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Abstract: There are efficient software programs for extracting from large data sets and image
sequences certain mixtures of probability distributions, such as multivariate Gaussians, to represent
the important features and their mutual correlations needed for accurate document retrieval from
databases. This note describes a method to use information geometric methods for distance measures
between distributions in mixtures of arbitrary multivariate Gaussians. There is no general analytic
solution for the information geodesic distance between two k-variate Gaussians, but for many purposes
the absolute information distance may not be essential and comparative values suffice for proximity
testing and document retrieval. Also, for two mixtures of different multivariate Gaussians we must
resort to approximations to incorporate the weightings. In practice, the relation between a reasonable
approximation and a true geodesic distance is likely to be monotonic, which is adequate for many
applications. Here we consider some choices for the incorporation of weightings in distance estimation
and provide illustrative results from simulations of differently weighted mixtures of multivariate
Gaussians.
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1. Introduction

Cao et al. [4] reviewed techniques for extracting local features for automatic object recognition
in images. Multivariate Gaussians can represent the important features and their mutual correlations
needed for accurate document retrieval from databases. The natural choice for discrimination between
pairs of such distributions is the Fisher information metric on the Riemannian manifold of smooth
probability density functions coordinatized by the parameters of the distribution [1, 2]. However, it is
not known analytically in some important cases of practical interest.

We have used multivariate Gaussians for face recognition using the neighbourhoods of colour pixel
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features at landmark points in face images [12], where we found that the spatial covariances among
pixel colours was important. Craciunesco and Murari et al [5, 8] used geodesic distance on Gaussian
manifolds to interpret time series in very large databases from Tokomak measurements in fusion
research. Verdoolaege, Shabbir et al [10, 13] used multivariate generalized Gaussians for colour
texture discrimination in the wavelet domain. In these studies the discrimination used approximations
to the information distance between pairs of multivariate Gaussian probability density functions.
Nielsen et al [9] suggested an entropic quantization method for approximating distances in the case of
mixtures of multivariate Gaussians.

The k-variate Gaussian distributions have probability density functions:

f (µ,Σ) =
e−

1
2 (x−µ)T Σ−1(x−µ)√

(2π)k|Σ|
, (1)

where x ∈ Rk is the random variable, µ ∈ Rk a k-dimensional mean vector, and Σ ∈ R(k2+k)/2 is the k × k
positive definite symmetric covariance matrix, for features with k-dimensional representation.

The Riemannian manifold Mk of the family of k-variate Gaussians for a given k is well understood
through information geometric study using the Fisher metric [1, 3, 6, 11]. For an introduction to
information geometry and a range of applications see [1, 2, 7]. What we have analytically are natural
metrics, on the space of means and on the space of covariances, giving the information distance
between two multivariate Gaussians f A(µA,Σ), f B(µB,Σ) of the same number k of variables in two
particular cases:

1. ΣA = ΣB = Σ : f A(µA,Σ), f B(µB,Σ)
Here we have the positive definite symmetric quadratic form Σ to give a distance between two
mean vectors:

Dµ( f A, f B) =

√
(µA − µB)T

· Σ−1 · (µA − µB). (2)

So also we have a norm on mean vectors for each f A(µA,Σ) :

||µA|| =
√

(µA)T · (ΣA)−1 · (µA) (3)

which is evidently sensitive to the covariance.

2. µA = µB = µ : f A(µ,ΣA), f B(µ,ΣB)
Here we use a positive definite symmetric matrix constructed from ΣA and ΣB to give distance
between two covariance matrices; this information metric was given by Atkinson and Mitchell [3]
from a result attributed to S.T. Jensen, using

S AB = ΣA−1/2
· ΣB · ΣA−1/2

, with {λAB
j } = Eig(S AB) then

DΣ( f A, f B) =

√√√
1
2

k∑
j=1

log2(λAB
j ). (4)
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We note that (4) is in agreement also with a special case of the geodesic distance given by Shabbir et
al [10] for generalized multivariate Gaussians with the same mean.

