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1. Introduction

In this paper, we consider the following Cahn-Hilliard systems with dynamic boundary conditions
and time periodic conditions, say (P), which consists of the following equations:

∂u
∂t
− ∆µ = 0 in Q := Ω × (0,T ), (1.1)

µ = −κ1∆u + ξ + π(u) − f , ξ ∈ β(u) in Q, (1.2)
uΓ = u|Γ , µΓ = µ|Γ on Σ := Γ × (0,T ), (1.3)
∂uΓ

∂t
+ ∂νµ − ∆ΓµΓ = 0 on Σ, (1.4)

µΓ = κ1∂νu − κ2∆ΓuΓ + ξΓ + πΓ(uΓ) − fΓ, ξΓ ∈ βΓ(uΓ) on Σ, (1.5)
u(0) = u(T ) in Ω, uΓ(0) = uΓ(T ) on Γ (1.6)

where 0 < T < +∞, Ω is a bounded domain of Rd (d = 2, 3) with smooth boundary Γ := ∂Ω,
κ1, κ2 are positive constants, ∂ν is the outward normal derivative on Γ, u|Γ , µ|Γ stand for the trace of u
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and µ to Γ, respectively, ∆ is the Laplacian, ∆Γ is the Laplace-Beltrami operator (see, e.g., [21]), and
f : Q → R, fΓ : Σ → R are given data. Moreover, β, βΓ : R → 2R are maximal monotone operators
and π, πΓ : R→ R are Lipschitz perturbations.

The Cahn-Hilliard equation [8] is a description of mathematical model for phase separation, e.g.,
the phenomenon of separating into two phases from homogeneous composition, the so-called spinodal
decomposition. In (1.1)–(1.2), u is the order parameter and µ is the chemical potential. Moreover, it
is well known that the Cahn-Hilliard equation is characterized by the nonlinear term β + π. It plays an
important role as the derivative of the double-well potential W. The well-known example of nonlinear
terms is W(r) = (1/4)(r2−1)2, namely W ′(r) = r3− r for r ∈ R, this is called the prototype double well
potential. Other examples are stated later. As the abstract mathematical result, Kenmochi, Niezgódka
and Pawłow study the Cahn-Hilliard equation with constraint by subdifferential operator approach [24]
(see also [25]). Essentially we apply the same method in this paper.

In terms of (1.3)–(1.5), we consider the dynamic boundary condition as being uΓ, µΓ unknown func-
tions on the boundary. The dynamic boundary condition is treated in recent years, for example, for the
Stefan problem [1, 2, 14], wider the degenerate parabolic equation [3, 15, 16] and the Cahn-Hilliard
equation [11, 12, 17, 18, 19, 20, 22, 29]. To the best our knowledge, the type of dynamic boundary con-
ditions on the Cahn-Hilliard equation like (P) is formulated in [17, 20]. Recently, the well-posedness
with singular potentials is discussed in [11]; the maximal Lp regularity in bounded domains is treated
in [22]; the related new model is also introduced in [29]. Based on the result [11], we also used the
property of dynamic boundary conditions, more precisely, we set up the function space which satisfies
that the total mass is equal to 0. At the sight of (P), we consider the same type of equations (1.1)–(1.2)
on the boundary. In other words, (1.1)–(1.5) is a transmission problem connecting Ω and Γ. The non-
linear term βΓ + πΓ on boundary is also the derivative of the double-well potential WΓ, that is, we treat
different nonlinear terms W ′ and W ′

Γ
in Ω and on Γ, respectively. In this case, it is necessary to assume

some compatibility condition (see, e.g., [9, 11]), stated (A4).
Focusing on (1.6), the study of time periodic problems of the Cahn-Hilliard equation is treated in

[26, 27, 28, 31]. In particular, Wang and Zheng discuss the existence of time periodic solutions of the
Cahn-Hilliard equation with the Neumann boundary condition [31]. The authors employ the method
of [4]. Note that the authors impose two assumptions for a maximal monotone graph, specifically, a
restriction of effective domains and the following growth condition for the maximal monotone graph
β:

β̂(r) ≥ cr2 for all r ∈ R,

for some positive constant c. However, the above assumption is too restrictive for some physical appli-
cations. In this paper, we follow the method of [31] and apply the abstract theory of evolution equations
by using the viscosity approach and the Schauder fixed point theorem in the level of approximate prob-
lems. Moreover, by virtue of the viscosity approach, we also can apply the abstract result [4]. Note
that, the growth condition is not need to solve the Cahn-Hilliard equation (see, e.g., [11]), therefore,
setting the appropriate convex functional and using the Poincaré-Wirtinger inequality, we can relax
the growth condition for the time periodic problem. Thanks to this, we can choose various kinds of
nonlinear diffusion terms β + π and βΓ + πΓ. On the other hand, a restriction of effective domains is
essential to show the existence of solutions of (P).

The present paper proceeds as follows.
In Section 2, a main theorem and a definition of solutions are stated. At first, we prepare the
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notation used in this paper and set appropriate function spaces. Next, we introduce the definition of
periodic solutions of (P) and the main theorems are given there. Also, we give examples of double-well
potentials.

In Section 3, in order to pass to the limit, we set convex functionals and consider approximate
problems. Next, we obtain the solution of (P)ε by using the Schauder fixed point theorem. Finally, we
deduce uniform estimates for the solution of (P)ε.

In Section 4, we prove the existence of periodic solutions by passing to the limit ε→ 0.
A detailed index of sections and subsections follows.

1. Introduction
2. Main results

2.1. Notation
2.2. Definition of the solution and main theorem

3. Approximate problems and uniform estimates

3.1. Abstract formulation
3.2. Approximate problems for (P)
3.3. Uniform estimates

4. Proof of convergence theorem

2. Main results

2.1. Notation

We introduce the spaces H := L2(Ω), HΓ := L2(Γ), V := H1(Ω), VΓ := H1(Γ) with standard norms
| · |H, | · |HΓ

, | · |V , | · |VΓ
and inner products (·, ·)H, (·, ·)HΓ

, (·, ·)V , (·, ·)VΓ
, respectively. Moreover, we set

H := H × HΓ and
V :=

{
z := (z, zΓ) ∈ V × VΓ : z|Γ = zΓ a.e. on Γ

}
.

H and V are then Hilbert spaces with inner products

(u, z)H := (u, z)H + (uΓ, zΓ)HΓ
for all u := (u, uΓ), z := (z, zΓ) ∈ H,

(u, z)V := (u, z)V + (uΓ, zΓ)VΓ
for all u := (u, uΓ), z := (z, zΓ) ∈ V.

Note that z ∈ V implies that the second component zΓ of z is equal to the trace of the first component
z of z on Γ, and z ∈ H implies that z ∈ H and zΓ ∈ HΓ are independent. Throughout this paper, we use
the bold letter u to represent the pair corresponding to the letter; i.e., u := (u, uΓ).

Let m : H → R be the mean function defined by

m(z) :=
1

|Ω| + |Γ|

{∫
Ω

zdx +

∫
Γ

zΓdΓ

}
for all z ∈ H,

where |Ω| :=
∫

Ω
1dx, |Γ| :=

∫
Γ

1dΓ. Then, we define H0 := {z ∈ H : m(z) = 0}, V0 := V ∩ H0.
Moreover, V∗,V∗0 denote the dual spaces of V,V0, respectively; the duality pairing between V∗0 and V0
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is denoted by 〈·, ·〉V∗0,V0 . We define the norm of H0 by |z|H0 := |z|H for all z ∈ H0 and the bilinear form
a(·, ·) : V × V → R by

a(u, z) := κ1

∫
Ω

∇u · ∇zdx + κ2

∫
Γ

∇ΓuΓ · ∇ΓzΓdΓ for all u, z ∈ V.

Then, for all z ∈ V0, |z|V0 :=
√

a(z, z) becomes a norm of V0. Also, we let F : V0 → V∗0 be the duality
mapping, namely,

〈Fz, z̃〉V∗0,V0 := a(z, z̃) for all z, z̃ ∈ V0.

We note that the following the Poincaré-Wirtinger inequality holds: There exists a positive constant cP

such that
|z|2V ≤ cP|z|2V0

for all z ∈ V0 (2.1)

(see [11, Lemma A]). Moreover, we define the inner product of V∗0 by

(z∗, z̃∗)V∗0 := 〈z∗, F−1 z̃∗〉V∗0,V0 for all z∗, z̃∗ ∈ V∗0.

