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1. Introduction

Canonical correlation analysis plays an important role for assessing the relationship between sets
of variables. In order to find the linear combination of the set of variables, the maximal correlation
problem (MCP) is proposed by Hotelling [1, 2]. When we consider the optimal solution to the MCP,
which then corresponds to the global maximizer of the following equality constrained optimization
problem: maximize r(x) := xT Ax,

subject to ‖xi‖2 = 1, i = 1, 2, · · · ,m,
(1.1)

where x =
[
xT

1 , · · · , x
T
m

]
∈ Rn, xi ∈ R

ni , Ai j ∈ R
ni×n j and

A =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...

Am1 Am2 · · · Amm

 ∈ Rn×n

is a symmetric and positive definite matrix.
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Using the method of Lagrange multipliers, we will get the following equations:Ax = Λx,

‖xi‖2 = 1, i = 1, 2, · · · ,m.
(1.2)

where
Λ := diag

{
λ1I[n1], λ2I[n2], · · · , λmI[nm]

}
with λ1, . . . , λm as the Lagrange multipliers and I[ni] ∈ Rni×ni denoting the ni × ni identity matrix. The
multivariate eigenvalue problem (MEP) is cast exactly as the system of equations (1.2), which serves
only as a necessary condition for the global maximum of the MCP [4]. λ1, . . . , λm are usually called
the multivariate eigenvalues.

The Horst-Jacobi algorithm as a generalization of the so called power method is introduced to solve
MEP in [5], its convergence theory was established much later in [3]. The Gauss-Seidel algorithm has
also been suggested in [3] and its monotone convergence is recently established in [7]. Based on a core
engine in seeking global maximum of the MCP, the authors proposed an alternating variable method
(AVM) in [9]. This algorithm is proved to enjoy the global and monotone convergence and it is also
shown that for a nonnegative irreducible matrix A, the algorithm converges to the global maximizer
from any nonnegative starting point [8, 9].

In this paper, we propose the SOR-like AVM and the monotone convergence of the SOR-like AVM
is proved.

2. Main results

If we express the objective function ri(x) as

ri(x) =

xT
i Aiixi + 2xT

i

∑
j,i

Ai jx j

 +
∑
k,i

∑
j,i

xT
k Ak jx j,

It is very clear that if x∗ =
[
(x∗1)T , · · · , (x∗m)T

]T
∈ Rn, is a global maximizer of the MCP (1.1), x∗i ∈ R

ni

must be a global maximizer for the following subproblem

max
‖xi‖2=1

ri(x∗1, · · · , x
∗
i−1, xi, x∗i+1, · · · , x

∗
m). (2.1)

Then we can get the following AVM algorithm, which have shown its efficient in [9].

Algorithm 1 (The framework of the alternating variable method (AVM)).
Select x(0) ∈ M, and set k := 0.
while the stoping criterion is not met do
for i = 1, · · · ,m do
x(k+1)

i := arg max‖xi‖2=1 ri(x(k+1)
1 , · · · , x(k+1)

i−1 , x(k)
i , x

(k)
i+1, · · · , x

(k)
m )

end for
k := k + 1
end while
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Denote

x(k+1) : =
[
(x(k+1)

1 )T , · · · , (x(k+1)
i−1 )T , (x(k+1)

i )T , · · · , (x(k+1)
m )T

]T
∈ Rn,

g(k)
i : =

i−1∑
j=1

Ai jx
(k+1)
j +

m∑
j=i+1

Ai jx
(k)
j ∈ R

ni ,

m(k)(xi) : = ri

(
x(k+1)

1 , · · · x(k+1)
i−1 , x(k)

i , x
(k)
i+1, · · · , x

(k)
m

)
∈ R,

c(k)
i : = m(k)(xi) − (x(k)

i )T Aiix
(k)
i − 2(x(k)

i )T g(k)
i ∈ R. (2.2)

Then, the ith inner-loop iteration of Algorithm 1 at the kth outer-loop iteration is then to solve the
following subproblem:

x(k+1)
i := arg max

‖xi‖2=1
m(k)(xi) = (x(k)

i )T Aiix
(k)
i + 2(x(k)

i )T g(k)
i + c(k)

i .