In principle, (4) yields all of the geodesic distances since the information metric is invariant under
affine transformations of the mean [3] Appendix 1; see also the article of P.S. Eriksen [6]. The equations
for the geodesics were shown by Skovgaard [11] to be

µ̈ = Σ̇Σ−1µ̇

Σ̈ = Σ̇Σ−1Σ̇ − µ̇µ̇T . (5)

Eriksen [6] observed that the family Mk of k-variate Gaussians is isometric to the space GA+(k)/S O(k)
where GA+(k) consists of positive affine transformations. Hence by a translation it is sufficient to
restrict the geodesic to one through Σ = I the identity, in the direction (−B, v). Then, through the
change of coordinates, ∆ = Σ−1, δ = Σ−1µ, Equation (5) becomes

∆̇ = −B∆ + vδT with ∆(0) = I, δ(0) = 0,
δ̇ = −Bδ + (1 + δT ∆−1δ)v. (6)

Then using

A =


−B v 0
vT 0 −vT

0 −v B

 (7)

Eriksen proved that the geodesic solution curve is given by

Λ : R :→ Mk : t 7→ eAt =


∆ δ Φ

δT 1 + δT ∆−1δ γT

ΦT γ Γ

 (8)

where γ = ∆−1δ + ΦT ∆−1δ, and δT ∆−1δ = γT Γ−1γ. (9)
So (∆(−t), δ(−t)) = (Γ(t), δ(t)). (10)

Of course, the analytic difficulty is the requirement to find the length of the geodesic between two
points in Mk to obtain a distance function, that being the infimum of arc length over all curves joining
the points.

2. Approximating distances between arbitrary mixtures of multivariate Gaussians

Here we consider a mixture distribution consisting of a linear combination of k-variate Gaussians
{ fk, k = 2, 3, . . . ,N} with an increasing sequence of k = 2, 3, . . . ,N variables and with probability
density functions:

f2(µ2,Σ2), f3(µ3,Σ3)..., fN(µN ,ΣN) and ∀k
∫
Rk

fk = 1 (11)

where µk ∈ R
k is the k-vector of means and Σk ∈ R

(k2+k)/2 is the positive definite symmetric (k ×
k) covariance matrix with components (σi j), i ≤ j = 1, 2, ..., k. The standard basis for the space of
covariance matrices is Ei j = 1ii for i = j, Ei j = 1i j + 1 ji for i , j so

Σ =

k∑
i≤ j=1

σi jEi j.
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We presume that the parameters and relative weights wk of these component probability density
functions (11) have been obtained empirically, giving a mixture density:

f A =

N∑
k=2

wA
k f A

k , with wA
k ≥ 0 and

N∑
k=2

wA
k = 1. (12)

Given two such distributions, f A = f A(µA,ΣA,wA) and f B = f B(µB,ΣB,wB), we wish to be able to
estimate the information distance D( f A, f B) between them.

There is no general analytic solution for the geodesic distance between two k-variate Gaussians,
but for many purposes the absolute information distance is not essential and comparative values may
suffice for proximity testing, then the sum D = Dµ + DΣ from (2) and (4) is a natural approximation.
Indeed, (4) gives the geodesic distance between f A with ΣA = I and f B with µA = µB = 0 and the
information metric is invariant under affine transformations of the mean [3, 6].

So, a fortiori, also we do not have the distance between two mixtures of multivariate Gaussians:
f A(µA,ΣA,wA) and f B(µB,ΣB,wB). For this we must resort to approximations for incorporating the
weightings of component Gaussians. In practice, it may not matter greatly since the relation between
a reasonable approximation and a true geodesic distance is likely to be monotonic, which may be
adequate for many applications, and was what we found in our face recognition work [12].

2.1. Averaging distances over weightings

Perhaps the most natural method is to combine equations (2) and (4) through the linear
combination (12), obtaining an approximation as a corresponding linear combination of distances.
Given two mixture distributions f A(µA,ΣA), f B(µB,ΣB) we could split the distance estimate function
D# into D#

µ and D#
Σ

as follows with δµ = (µA − µB):

D#
µ( f A, f B) =

N∑
k=2

1
2

(
wA

k

√
δµT · ΣA−1

k · δµ + wB
k

√
δµT · ΣB

k
−1 · δµ

)
(13)

D#
Σ( f A, f B) =

N∑
k=2

1
2

(wA
k

√√
1
2

N∑
k=2

(log λAB
k )2 + wB

k

√√
1
2

N∑
k=2

(log λBA
k )2) (14)

{λAB
k } = EigHAB

k , HAB
k =

(
(ΣA

k )−1/2 · ΣB
k · (Σ

A
k )−1/2

)
.