Also, we define the projection P : H → H0 by

Pz := z − m(z)1 for all z ∈ H,

where 1 := (1, 1). Then, since P is a linear bounded operator, the following property holds: Let {zn}n∈N

be a sequence in H such that zn → z weakly in H for some z, then we infer that

Pzn → Pz weakly in H0 as n→ ∞. (2.2)

Then, we have V0 ↪→↪→ H0 ↪→↪→ V∗0, where “↪→↪→” stands for compact embedding (see [11, Lemmas
A and B]).

2.2. Definition of the solution and main theorem

In this subsection, we define our periodic solutions for (P) and then we state the main theorem.
Firstly, from (1.1) and (1.4), the following total mass conservation holds:

m
(
u(t)

)
= m

(
u(0)

)
for all t ∈ [0,T ].

Therefore, for any given m0 ∈ intD(βΓ), we define the periodic solution satisfying the total mass
conservation m(u(t)) = m0 for all t ∈ [0,T ]. We use the following notation: the variable v := u − m01;
the datum f := ( f , fΓ); the function π(z) := (π(z), πΓ(zΓ)) for z ∈ H. Moreover, we set the space
W := H2(Ω) × H2(Γ).

Definition 2.1. For any given m0 ∈ intD(βΓ), the triplet (v,µ, ξ) is called the periodic solution of (P)
if

v ∈ H1(0,T ; V∗0) ∩ L∞(0,T ; V0) ∩ L2(0,T ; W),
µ ∈ L2(0,T ; V),

ξ = (ξ, ξΓ) ∈ L2(0,T ; H),
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and they satisfy 〈
v′(t), z

〉
V∗0,V0

+ a
(
µ(t), z

)
= 0 for all z ∈ V0, (2.3)(

µ(t), z
)

H = a
(
v(t), z

)
+

(
ξ(t) − m

(
ξ(t)

)
1 + π

(
v(t) + m01

)
− f (t), z

)
H for all z ∈ V (2.4)

for a.a. t ∈ (0,T ), and

ξ ∈ β(v + m0) a.e. in Q, ξΓ ∈ βΓ(vΓ + m0) a.e. on Σ

with
v(0) = v(T ) in H0. (2.5)

Remark 2.1. We can see that µ := (µ, µΓ) satisfies

µ = −κ1∆u + ξ − m
(
ξ
)

+ π(u) − f a.e. in Q,

µΓ = κ1∂νu − κ2∆ΓuΓ + ξΓ − m
(
ξ
)

+ πΓ(uΓ) − fΓ a.e. on Σ,

where u = v + m0 and uΓ = vΓ + m0, because of the regularity v ∈ L2(0,T ; W).

Remark 2.2. In (2.4), this is different from the following definition of [11, Definition 2.1]:(
µ(t), z

)
H = a

(
v(t), z

)
+

(
ξ(t) + π

(
v(t) + m01

)
− f (t), z

)
H for all z ∈ V (2.6)

for a.a. t ∈ (0,T ). However, by setting µ̃ := µ + m
(
ξ
)
1, µ̃ satisfies µ̃ ∈ L2(0,T ; V) and (2.6). Hence, in

other words, we can employ (2.6) as definition of (P) replaced by (2.4).

We assume that

(A1) f ∈ L2(0,T ; V) and f (t) = f (t + T ) for a.a. t ∈ [0,T ];
(A2) π, πΓ : R→ R are locally Lipschitz continuous functions;
(A3) β, βΓ : R→ 2R are maximal monotone operators, which is the subdifferential

β = ∂Rβ̂, βΓ = ∂Rβ̂Γ

of some proper lower semicontinuous convex functions β̂, β̂Γ : R → [0,+∞] satisfying β̂(0) =

β̂Γ(0) = 0 with domains D(β) and D(βΓ), respectively;
(A4) D(βΓ) ⊆ D(β) and there exist positive constants ρ and c0 such that

|β◦(r)| ≤ ρ|β◦Γ(r)| + c0 for all r ∈ D(βΓ); (2.7)

(A5) D(β),D(βΓ) are bounded domains with non-empty interior, i.e., D(β) = [σ∗, σ∗] and D(βΓ) =

[σΓ∗, σ
∗
Γ
] for some constants σ∗, σ∗, σΓ∗ and σ∗

Γ
with −∞ < σ∗ ≤ σΓ∗ < σ

∗
Γ
≤ σ∗ < ∞.

The minimal section β◦ of β is defined by β◦(r) := {q ∈ β(r) : |q| = mins∈β(r) |s|} for r ∈ R. Also, β◦
Γ

is defined similarly. In particular, (A3) yields 0 ∈ β(0). The assumption (A5) is not imposed in [11].
However, it is essential to obtain uniform estimates in Section 3. This is a difficulty of time periodic
problems. Also, the assumption of compatibility of β and βΓ (A4) is the same as in [9, 11].

Now, we give some examples of the nonlinear perturbation terms which satisfies the above assump-
tions:
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• β(r) = βΓ(r) = (α1/2) ln((1 + r)/(1 − r)), π(r) = πΓ(r) = −α2r for all r ∈ D(β) = D(βΓ) = (−1, 1)
and 0 < α1 < α2 for the logarithmic double well potential W(r) = WΓ(r) = (α1/2){(1 − r) ln((1 −
r)/2) + (1 + r) ln((1 + s)/2)} + (α2/2)(1 − r2). The condition α1 < α2 ensures that W,WΓ have
double-well forms (see, e.g., [10]).
• β(r) = βΓ(r) = ∂I[−1,1](r), π(r) = πΓ(r) = −r for all r ∈ D(β) = D(βΓ) = [−1, 1] for the singular

potential W(r) = WΓ(r) = I[−1,1](r) − r2/2, where ∂I[−1,1] is the subdifferential of the indicator
function I[−1,1] of the interval [−1, 1] (namely, I[−1,1](r) = 0 if r ∈ [−1, 1] and I[−1,1](r) = +∞

otherwise).
• β(r) = βΓ(r) = ∂I[−1,1](r) + r3, π(r) = πΓ(r) = −r for all r ∈ D(β) = D(βΓ) = [−1, 1] for the

modified prototype double well potential W(r) = WΓ(r) = I[−1,1](r) + (1/4)(r2 − 1)2 − r2/2.

Our main theorem is given now.

Theorem 2.1. Under the assumptions (A1)–(A5), for any given m0 ∈ intD(βΓ), there exist at least
one periodic solution of (P) such that m(u(t)) = m0 for all t ∈ [0,T ].

Remark 2.3. We note that periodic solutions of (P) is not uniquely determined. It is due to the
usage of the Gronwall inequality. Indeed, in [11, Theorem 2.1], the continuous dependent on the data
is proved, that is, the uniqueness of the solution to a Cauchy problem is obtained. However, in this
periodic problem (P), even if we use the same method, the continuous dependent can not be obtained
because of Lipschitz perturbations π and πΓ. Without the perturbations, we can obtain the uniqueness
(see Section 3).

3. Approximate problems and uniform estimates

In this section, we consider approximate problems and obtain uniform estimates to show the exis-
tence of periodic solutions of (P). Hereafter, we fix a given constant m0 ∈ intD(βΓ).

3.1. Abstract formulation

In order to prove the main theorem, we apply the abstract theory of evolution equations. To do so,
we define a proper lower semicontinuous convex functional ϕ : H0 → [0,+∞] by

ϕ(z) :=



κ1

2

∫
Ω

|∇z|2dx +
κ2

2

∫
Γ

|∇ΓzΓ|
2dΓ

+

∫
Ω

β̂(z + m0)dx +

∫
Γ

β̂Γ(zΓ + m0)dΓ

if z ∈ V0 with β̂(z + m0) ∈ L1(Ω), β̂Γ(zΓ + m0) ∈ L1(Γ),
+∞ otherwise.

Next, for each ε ∈ (0, 1], we define a proper lower semicontinuous convex functional ϕε : H0 →
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[0,+∞] by

ϕε(z) :=


κ1

2

∫
Ω

|∇z|2dx +
κ2

2

∫
Γ

|∇ΓzΓ|
2dΓ

+

∫
Ω

β̂ε(z + m0)dx +

∫
Γ

β̂Γ,ε(zΓ + m0)dΓ if z ∈ V0,

+∞ otherwise,

where β̂ε, β̂Γ,ε are Moreau-Yosida regularizations of β̂, β̂Γ defined by

β̂ε(r) := inf
s∈R

{
1
2ε
|r − s|2 + β̂(s)

}
=

1
2ε
|r − Jε(r)|2 + β̂

(
Jε(r)

)
,

β̂Γ,ε(r) := inf
s∈R

{
1

2ερ
|r − s|2 + β̂Γ(s)

}
=

1
2ερ
|r − JΓ,ε(r)|2 + β̂Γ

(
JΓ,ε(r)

)
,

for all r ∈ R, where ρ is a constant as in (2.7) and Jε, JΓ,ε : R→ R are resolvent operators given by

Jε(r) := (I + εβ)−1(r), JΓ,ε(r) := (I + ερβΓ)−1(r)

for all r ∈ R. Moreover, βε, βΓ,ε : R → R are Yosida approximations for maximal monotone operators
β, βΓ, respectively:

βε(r) :=
1
ε

(
r − Jε(r)

)
, βΓ,ε(r) :=

1
ερ

(
r − JΓ,ε(r)

)
for all r ∈ R. Then, we easily see that βε(0) = βΓ,ε(0) = 0 holds from the definition of the subdif-
ferential. It is well known that βε, βΓ,ε are Lipschitz continuous with Lipschitz constants 1/ε, 1/(ερ),
respectively. Here, we have following properties:

0 ≤ β̂ε(r) ≤ β̂(r), 0 ≤ β̂Γ,ε(r) ≤ β̂Γ(r) for all r ∈ R.

