

Ω

))
,

we get limσ→∞

∥∥∥∥(σds
Ω

)−1
((−∆)s)−1

(
ds

Ω
g
(
., σds

Ω

))∥∥∥∥
∞

= 0. Also, by the comparison principle,

0 ≤ d−s
Ω ((−∆)s)−1 (g (., σ)) ≤ σ−βd−s

Ω ((−∆)s)−1 (a) ,

and, by Remark 2.1 iii), d−s
Ω

((−∆)s)−1 (a) ∈ L∞ (Ω) . Thus

lim
σ→∞

∥∥∥d−s
Ω ((−∆)s)−1 (g (., σ))

∥∥∥
L∞(Ω) = 0.

Then g4) holds. Finally, 0 ≤ ds
Ω

g
(
., σds

Ω

)
≤ σ−βds−β

Ω
a and so g5) holds. �

Proof of Theorem 1.3. The theorem follows from Lemma 3.2 and Theorem 1.2. �
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5. F. Cı̂rstea, M. Ghergu and V. Rădulescu, Combined effects of asymptotically linear and singular
nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pure. Appl., 84 (2005),
493–508.

6. D. S. Cohen and H. B. Keller, Some positive problems suggested by nonlinear heat generators, J.
Math. Mech., 16 (1967), 1361–1376.

7. M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular
nonlinearity, Commun. Part. Diff. Eq., 2 (1977), 193–222.

8. M. A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem,
Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 122 (1992), 341–352.

9. J. I. Diaz, J. Hernandez and J. M. Rakotoson, On very weak positive solutions to some semilinear
elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J.
Math., 79 (2011), 233–245.

10. J. Dı́az, M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Commun. Part.
Diff. Eq., 12 (1987), 1333–1344.

11. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, B.
Sci. Math., 136 (2012), 521–573.

12. A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, ANN. I. H.
POINCARE-AN, 33 (2016), 1279–1299.
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