We note D#
µ( f A, f B) in (13) does give a potentially useful distance measure between the two Gaussian

mixtures, since it incorporates both means and covariances. Figure 1 shows the effect on D#
µ values

between differing averaged weighting sequences for random k-variate Gaussians having k = 2, 3, 4, 5
variables, with increasing weights f A, uniform weights f B, and decreasing weights f C. The gA, gB, gC

are for the same mixtures except that ΣC
2 has been replaced by ΣC

2 /5 and hA, hB, hC are for the same
mixtures except that ΣC

5 has been replaced by ΣC
5 /5 to show the effect of a change in one covariance

component. For these simulations Mathematica was used to generate random mean vectors µi ∈ [5, 10]
and random covariance matrix elements σi j ∈ [5, 10], i , j, σii ∈ [−6, 6], choices that ensured positive
definite symmetric matrices for covariances. This approach was chosen to try to illustrate the effects
of weighting sequences and isolated covariance changes on the measurements of distances between
mixtures. Table 1 shows mean values D#

µ and D#
Σ

for the pairs of mixtures ( f A, f B), ( f B, f C), ( f A, f C)
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for the 20 random Gaussians with weights wA
k = (0.1, 0.2, 0.3, 0.4), wB

k = (0.25, 0.25, 0.25, 0.25), wC
k =

(0.4, 0.3, 0.2, 0.1) .

Table 1. Mean values D#
µ and D#

Σ
for the pairs of mixtures ( f A, f B), ( f B, f C), ( f A, f C) for

the 20 random Gaussians with weights wA
k = (0.1, 0.2, 0.3, 0.4), wB

k = (0.25, 0.25, 0.25, 0.25),
wC

k = (0.4, 0.3, 0.2, 0.1).

D#
µ(A, B) D#

µ(B,C) D#
µ(A,C)

Mixture f 0.6085 0.5635 0.5868

Mixture g 0.7087 0.7694 0.7522

Mixture h 0.9002 0.7126 0.7774

D#
Σ
(A, B) D#

Σ
(B,C) D#

Σ
(A,C)

Mixture f 0.8607 0.8110 0.8537

Mixture g 0.8607 0.8110 0.8537

Mixture h 0.8607 0.8110 0.8537

As expected from the form of D#
Σ

in equation (14), its values in the table of means is unaffected by
the scale changes in covariances through mixtures f , g, h, but is sensitive to weighting sequences.

However, the k-variate components from two mixtures might not come from the same feature
space in some applications so there may be no connection between the contributing features they are
representing. On the other hand, a commonly used feature space is that of pixel colours in different
locations, as for example in texture and face recognition and those feature spaces are the same.

2.2. Mixtures projected onto the complex plane

The new implementation described here uses the information geometric norm on the mean vectors
and the Frobenius norm on the covariance matrices to project the mixture distributions onto the
complex plane. This 2-dimensional representation reveals influences of the means and covariances in
the mixtures, which itself may be a valuable It allows also the direct calculation of a distance between
two mixture distributions using moduli, without assuming any connections between the mixtures,
though this has the effect of smoothing the component influences of the means and covariances.

The idea here is simple: for each mixture distribution f A given by a weighted sum (12) we obtain
two numbers ||µA|| and ||ΣA|| being the weighted sums of norms of means and covariances. The norm
on mean vectors is given by (3) and for the covariance matrices we need a matrix norm, which here we
choose as the Frobenius norm given for an n × n matrix Mαβ by the square root of the sum of squares
of its elements mαβ,

||Mαβ||
2 =

n∑
α=1

n∑
β=1

(mαβ)2
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Note that if Mαβ has eigenvalues {λα} and is represented on a basis of eigenvectors then

||Mαβ||
2 =

n∑
α=1

(λα)2.