Hence, 0 ≤ ϕε(z) ≤ ϕ(z) holds for all z ∈ H0. These properties of Yosida approximation and Moreau-
Yosida regularizations are as in [5, 6, 23]. Moreover, thanks to [9, Lemma 4.4], we have∣∣∣βε(r)

∣∣∣ ≤ ρ∣∣∣βΓ,ε(r)
∣∣∣ + c0 for all r ∈ R (3.1)

with the same constants ρ and c0 as in (2.7).

Now, for each ε ∈ (0, 1], we also define two proper lower semicontinuous convex functionals
ϕ̃, ψε : H0 → [0,+∞] by

ϕ̃(z) :=


κ1

2

∫
Ω

|∇z|2dx +
κ2

2

∫
Γ

|∇ΓzΓ|
2dΓ if z ∈ V0,

+∞ otherwise

and
ψε(z) :=

∫
Ω

β̂ε(z + m0)dx +

∫
Γ

β̂Γ,ε(zΓ + m0)dΓ
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for all z ∈ H0, respectively. Then, from [11, Lemma C], the subdifferential A := ∂H0ϕ̃ on H0 is
characterized by

Az = (−κ1∆z, κ1∂νz − κ2∆ΓzΓ) with z = (z, zΓ) ∈ D(A) = W ∩ V0.

Moreover, the representation of the subdifferential ∂H0ψε is given by

∂H0ψε(z) = Pβε
(
z + m01

)
for all z ∈ H0,

where βε(z + m01) := (βε(z + m0), βΓ,ε(zΓ + m0)) for z = (z, zΓ) ∈ H0. This is proved by the same way as
in [16, Lemma 3.2]. Noting that it holds that D(∂H0ψε) = H0 and A is a maximal monotone operator;
indeed it follows from the abstract monotonicity methods (see, e.g., [5, Sect. 2.1]) that A+∂H0ψε is also
a maximal monotone operator. Moreover, by a simple calculation, we deduce that (A+∂H0ψε) ⊂ ∂H0ϕε.
Hence,

∂H0ϕε(z) =
(
A + ∂H0ψε

)
(z) (3.2)

for any z ∈ H0 (see, e.g., [13]).

3.2. Approximate problems for (P)

Now, we consider the following approximate problem, say (P)ε: for each ε ∈ (0, 1] find vε :=
(vε, vΓ,ε) satisfying

εv′ε(t) + F−1v′ε(t) + ∂H0ϕε
(
vε(t)

)
+ P

(̃
π
(
vε(t) + m01

))
= P f (t) in H0 for a.a. t ∈ (0,T ), (3.3)

vε(0) = vε(T ) in H0. (3.4)

where, for all z ∈ H, π̃(z) := (̃π(z), π̃Γ(zΓ)) is a cut-off function of π, πΓ given by

π̃(r) :=



0 if r ≤ σ∗ − 1,
π(σ∗)(r − σ∗ + 1) if σ∗ − 1 ≤ r ≤ σ∗,

π(r) if σ∗ ≤ r ≤ σ∗,

−π(σ∗)(r − σ∗ − 1) if σ∗ ≤ r ≤ σ∗ + 1,
0 if r ≥ σ∗ + 1

(3.5)

and

π̃Γ(r) :=



0 if r ≤ σΓ∗ − 1,
πΓ(σΓ∗)(r − σ∗ + 1) if σΓ∗ − 1 ≤ r ≤ σΓ∗,

πΓ(r) if σΓ∗ ≤ r ≤ σ∗
Γ
,

−πΓ(σ∗
Γ
)(r − σ∗ − 1) if σ∗

Γ
≤ r ≤ σ∗

Γ
+ 1,

0 if r ≥ σ∗
Γ

+ 1

(3.6)

for all r ∈ R, respectively. We establish the above cut-off function by referring to [31].

From now, we show the next proposition of the existence of the periodic solution for (P)ε.
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Proposition 3.1. Under the assumptions (A1)–(A5), for each ε ∈ (0, 1], there exist at least one
function

vε ∈ H1(0,T ; H0) ∩ L∞(0,T ; V0) ∩ L2(0,T ; W)

such that vε satisfies (3.3) and (3.4).

The proof of Proposition 3.1 is given later. In order to show the Proposition 3.1, we use the method
in [31], that is, we employ the fixed point argument. To do so, we consider the following problem: for
each ε ∈ (0, 1] and g ∈ L2(0,T ; V0),

(F−1 + εI)v′ε(t) + ∂ϕε
(
vε(t)

)
= g(t) in H0 for a.a. t ∈ (0,T ), (3.7)

vε(0) = vε(T ) in H0. (3.8)

Now, we can apply the abstract theory of doubly nonlinear evolution equations respect to the time
periodic problem [4] for (3.7), (3.8) because the operator εI + F−1 and ∂ϕε are coercive in H0. It is an
important assumption to apply Theorem 2.2 in [4]. Moreover, the function vε satisfying (3.7) and (3.8)
is uniquely determined. Indeed, let v1ε, v2ε be periodic solutions of the problem (3.7) and (3.8). Then,
at the time t ∈ (0,T ), taking the difference (3.7) for v1ε and v2ε, respectively, we have

ε
(
v1ε(t) − v2ε(t)

)
+ F−1(v1ε(t) − v2ε(t)

)
+ ∂ϕε

(
v1ε(t)

)
− ∂ϕε

(
v2ε(t)

)
= 0 in H0 (3.9)

for a.a. t ∈ (0,T ). Now, we test (3.9) at time t ∈ (0,T ) by v1ε(t) − v2ε(t). Then, we deduce that

1
2

d
dt

(
ε
∣∣∣v1ε(t) − v2ε(t)

∣∣∣2
H0

+
∣∣∣v1ε(t) − v2ε(t)

∣∣∣2
V∗0

)
+

1
2

∣∣∣v1ε(t) − v2ε(t)
∣∣∣2
V0
≤ 0

for a.a. t ∈ (0,T ), because of (3.2) and the monotonicity of β, βΓ. Therefore, by integrating it over
[0,T ] with respect to t, it follows from (2.1) that∫ T

0

∣∣∣v1ε(t) − v2ε(t)
∣∣∣2
Vdt ≤ 0.

It implies that the function vε satisfying (3.7) and (3.8) is unique.
Hence, we obtain the next proposition.

Proposition 3.2. For each ε ∈ (0, 1] and g ∈ L2(0,T ; V0), there exists a unique function vε such that
(3.7) and (3.8) are satisfied.

We apply the Schauder fixed point theorem to prove Proposition 3.1. To this aim, we set

Y1 :=
{
v̄ε ∈ H1(0,T ; H0) ∩ L∞(0,T ; V0) : v̄ε(0) = v̄ε(T )

}
.

Firstly, for each v̄ε ∈ Y1, we consider the following problem, say (Pε; v̄ε):

εv′ε(s) + F−1v′ε(s) + ∂ϕε
(
vε(s)

)
+ P

(̃
π
(
v̄ε(s) + m01

))
= P f (s) in H0 (3.10)

for a.a. s ∈ (0,T ), with
vε(0) = vε(T ) in H0.
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Next, we obtain estimates of the solution of (Pε; v̄ε) to apply the Schauder fixed point theorem. Note
that we can allow the dependent of ε ∈ (0, 1] for estimates of Lemma 3.1 because we use the Schauder
fixed point theorem in the level of approximation.

Lemma 3.1. Let vε be the solution of problem (Pε; v̄ε). Then, there exist positive constants C1ε,C2,C3ε

such that

ε

∫ T

0

∣∣∣v′ε(s)
∣∣∣2
H0

ds +

∫ T

0

∣∣∣v′ε(s)
∣∣∣2
V∗0

ds ≤ C1ε, (3.11)∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds +

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
ds ≤ C2 (3.12)

and

1
2

∣∣∣vε(t)∣∣∣2V0
+

∫
Ω

β̂ε
(
vε(t) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(t) + m0

)
dΓ ≤ C3ε (3.13)

for all t ∈ [0,T ].

Proof. At first, for each v̄ε ∈ Y1, there exists a positive constant M, depending only on σ∗, σΓ∗, σ
∗

and σ∗
Γ
, such that ∣∣∣̃π(v̄ε(t) + m01

)∣∣∣2
H0
≤ M for all t ∈ [0,T ]. (3.14)

Now, testing (3.10) at time s ∈ (0,T ) by v′ε(s) and using the Young inequality, we infer that

ε
∣∣∣v′ε(s)

∣∣∣2
H0

+
∣∣∣v′ε(s)

∣∣∣2
V∗0

+
d
ds
ϕε

(
vε(s)

)
=

(
P f (s) − P

(̃
π
(
v̄ε(s) + m01

))
, v′ε(s)

)
H0

≤
1
2

∣∣∣ f (s)
∣∣∣2
V +

1
2

∣∣∣v′ε(s)
∣∣∣2
V∗0

+
M
2ε

+
ε

2

∣∣∣v′ε(s)
∣∣∣2
H0

for a.a. s ∈ (0,T ). Therefore, we have that

ε
∣∣∣v′ε(s)

∣∣∣2
H0

+
∣∣∣v′ε(s)

∣∣∣2
V∗0

+ 2
d
ds
ϕε

(
vε(s)

)
≤

∣∣∣ f (s)
∣∣∣2
V +

M
ε

(3.15)

for a.a. s ∈ (0,T ). Then, integrating it over (0,T ) with respect to s and using the periodic property, we
see that

ε

∫ T

0

∣∣∣v′ε(s)
∣∣∣2
H0

ds +

∫ T

0

∣∣∣v′ε(s)
∣∣∣2
V∗0

ds ≤
∫ T

0

∣∣∣ f (s)
∣∣∣2
Vds +

MT
ε
,

which implies the first estimate (3.11).
Next, testing (3.10) at time s ∈ (0,T ) by vε(s) and from (2.1), we deduce that

1
2

d
ds

∣∣∣vε(s)
∣∣∣2
V∗0

+
ε

2
d
ds

∣∣∣vε(s)
∣∣∣2
H0

+ ϕε
(
vε(s)

)
≤

(
P f (s) − P

(̃
π
(
v̄ε(s) + m01

))
, vε(s)

)
H0

+ ϕε(0)
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≤ 2cP

∣∣∣ f (s)
∣∣∣2
H0

+
1

4cP

∣∣∣vε(s)
∣∣∣2
H0

+ 2cPM + ϕ(0)

≤ 2cP

∣∣∣ f (s)
∣∣∣2
H0

+
1
4

∣∣∣vε(s)
∣∣∣2
V0

+ 2cPM + ϕ(0)

≤ 2cP

∣∣∣ f (s)
∣∣∣2
H0

+
1
2
ϕε

(
vε(s)

)
+ 2cPM + ϕ(0)

for a.a. s ∈ (0,T ), thanks to the definition of the subdifferential. From the definition of ϕε, it follows
that

1
2

d
ds

∣∣∣vε(s)
∣∣∣2
V∗0

+
ε

2
d
ds

∣∣∣vε(s)
∣∣∣2
H0

+
1
4

∣∣∣vε(s)
∣∣∣2
V0

+
1
2

∫
Ω

β̂ε
(
vε(s) + m0

)
dx +

1
2

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓ

≤ 2cP

∣∣∣ f (s)
∣∣∣2
H0

+ 2cPM +

∫
Ω

β̂ε
(
m0

)
dx +

∫
Γ

β̂Γ,ε

(
m0

)
dΓ

for a.a. s ∈ (0,T ). Integrating it over (0,T ) and using the periodic property, we see that

1
2

∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds +

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds

≤ 4cP

∣∣∣ f ∣∣∣2
L2(0,T ;H0)

+ 4cPT M + T |Ω|
∣∣∣̂β(m0

)∣∣∣ + T |Γ|
∣∣∣̂βΓ

(
m0

)∣∣∣.
Hence, there exist a positive constant C2 such that the second estimate (3.12) holds.

Next, for each s, t ∈ [0,T ] such that s ≤ t, we integrate (3.15) over [s, t] with respect to s. Then, by
neglecting the first two positive terms, we have

ϕε
(
vε(t)

)
≤ ϕε

(
vε(s)

)
+

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
Vds +

MT
2ε

for all s, t ∈ [0,T ], namely,

1
2

∣∣∣vε(t)∣∣∣2V0
+

∫
Ω

β̂ε
(
vε(t) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(t) + m0

)
dΓ

≤
1
2

∣∣∣vε(s)
∣∣∣2
V0

+

∫
Ω

β̂ε
(
vε(s) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓ

+
1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
Vds +

MT
2ε

(3.16)

for all s, t ∈ [0,T ]. Now, integrating it over (0, t) with respect to s, we deduce that

t
2

∣∣∣vε(t)∣∣∣2V0
+ t

∫
Ω

β̂ε
(
vε(t) + m0

)
dx + t

∫
Γ

β̂Γ,ε

(
vΓ,ε(t) + m0

)
dΓ

≤
1
2

∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds +

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds

+
T
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
Vds +

MT 2

2ε
(3.17)
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for all t ∈ [0,T ]. In particular, putting t := T and dividing (3.17) by T , it follows that

1
2

∣∣∣vε(T )
∣∣∣2
V0

+

∫
Ω

β̂ε
(
vε(T ) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(T ) + m0

)
dΓ

≤
1

2T

∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +
1
T

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds

+
1
T

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds +

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
Vds +

MT
2ε

. (3.18)

Hence, combining the second estimate (3.12) and (3.18), we see that

1
2

∣∣∣vε(T )
∣∣∣2
V0

+

∫
Ω

β̂ε
(
vε(T ) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(T ) + m0

)
dΓ

≤
C2

T
+

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
Vds +

MT
2ε

.

Moreover, from the periodic property, we infer that

1
2

∣∣∣vε(0)
∣∣∣2
V0

+

∫
Ω

β̂ε
(
vε(0) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(0) + m0

)
dΓ

≤
C2

T
+

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
Vds +

MT
2ε

. (3.19)

Now, let s be 0 in (3.16). Then, owing to (3.19), we deduce that

1
2

∣∣∣vε(t)∣∣∣2V0
+

∫
Ω

β̂ε
(
vε(t) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(t) + m0

)
dΓ

≤
C2

T
+

∣∣∣ f ∣∣∣2
L2(0,T ;V)

+
MT
ε

for all t ∈ [0,T ]. Thus, there exists a positive constant C3ε such that the final estimate (3.13) holds. �

In terms of (3.11), one key point to prove the estimate is exploiting (3.14). The estimate (3.14) is
arised from the form of cut-off functions (3.5) and (3.6). The form of cut-off functions depends on
the assumption (A5) essentially. However, considered the same estimate in [11, Lemma 4.1], it is not
imposed the assumption. They use the Gronwall inequality to obtain the estimate because the initial
value is given data. On the other hand, we can not obtain it even though we use the Gronwall inequality,
because the initial value is not given. For this reason, it is necessary to impose (A5). This is a difficult
point to solve this time periodic problem (P).

Now, we show the existence of solutions of the approximate problem (P)ε.

Proof of Proposition 3.1. We apply the Schauder fixed point theorem. To do so, we set

Y2 :=
{

v̄ε ∈ Y1 : sup
t∈[0,T ]

∣∣∣v̄ε(t)∣∣∣2V0
+ ε

∣∣∣v̄ε∣∣∣2H1(0,T ;H0)
≤ Mε

}
,

where Mε is a positive constant and be determined by Lemma 3.1. Then, the set Y2 is non-empty
compact convex on C([0,T ]; H0). Now, from Proposition 3.2, for each v̄ε ∈ Y2, there exists a unique
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solution vε of (Pε; v̄ε). Moreover, from Lemma 3.1, it holds vε ∈ Y2. Here, we define the mapping
S : Y2 → Y2 such that, for each v̄ε ∈ Y2, corresponding v̄ε to the solution vε of (Pε; v̄ε). Then, the
mapping S is continuous on Y2 with respect to topology of C([0,T ]; H0). Indeed, let {v̄ε,n}n∈N ⊂ Y2 be
v̄ε,n → v̄ε in C([0,T ]; H0) and {vε,n}n∈N be the sequence of the solution of (Pε; v̄ε,n). From Lemma 3.1,
there exist a subsequence {nk}k∈N, with nk → ∞ as k → ∞, and vε ∈ H1(0,T ; H0) ∩ L∞(0,T ; V0) such
that

vε,nk → vε weakly star in H1(0,T ; H0) ∩ L∞(0,T ; V0). (3.20)