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.2

0.4

0.6

0.8

1.0

1.2

Figure 1. Illustration of the effects of weighting sequences and covariances
in mixtures. Upper row: D#

µ( f A, f B),D#
µ( f B, f C),D#

µ( f A, f C), Middle row:
D#
µ(g

A, gB),D#
µ(g

B, gC),D#
µ(g

A, gC), Lowest row: D#
µ(h

A, hB),D#
µ(h

B, hC),D#
µ(h

A, hC) for
20 random k-variate Gaussians for k = 2, 3, 4, 5 with weights wA

k = (0.1, 0.2, 0.3, 0.4), wB
k =

(0.25, 0.25, 0.25, 0.25),wC
k = (0.4, 0.3, 0.2, 0.1).

Given a mixture distribution f A consisting of M different multivariate Gaussians:
GA = {GA

i (µA
i ,Σ

A
i )}i=1,M with weights wA = {wA

i }i=1,M we have

f A =

M∑
m=1

wA
mGA

m

||µA|| =

√√
M∑

m=1

wA
m(µA

m)T .(ΣA
m)−1.(µA

m) (15)

||ΣA|| =

√√
M∑

m=1

wA
m||Σ

A
m||

2. (16)
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Figure 2. Mixture projection onto C. Mixtures ( f A, f B, f C) for 250 random Gaussians
with weights wA

k = (0.1, 0.2, 0.3, 0.4), wB
k = (0.25, 0.25, 0.25, 0.25), wC

k = (0.4, 0.3, 0.2, 0.1)
are shown plotted in (||µ||, ||Σ||)-space for k-variate Gaussians having k = 2, 3, 4, 5 variables,
with increasing weights f A, uniform weights f B, and decreasing weights f C. The gA, gB, gC

are for the same mixtures except that ΣC
2 has been replaced by ΣC

2 /5 and hA, hB, hC are for
the same mixtures except that ΣC

5 has been replaced by ΣC
5 /5 to show the effect of a change

in one covariance component. The mean for each over the 250 replications is shown as a
larger point.
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Now we can represent f A by the complex number φA = ||µA|| + i||ΣA|| and its difference from another
such complex number φB for f B gives us a distance measure in our reduced space of mixtures:

∆( f A, f B) = |φB − φA|. (17)

Figure 2 shows a plot of the points (||µ||, ||Σ||) ∈ C for the 250 mixtures of random k-variate Gaussians
having k = 2, 3, 4, 5 variables, with increasing weights f A, uniform weights f B, and decreasing weights
f C. The gA, gB, gC are for the same mixtures except that ΣC

2 has been replaced by ΣC
2 /5 and hA, hB, hC

are for the same mixtures except that ΣC
5 has been replaced by ΣC

5 /5 to show the effect of a change
in one covariance component. In each case the mean for each over the 250 replications is shown as
a large point. This was done using Mathematica with random mean vectors µi ∈ [5, 10] and random
covariance matrix elements σi j ∈ [5, 10], i , j, σii ∈ [−6, 6].

3. Discussion

There are efficient software programs for extracting from large data sets and image sequences
certain mixtures of probability distributions, such as multivariate Gaussians, to represent the
important features and their mutual correlations needed for accurate document retrieval from
databases. The lack of an analytic solution to the geodesic distance equations between points in the
Riemannian space of multivariate Gaussian mixtures, Equation (12), with an information metric,
means that approximate solutions need to be found for practical applications. We have illustrated a
new approximation for the case of 250 mixtures of k-variate Gaussians for k = 2, 3, 4, 5 with four
weightings wA

k = (0.1, 0.2, 0.3, 0.4), wB
k = (0.25, 0.25, 0.25, 0.25), wC

k = (0.4, 0.3, 0.2, 0.1) of the
component Gaussians that are increasing, uniform and decreasing. These simulations show the effects
of covariance changes and the effects of weighting sequences on each given collection of k-variate
Gaussians for k = 2, 3, 4, 5.

4. Conclusions

Whereas there are not analytic expressions for the information geometric distance between pairs of
mixtures of multivariate Gaussians, we have shown that there are several choices for good
information geometric approximate distances which are easy to compute. The new method yielded
evident discrimination between pairs of these mixtures, shown in easily interpretable graphical form,
Figure 2, distinguishing effects of covariance changes and effects of weighting sequences.
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