Hence, from (3.20) and the Ascoli-Arzelà theorem (see, e.g., [30]), there exists a subsequence (not
relabeled) such that

vε,nk → vε in C([0,T ]; H0) (3.21)

as k → ∞. Also, we have
v′ε,nk
→ v′ε weakly in L2(0,T ; H0) (3.22)

as k → ∞. Because we have vε,nk(0) = vε,nk(T ), it implies vε(0) = vε(T ) in H0. Hereafter, we show
that vε is the solution of (Pε; v̄ε). Since vε,nk is the solution of (Pε; v̄ε,nk), we see that∫ T

0

(
P f (s) − P

(̃
π
(
v̄ε,nk(s) + m01

))
− εv′ε,nk

(s) − F−1v′ε,nk
(s), η(s) − vε,nk(s)

)
H0

ds

≤

∫ T

0
ϕε

(
η(s)

)
ds −

∫ T

0
ϕε

(
vε,nk(s)

)
ds (3.23)

for all η ∈ L2(0,T ; H0), thanks to the definition of the subdifferential ∂ϕε. Moreover, it follows from
v̄ε,nk → v̄ε in C([0,T ]; H0) that

P
(̃
π(v̄ε,nk + m01)

)
→ P

(̃
π(v̄ε + m01)

)
in C([0,T ]; H0). (3.24)

Thus, on account of (3.20)–(3.24), taking the upper limit as k → ∞ in (3.23) and using

lim inf
k→∞

∫ T

0
ϕε

(
vε,nk(s)

)
ds ≥

∫ T

0
ϕε

(
vε(s)

)
ds,

we infer that ∫ T

0

(
P f (s) − P

(̃
π
(
v̄ε(s) + m01

))
− εv′ε(s) − F−1v′ε(s), η(s) − vε(s)

)
H0

ds

≤

∫ T

0
ϕε

(
η(s)

)
ds −

∫ T

0
ϕε

(
vε(s)

)
ds

for all η ∈ L2(0,T ; H0). Hence, we see that the function vε is the solution of (Pε; v̄ε). As a result, it
follows from the uniqueness of the solution of (Pε; v̄ε) that

S(v̄ε,nk) = vε,nk → vε = S(v̄ε) in C([0,T ]; H0)

as k → ∞. Therefore, the mapping S is continuous with respect to C([0,T ]; H0). Thus, from the
Schauder fixed point theorem, there exists a fixed point on Y2, namely, the problem (P)ε admits a
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solution vε. Finally, from the fact that ∂ϕε(vε) ∈ L2(0,T ; H0), which implies vε ∈ L2(0,T ; W). �

Now, we consider the chemical potential µ := (µ, µΓ) by approximating. For each ε ∈ (0, 1], we set
the approximate sequence

µε(s) := εv′ε(s) + ∂ϕε
(
vε(s)

)
+ π̃

(
vε(s) + m01

)
− f (s) (3.25)

for a.a. s ∈ (0,T ). From (3.2), we can rewrite (3.25) as

µε(s) = εv′ε(s) + Avε(s) + Pβε
(
vε(s) + m01

)
+ π̃

(
vε(s) + m01

)
− f (s) (3.26)

for a.a. s ∈ (0,T ). Then, we rewrite (3.3) as

F−1v′ε(s) + µε(s) − ωε(s)1 = 0 in V

for a.a. s ∈ (0,T ), where
ωε(s) := m

(̃
π
(
vε(s) + m01

)
− f (s)

)
for a.a. s ∈ (0,T ). Therefore, we have Pµε = µε −ωε1 ∈ L2(0,T ; V0) and ωε ∈ L2(0,T ). Then, it holds
µε ∈ L2(0,T ; V) and

v′ε(s) + FPµε(s) = 0 in V∗0 (3.27)

for a.a. s ∈ (0,T ).

3.3. Uniform estimates

In this subsection, we obtain uniform estimates independent of ε ∈ (0, 1]. We refer to [31] to obtain
uniform estimates.

Lemma 3.2. There exists a positive constant M1, independent of ε ∈ (0, 1], such that

1
2

∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds +

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds ≤ M1. (3.28)

Proof. From (3.5), (3.6) and the assumption (A3), note that π̃, π̃Γ are globally Lipschitz continuous on
R. We denote Lipschitz constants of π̃, π̃Γ by L̃, L̃Γ, respectively. Moreover, we can take the primitive
function ̂̃π of π̃ satisfying ∫

Ω

̂̃π(vε(s)
)
dx ≥ 0

for a.a. s ∈ (0,T ). Analogously, we define ̂̃πΓ. Now, we test (3.3) at time s ∈ (0,T ) by vε(s) and use
the Young inequality. Then, we deduce that

1
2

d
ds

∣∣∣vε(s)
∣∣∣2
V∗0

+
ε

2
d
ds

∣∣∣vε(s)
∣∣∣2
H0

+ ϕε
(
vε(s)

)
≤

(
P f (s) − P

(̃
π
(
vε(s) + m01

))
, vε(s)

)
H0

+ ϕε(0)

≤ cP

∣∣∣ f (s)
∣∣∣2
H +

1
4cP

∣∣∣vε(s)
∣∣∣2
H0

+ cPM + ϕ(0)

AIMS Mathematics Volume 3, Issue 2, 263–287



277

≤
1
4

∣∣∣vε(s)
∣∣∣2
V0

+ cP

∣∣∣ f (s)
∣∣∣2
H + cPM + ϕ(0)

≤
1
2
ϕε

(
vε(s)

)
+ cP

∣∣∣ f (s)
∣∣∣2
H + cPM + ϕ(0)

for a.a. s ∈ (0,T ). Namely, we have

1
2

d
ds

∣∣∣vε(s)
∣∣∣2
V∗0

+
ε

2
d
ds

∣∣∣vε(s)
∣∣∣2
H0

+
1
4

∣∣∣vε(s)
∣∣∣2
V0

+
1
2

∫
Ω

β̂ε
(
vε(s) + m0

)
dx +

1
2

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓ

≤ cP

∣∣∣ f (s)
∣∣∣2
H + cPM + ϕ(0)

for a.a. s ∈ (0,T ). Integrating it over (0,T ) and using the periodic property, we see that

1
2

∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

+

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds +

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds

≤ 2cP

∣∣∣ f ∣∣∣2
L2(0,T ;H)

+ 2cPT M + 2Tϕ(0).

This yields that the estimate (3.28) holds. �

Lemma 3.3. There exists a positive constant M2, independent of ε ∈ (0, 1], such that

ε

∫ T

0

∣∣∣v′ε(s)
∣∣∣2
H0

ds +
1
2

∫ T

0

∣∣∣v′ε(s)
∣∣∣2
V∗0

ds ≤ M2.

Proof. We test (3.3) at time s ∈ (0,T ) by v′ε(s). Then, by using the Young inequality, we see that

ε
∣∣∣v′ε(s)

∣∣∣2
H0

+
∣∣∣v′ε(s)

∣∣∣2
V∗0

+
d
ds
ϕε

(
vε(s)

)
+

d
ds

∫
Ω

̂̃π(vε(s) + m0
)
dx +

d
ds

∫
Γ

̂̃πΓ

(
vΓ,ε(s) + m0

)
dΓ

=
(
P f (s), v′ε(s)

)
H0

≤
1
2

∣∣∣ f (s)
∣∣∣2
V +

1
2

∣∣∣v′ε(s)
∣∣∣2
V∗0

for a.a. s ∈ (0,T ). This implies that

ε
∣∣∣v′ε(s)

∣∣∣2
H0

+
1
2

∣∣∣v′ε(s)
∣∣∣2
V∗0

+
d
ds
ϕε

(
vε(s)

)
+

d
ds

∫
Ω

̂̃π(vε(s) + m0
)
dx +

d
ds

∫
Γ

̂̃πΓ

(
vΓ,ε(s) + m0

)
dΓ

≤
1
2

∣∣∣ f (s)
∣∣∣2
V (3.29)

for a.a. s ∈ (0,T ). Therefore, by integrating it over (0,T ) with respect to s and using the periodic
property, we can conclude. �
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Lemma 3.4. There exists a positive constant M3, independent of ε ∈ (0, 1], such that

1
2

∣∣∣vε(t)∣∣∣2V0
+

∫
Ω

̂̃π(vε(t) + m0
)
dx +

∫
Γ

̂̃πΓ

(
vΓ,ε(t) + m0

)
dΓ ≤ M3 (3.30)

for all t ∈ [0,T ].

Proof. For each s, t ∈ [0,T ] such that s ≤ t, we integrate (3.29) over [s, t]. Then, by neglecting the
first two positive terms, we see that

ϕε
(
vε(t)

)
+

∫
Ω

̂̃π(vε(t) + m0
)
dx +

∫
Γ

̂̃πΓ

(
vΓ,ε(t) + m0

)
dΓ

≤ ϕε
(
vε(s)

)
+

∫
Ω

̂̃π(vε(s) + m0
)
dx +

∫
Γ

̂̃πΓ

(
vΓ,ε(s) + m0

)
dΓ +

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
V0

ds

for all s, t ∈ [0,T ]. Now, integrating it over (0, t) with respect to s, it follows that

t
2

∣∣∣vε(t)∣∣∣2V0
+ t

∫
Ω

β̂ε
(
vε(t) + m0

)
dx + t

∫
Γ

β̂Γ,ε

(
vΓ,ε(t) + m0

)
dΓ

≤
1
2

∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds +

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds

+

∫ T

0

∫
Ω

̂̃π(vε(s) + m0
)
dxds +

∫ T

0

∫
Γ

̂̃πΓ

(
vΓ,ε(s) + m0

)
dΓds

+
T
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
V0

ds (3.31)

for all t ∈ [0,T ]. Here, note that we have∣∣∣̂̃π(r)
∣∣∣ ≤ ∫ r

0

∣∣∣̃π(τ)
∣∣∣dτ

≤ L̃
∫ |r|

0
|τ|dτ +

∫ r

0

∣∣∣̃π(0)
∣∣∣dτ

≤
L̃
2

r2 +
∣∣∣̃π(0)

∣∣∣|r| (3.32)

for r> 0. Then we can easily show that (3.32) holds for any r ∈ R. Similarly, we have

∣∣∣̂̃πΓ(r)
∣∣∣ ≤ L̃Γ

2
r2 +

∣∣∣̃πΓ(0)
∣∣∣|r| for all r ∈ R.

Then, by using the Young inequality, we infer that∫
Ω

̂̃π(vε(s) + m0
)
dx ≤

∫
Ω

 L̃
2

∣∣∣vε(s) + m0

∣∣∣2 +
∣∣∣̃π(0)

∣∣∣∣∣∣vε(s) + m0

∣∣∣ dx

≤ L̃
∫

Ω

∣∣∣vε(s) + m0

∣∣∣2dx +
1

2L̃

∣∣∣̃π(0)
∣∣∣2|Ω|
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≤ 2L̃
∫

Ω

∣∣∣vε(s)
∣∣∣2dx + 2m2

0|Ω| +
1

2L̃

∣∣∣̃π(0)
∣∣∣2|Ω| (3.33)

for a.a. s ∈ [0,T ]. Similarly, we have∫
Γ

̂̃πΓ

(
vΓ,ε(s) + m0

)
dΓ ≤ 2L̃Γ

∫
Γ

∣∣∣vΓ,ε(s)
∣∣∣2dΓ + 2m2

0|Γ| +
1

2L̃Γ

∣∣∣̃πΓ(0)
∣∣∣2|Γ| (3.34)

for a.a. s ∈ [0,T ]. Thus, on account of (3.31)–(3.34), we deduce that

t
2

∣∣∣vε(t)∣∣∣2V0
+ t

∫
Ω

β̂ε
(
vε(t) + m0

)
dx + t

∫
Γ

β̂Γ,ε

(
vΓ,ε(t) + m0

)
dΓ

≤
1
2

∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds +

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds

+2L̃
∫

Ω

∣∣∣vε(s)
∣∣∣2dx + 2L̃Γ

∫
Γ

∣∣∣vΓ,ε(s)
∣∣∣2dΓ +

T
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
V0

ds + M̃4

≤

(
1
2

+ L̂cP

) ∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds

+

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds +

T
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
V0

ds + M̃4

for all t ∈ [0,T ], where L̂ := max{2L̃, 2L̃Γ} and

M̃4 := 2m2
0|Ω| +

1

2L̃

∣∣∣̃π(0)
∣∣∣2|Ω| + 2m2

0|Γ| +
1

2L̃Γ

∣∣∣̃πΓ(0)
∣∣∣2|Γ|.

In particular, putting t := T and dividing it by T , it follows that

1
2

∣∣∣vε(T )
∣∣∣2
V0

+

∫
Ω

β̂ε
(
vε(T ) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(T ) + m0

)
dΓ

≤
1
T

(
1
2

+ L̂cP

) ∫ T

0

∣∣∣vε(s)
∣∣∣2
V0

ds +
1
T

∫ T

0

∫
Ω

β̂ε
(
vε(s) + m0

)
dxds

+
1
T

∫ T

0

∫
Γ

β̂Γ,ε

(
vΓ,ε(s) + m0

)
dΓds +

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
V0

ds +
M̃4

T
. (3.35)

Combining (3.28) and (3.35), there exists a positive constant M̃3 such that

1
2

∣∣∣vε(T )
∣∣∣2
V0

+

∫
Ω

β̂ε
(
vε(T ) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(T ) + m0

)
dΓ ≤ M̃3.

From the periodic property, we have

ϕε
(
vε(0)

)
=

1
2

∣∣∣vε(0)
∣∣∣2
V0

+

∫
Ω

β̂ε
(
vε(0) + m0

)
dx +

∫
Γ

β̂Γ,ε

(
vΓ,ε(0) + m0

)
dΓ ≤ M̃3. (3.36)

Now, integrating (3.29) by (0, t) with respect to s, it follows from (3.33)–(3.34) that

ϕε
(
vε(t)

)
+

∫
Ω

̂̃π(vε(t) + m0
)
dx +

∫
Γ

̂̃πΓ

(
vΓ,ε(t) + m0

)
dΓ
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≤ ϕε
(
vε(0)

)
+

∫
Ω

̂̃π(vε(0) + m0
)
dx +

∫
Γ

̂̃πΓ

(
vΓ,ε(0) + m0

)
dΓ +

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
V0

ds

≤
(
1 + 2L̂cP

)
ϕε

(
vε(0)

)
+

1
2

∫ T

0

∣∣∣ f (s)
∣∣∣2
V0

ds + M̃4 (3.37)

for all t ∈ [0,T ]. Therefore, by virtue of (3.36)–(3.37), there exists a positive constant M3 such that the
estimate (3.30) holds. �

Lemma 3.5. There exists a positive constant M4, independent of ε ∈ (0, 1], such that

δ0

∫ T

0

∣∣∣βε(vε(s) + m0
)∣∣∣2

L1(Ω)
ds + δ0

∫ T

0

∣∣∣βΓ,ε

(
vΓ,ε(s) + m0

)∣∣∣2
L1(Γ)

ds ≤ M4 (3.38)

for some positive constants δ0.

Proof. We employ the method of [11, Lemmas 4.1, 4.3], indeed we impose same assumptions as
[11] for β, βΓ and being m0 ∈ intD(βΓ). Therefore, we can also exploit the following inequalities stated
in [18, Sect. 5]: for each ε ∈ (0, 1], there exist two positive constants δ0 and c1 such that

βε(r)(r − m0) ≥ δ0

∣∣∣βε(r)
∣∣∣ − c1, βΓ,ε(r)(r − m0) ≥ δ0

∣∣∣βΓ,ε(r)
∣∣∣ − c1

for all r ∈ R. Hence, it follows that

(
βε

(
uε(s)

)
, vε(s)

)
H ≥ δ0

∫
Ω

∣∣∣βε(uε(s)
)∣∣∣dx − c1|Ω| + δ0

∫
Γ

∣∣∣βΓ,ε

(
uΓ,ε(s)

)∣∣∣dΓ − c1|Γ| (3.39)

for a.a. s ∈ (0,T ). On the other hand, we test (3.3) at time s ∈ (0,T ) by vε(s). Then, from (3.2), we see
that (

εv′ε(s), vε(s)
)

H0
+

(
v′ε(s), vε(s)

)
V∗0

+
(
Avε(s), vε(s)

)
H0

+
(
Pβε

(
uε(s)

)
, vε(s)

)
H0

≤
(
f (s) − π̃

(
uε(s)

)
, vε(s)

)
H. (3.40)

Hence, from (3.39)–(3.40) and the maximal monotonicity of A, by squaring we have(
δ0

∫
Ω

∣∣∣βε(uε(s)
)∣∣∣dx + δ0

∫
Γ

∣∣∣βΓ,ε

(
uΓ,ε(s)

)∣∣∣dΓ

)2

≤ 3c2
1(|Ω| + |Γ|)2

+9
(∣∣∣ f (s)

∣∣∣2
H +

∣∣∣π(uε(s)
)∣∣∣2

H + ε2
∣∣∣v′ε(s)

∣∣∣2
H0

)∣∣∣vε(s)
∣∣∣2
H0

+ 3
∣∣∣v′ε(s)

∣∣∣2
V∗0

∣∣∣vε(s)
∣∣∣2
V∗0

for a.a. s ∈ (0,T ). Therefore, from the Lipschitz continuity of π̃, π̃Γ and Lemma 3.4, by integrating it
over (0,T ) with respect to s, there exists a positive constant M4 such that the estimate (3.38) holds. �

Lemma 3.6. There exists a positive constants M5, independent of ε ∈ (0, 1], such that∫ T

0

∣∣∣µε(s)
∣∣∣2
Vds ≤ M5. (3.41)
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Proof. Firstly, by using the Lipschitz continuity of π̃, π̃Γ and the Hölder inequality, it follows from
(2.1) and Lemma 3.4 that there exists a positive constant M∗

5 such that∣∣∣m(̃
π
(
vε(s) + m01

))∣∣∣
≤

1
|Ω| + |Γ|

{∫
Ω

∣∣∣̃π(vε(s) + m0
)∣∣∣dx +

∫
Γ

∣∣∣̃πΓ

(
vΓ,ε(s) + m0

)∣∣∣dΓ

}
≤

1
|Ω| + |Γ|

{
L̃|Ω|

1
2
∣∣∣vε(s)

∣∣∣2
H

+ L̃|Ω||m0| + |Ω|
∣∣∣̃π(0)

∣∣∣
+L̃Γ|Γ|

1
2
∣∣∣vΓ,ε(s)

∣∣∣2
HΓ

+ L̃Γ|Γ||m0| + |Γ|
∣∣∣̃πΓ(0)

∣∣∣}
≤

1
|Ω| + |Γ|

M∗
5

{∣∣∣vε(s)
∣∣∣2
V0

+ 1
}

≤
1

|Ω| + |Γ|
M∗

5(M3 + 1) =: M̃5 (3.42)

for a.a. s ∈ (0,T ). Therefore, owing to (3.42) we deduce that∣∣∣m(
µε(s)

)∣∣∣2 =
∣∣∣m(̃
π
(
vε(s) + m01

)
− f (s)

)∣∣∣2
≤ 2M̃2

5 +
4

(|Ω| + |Γ|)2

(∣∣∣ f (s)
∣∣∣
L1(Ω)

+
∣∣∣ fΓ(s)

∣∣∣
L1(Γ)

)
=: M̂5

for a.a. s ∈ (0,T ). Next, from (2.1), (3.27) and the fact Pµε(s) = µε(s) − m(µε(s))1 for a.a. s ∈ (0,T ),
we deduce that ∫ T

0

∣∣∣µε(s)
∣∣∣2
Vds ≤ 2

∫ T

0

∣∣∣Pµε(s)
∣∣∣2
Vds + 2

∫ T

0

∣∣∣m(
µε(s)

)
1
∣∣∣2
Vds

≤ 2cP

∫ T

0

∣∣∣Pµε(s)
∣∣∣2
V0

ds + 2(|Ω| + |Γ|)
∫ T

0

∣∣∣m(
µε(s)

)∣∣∣2ds

≤ 2cP

∫ T

0

∣∣∣v′ε(s)
∣∣∣2
V∗0

ds + 2T (|Ω| + |Γ|)M̂2
5 .

Thus, from Lemma 3.3, there exists a positive constant M5 such that the estimate (3.41) holds. �

Lemma 3.7. There exists a positive constant M6, independent of ε ∈ (0, 1], such that

1
2

∫ T

0

∣∣∣βε(vε(s) + m0
)∣∣∣2

H
ds +

1
4ρ

∫ T

0

∣∣∣βε(vΓ,ε(s) + m0
)∣∣∣2

HΓ
ds ≤ M6. (3.43)

Proof. From the definition of µε, we can infer that

µε = ε∂tvε − κ1∆vε + βε(vε + m0) − m
(
βε(vε + m01)

)
+ π̃(vε + m0) − f a.e. in Q,

(3.44)
µΓ,ε = ε∂tvΓ,ε + κ1∂νvε − κ2∆ΓvΓ,ε + βΓ,ε(vΓ,ε + m0) − m

(
βε(vε + m01)

)
+π̃Γ(vΓ,ε + m0) − fΓ a.e. on Σ. (3.45)
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Now, it follows from (3.38) that there exists a positive constant M̃6 such that∣∣∣m(
βε

(
vε(s) + m01

))∣∣∣2
≤

2
(|Ω| + |Γ|)2

(∣∣∣βε(vε + m0
)∣∣∣

L1(Ω)
+

∣∣∣βΓ,ε

(
vΓ,ε(s) + m0

)∣∣∣
L1(Γ)

)
≤ M̃6 (3.46)

for a.a. s ∈ (0,T ). Moreover, we test (3.44) at time s ∈ (0,T ) by βε(vε(s) + m0) and exploit (3.45).
Then, on account of the fact (βε(vε + m0))|Γ = βε(vΓ,ε + m0), by integrating over Ω we deduce that

κ1

∫
Ω

β′ε
(
vε(s) + m0

)∣∣∣∇vε(s)
∣∣∣2dx + κ2

∫
Γ

β′ε
(
vΓ,ε(s) + m0

)∣∣∣∇ΓvΓ,ε(s)
∣∣∣2dΓ

+
∣∣∣βε(vε(s) + m0

)∣∣∣2
H

+

∫
Γ

βΓ,ε

(
vΓ,ε(s) + m0

)
βε

(
vΓ,ε(s) + m0

)
dΓ

≤
(
f (s) + µε(s) − εv′ε(s) − π̃

(
vε(s) + m0

)
, βε

(
vε(s) + m0

))
H

+
(
m
(
βε

(
vε(s) + m01

))
, βε

(
vε(s) + m0

))
H

+
(
fΓ(s) + µΓ,ε(s) − εv′Γ,ε(s) − π̃Γ

(
vΓ,ε(s) + m0

)
, βε

(
vΓ,ε(s) + m0

))
HΓ

+
(
m
(
βε

(
vε(s) + m01

))
, βε

(
vΓ,ε(s) + m0

))
HΓ

(3.47)

for a.a. s ∈ (0,T ). Now, from (3.1), since the both signs of βε(r) and βΓ,ε(r) are same for all r ∈ R, we
infer that∫

Γ

βΓ,ε

(
vΓ,ε(s) + m0

)
βε

(
vΓ,ε(s) + m0

)
dΓ =

∫
Γ

∣∣∣βΓ,ε

(
vΓ,ε(s) + m0

)∣∣∣∣∣∣βε(vΓ,ε(s) + m0
)∣∣∣dΓ

≥
1

2ρ

∫
Γ

∣∣∣βε(vΓ,ε(s) + m0
)∣∣∣2dΓ −

c2
0

2ρ
|Γ|. (3.48)

Also, it holds ∫
Ω

β′ε
(
vε(s) + m0

)∣∣∣∇vε(s)
∣∣∣2dx ≥ 0,

∫
Γ

β′Γ,ε
(
vΓ,ε(s) + m0

)∣∣∣∇ΓvΓ,ε(s)
∣∣∣2dΓ ≥ 0. (3.49)

Moreover, by using the Young inequality, the Lipschitz continuity of π̃, π̃Γ and (3.46), there exists a
positive constant M̂6 such that(

f (s) + µε(s) − εv′ε(s) − π̃
(
vε(s) + m0

)
, βε

(
vε(s) + m0

))
H

+
(
m
(
βε

(
vε(s) + m01

))
, βε

(
vε(s) + m0

))
H

≤
1
2

∣∣∣βε(vε(s) + m0
)∣∣∣2

H
+ 4

∣∣∣ f (s)
∣∣∣2
H

+ 4
∣∣∣µε(s)

∣∣∣2
H

+ 4ε2
∣∣∣v′ε(s)

∣∣∣2
H

+ 4
∣∣∣̃π(vε(s) + m0

)∣∣∣2
H

+
∣∣∣m(
βε

(
vε(s) + m01

))∣∣∣2
H

≤
1
2

∣∣∣βε(vε(s) + m0
)∣∣∣2

H
+ M̂6

(∣∣∣ f (s)
∣∣∣2
H

+
∣∣∣µε(s)

∣∣∣2
H

+ ε2
∣∣∣v′ε(s)

∣∣∣2
H

+
∣∣∣vε(s)

∣∣∣2
H

+ 1
)

+|Ω|M̃6 (3.50)

and (
fΓ(s) + µΓ,ε(s) − εv′Γ,ε(s) − π̃Γ

(
vΓ,ε(s) + m0

)
, βε

(
vΓ,ε(s) + m0

))
HΓ
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+
(
m
(
βε

(
vε(s) + m01

))
, βε

(
vΓ,ε(s) + m0

))
H

≤
1

4ρ

∣∣∣βε(vΓ,ε(s) + m0
)∣∣∣2

HΓ
+ 2ρ

∣∣∣ fΓ(s)
∣∣∣2
H

+ 2ρ
∣∣∣µΓ,ε(s)

∣∣∣2
HΓ

+ 2ρε2
∣∣∣v′Γ,ε(s)

∣∣∣2
HΓ

+2ρ
∣∣∣̃πΓ

(
vΓ,ε(s) + m0

)∣∣∣2
HΓ

+ 2ρ
∣∣∣m(
βε

(
vε(s) + m01

))∣∣∣2
HΓ

≤
1

4ρ

∣∣∣βε(vΓ,ε(s) + m0
)∣∣∣2

HΓ
+ 2ρ|Γ|M̃6

+ρM̂6
(∣∣∣ fΓ(s)

∣∣∣2
HΓ

+
∣∣∣µΓ,ε(s)

∣∣∣2
HΓ

+ ε2
∣∣∣v′Γ,ε(s)

∣∣∣2
HΓ

+
∣∣∣vΓ,ε(s)

∣∣∣2
HΓ

+ 1
)

(3.51)

for a.a. s ∈ (0,T ). Thus, from Lemmas 3.3, 3.4 and (2.1), by combining from (3.47)–(3.51) and
integrating it over (0,T ), we can conclude the existence of the constant M6 satisfying (3.43). �

Lemma 3.8. There exists a positive constant M7, independent of ε ∈ (0, 1], such that

κ1

∫ T

0

∣∣∣∆vε(s)
∣∣∣2
H

ds +

∫ T

0

∣∣∣vε(s)
∣∣∣2
H

3
2 (Ω)

ds +

∫ T

0

∣∣∣∂νvε(s)
∣∣∣2
HΓ

ds ≤ M7. (3.52)

This lemma is proved exactly the same as in [11, Lemmas 4.4] because the necessary uniform estimates
to prove it is obtained by Lemmas 3.3, 3.4, 3.6 and 3.7. Sketching simply, comparing in (3.44) we
deduce that |∆vε|L2(0,T ;H) is uniformly bounded. Moreover, by using the theory of the elliptic regularity
(see, e.g., [7, Theorem 3.2, p. 1.79]), we see that |vε|L2(0,T ;H3/2(Ω)) is also uniformly bounded. Thus, using
both uniformly boundeds, we can conclude that (3.52) holds.

Lemma 3.9. There exists a positive constant M8, independent of ε ∈ (0, 1], such that∫ T

0

∣∣∣βΓ,ε

(
vΓ,ε(s) + m0

)∣∣∣2
HΓ

ds ≤ M8. (3.53)

Proof. We test (3.45) at time s ∈ (0,T ) by βΓ,ε(vΓ,ε(s) + m0) and integrating it over Γ. Then, by using
the Young inequality and the Lipschitz continuity of π̃Γ, there exists a positive constant M̃8 such that

κ2

∫
Γ

β′Γ,ε
(
vΓ,ε(s) + m0

)∣∣∣∇ΓvΓ,ε(s)
∣∣∣2dΓ +

∣∣∣βΓ,ε

(
vΓ,ε(s) + m0

)∣∣∣2
HΓ

=
(
fΓ(s) + µΓ(s) − εv′Γ,ε(s) − ∂νvε(s) − π̃Γ

(
vΓ,ε(s) + m0

)
, βΓ,ε

(
vΓ,ε(s) + m0

))
HΓ

≤
1
2

∣∣∣βΓ,ε

(
vΓ,ε(s) + m0

)∣∣∣2
HΓ

+
∣∣∣m(
βε

(
vε(s) + m01

))∣∣∣2
HΓ

+M̃8
(∣∣∣ fΓ(s)

∣∣∣2
HΓ

+
∣∣∣µΓ(s)

∣∣∣2
HΓ

+ ε2
∣∣∣v′Γ,ε(s)

∣∣∣2
HΓ

+
∣∣∣∂νvε(s)

∣∣∣2
HΓ

+
∣∣∣vΓ,ε(s)

∣∣∣2
HΓ

+ 1
)

≤
1
2

∣∣∣βΓ,ε

(
vΓ,ε(s) + m0

)∣∣∣2
HΓ

+ |Γ|M̃6

+M̃8
(∣∣∣ fΓ(s)

∣∣∣2
HΓ

+
∣∣∣µΓ(s)

∣∣∣2
HΓ

+ ε2
∣∣∣v′Γ,ε(s)

∣∣∣2
HΓ

+
∣∣∣∂νvε(s)

∣∣∣2
HΓ

+
∣∣∣vΓ,ε(s)

∣∣∣2
HΓ

+ 1
)

(3.54)

for a.a. s ∈ (0,T ). Note that it holds

κ2

∫
Γ

β′Γ,ε
(
vΓ,ε(s) + m0

)∣∣∣∇ΓvΓ,ε(s)
∣∣∣2dΓ ≥ 0.
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Thus, on account of Lemmas 3.3, 3.4, 3.6 and 3.8, by integrating (3.54) over (0,T ), we can find a
positive constant M7 such that the estimate (3.53) holds. �

Lemma 3.10. There exists a positive constant M9, independent of ε ∈ (0, 1], such that∫ T

0

∣∣∣vε(s)
∣∣∣2
Wds ≤ M9.

This lemma is also proved the same as in [11, Lemmas 4.5]. The key point to prove it is that we can
obtain the uniform estimate of |∆ΓvΓ,ε|L2(0,T ;HΓ) by comparing in (3.45). We omit the proof.

4. Proof of convergence theorem

In this section, we obtain the existence of periodic solutions of (P) by performing passage to the
limit for the approximate problem (P)ε. The convergence theorem is also nearly the same [11, Sect. 4].
The different point from [11] is that the component of the periodic solution of (P) satisfies (2.4) and
the periodic property (2.5).

Thanks to the previous estimates in Lemmas from 3.3 to 3.10, there exist a subsequence {εk}k∈N

with εk → 0 as k → ∞ and some limits functions v ∈ H1(0,T ; V∗0) ∩ L∞(0,T ; V0) ∩ L2(0,T ; W),
µ ∈ H1(0,T ; V), ξ ∈ L2(0,T ; H) and ξΓ ∈ L2(0,T ; HΓ) such that

vεk → v weakly star in H1(0,T ; V∗0) ∩ L∞(0,T ; V0) ∩ L2(0,T ; W), (4.1)

εkvεk → 0 strongly in H1(0,T ; H0),

µεk
→ µ weakly in L2(0,T ; V),

βεk(uεk)→ ξ weakly in L2(0,T ; H), (4.2)

βΓ,εk(uΓ,εk)→ ξΓ weakly in L2(0,T ; HΓ) (4.3)

as k → ∞. Owing to (4.1) and a well-known compactness results (see, e.g., [30]), we obtain

vεk → v strongly in C([0,T ]; H0) ∩ L2(0,T ; V0) (4.4)

as k → ∞. This yeilds that

uεk → u := v + m01 strongly in C([0,T ]; H0) ∩ L2(0,T ; V0) (4.5)

as k → ∞. Therefore, from (4.5) and the Lipschitz continuity of π̃, π̃Γ, we deduce that

π̃(uεk)→ π̃(u) strongly in C([0,T ]; H)

as k → ∞. Hence, by passing to the limit in (3.26) and (3.27), we obtain (2.3) and the following weak
formulation: (

µ(t), z
)

H = a
(
v(t), z

)
+

(
ξ(t) − m

(
ξ(t)

)
1 + π̃

(
u(t)

)
− f (t), z

)
H for all z ∈ V (4.6)
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for a.a. t ∈ (0,T ), where ξ := (ξ, ξΓ), because of the property (2.2) of linear bounded operator P. Now,
we can infer v + m0 ∈ D(β) and vΓ + m0 ∈ D(βΓ). Hence, from the form (3.5) and (3.6), we deduce that
π̃(v + m0) = π(v + m0) a.e. in Q and π̃Γ(vΓ + m0) = πΓ(vΓ + m0) a.e. on Σ. This implies that we obtain
(2.4) replaced by (4.6). Moreover, it follows from (4.4) that

v(0) = v(T ) in H0.

Also, due to (4.2), (4.3), (4.5) and the monotonicity of β, from the fact [5, Prop. 2.2, p. 38] we obtain

ξ ∈ β(v + m0) a.e. in Q, ξΓ ∈ βΓ(vΓ + m0) a.e. on Σ.

Thus, we complete the proof of Theorem 2.1.
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