Let λ(k+1)
i = (x(k+1)

i )T Aix(k+1), we can get the necessary and sufficient condition for the global solution
x(k+1)

i : (
−Aii + λ(k+1)

i I[ni]
)

x(k+1)
i = g(k)

i , (2.3)∥∥∥x(k+1)
i

∥∥∥
2

= 1, (2.4)(
−Aii + λ(k+1)

i I[ni]
)

is positive semidefinite. (2.5)

If we split A as
A = D + U + UT , (2.6)

where U is the strictly block triangular matrix of A, and

D = diag
{
A11, · · · , Amm ∈ R

n×n} (2.7)

is the block diagonal matrix of A. Then Algorithm 1 may be written in matrix form:

Λ(k+1)x(k+1) = (D + UT )x(k+1) + Ux(k). (2.8)

We give the following SOR-like AVM.

Algorithm 2 (SOR-like AVM).
Select x(0) ∈ M, and set k := 0.
while the stoping criterion is not met do
for i = 1, · · · ,m do
y(k+1)

i := arg max‖xi‖2=1 ri(x(k+1)
1 , · · · , x(k+1)

i−1 , x(k)
i , x

(k)
i+1, · · · , x

(k)
m ),

x̄(k+1)
i := ωiy

(k+1)
i + (1 − ωi)x(k)

i ,

x(k+1)
i := x̄(k+1)

i∥∥∥∥x̄(k+1)
i

∥∥∥∥ .

end for
k := k + 1
end while
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From the Algorithm 2, let ξ(k)
i =

∥∥∥x̄(k+1)
i

∥∥∥, we have

λ(k+1)
i y(k+1)

i =

i∑
j=1

Ai jx
(k+1)
j +

m∑
j=i+1

Ai jx
(k)
j ,

and
ξ(k)

i x(k+1)
i = (1 − ω(k)

i )x(k)
i + ω(k)

i y(k+1)
i . (2.9)

Then, we get

λ(k+1)
i ξ(k)

i x(k+1)
i = λ(k+1)

i (1 − ω(k)
i )x(k)

i + ω(k)
i

i∑
j=1

Ai jx
(k+1)
j + ω(k)

i

m∑
j=i+1

Ai jx
(k)
j . (2.10)

If we define
Ξ(k) := diag

{
ξ(k)

1 I[n1], · · · , ξ(k)
m I[nm]

}
, (2.11)

and
Ω(k) := diag

{
ω(k)

1 I[n1], · · · , ω(k)
m I[nm]

}
, (2.12)

then Algorithm 2 may be written in matrix form:[
Λ(k+1)Ξ(k) −Ω(k)(UT + D)

]
x(k+1) =

[
(I −Ω(k))Λ(k+1) + Ω(k)U

]
x(k). (2.13)

Then, we can get

r(x(k+1)) = (x(k+1))T Ax(k+1)

= (x(k+1))T (D + U + UT )x(k+1)

= (x(k+1))T
[
U + (Ω(k))−1Λ(k+1)Ξ(k) − (Ω(k))−1

(
Λ(k+1)Ξ(k) −Ω(k)(UT + D)

)]
x(k+1)

= (x(k+1))T
[
U + (Ω(k))−1Λ(k+1)Ξ(k)

]
x(k+1)

− (x(k+1))T (Ω(k))−1
[
(I −Ω(k))Λ(k+1) + Ω(k)U

]
x(k),

(2.14)

and

r(x(k)) = (x(k))T Ax(k)

= (x(k))T (D + U + UT )x(k)

= (x(k))T
[(

(I −Ω(k))Λ(k+1) + Ω(k)U
)

(Ω(k))−1 − (I −Ω(k))Λ(k+1)(Ω(k))−1 + UT + D
]

x(k)

= (x(k+1))T
[
Λ(k+1)Ξ(k) −Ω(k)(U + D)

]
(Ω(k))−1x(k)

− (x(k))T
[
−(I −Ω(k))Λ(k+1)(Ω(k))−1 + UT + D

]
x(k).

(2.15)

Hence, by (2.14) and (2.15),

∆r(x(k)) = r(x(k+1)) − r(x(k))

= (x(k+1))T Ux(k+1) − (x(k))T Ux(k) + (x(k+1))T Dx(k) − (x(k))T Dx(k)

+

m∑
i=1

λ(k+1)
i

ω(k)
i

(ξ(k)
i + 1 − ω(k)

i )(1 − (x(k+1)
i )T x(k)

i )
(2.16)
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=
1
2

[
r(x(k+1)) − r(x(k))

]
−

1
2

(s(k))T Ds(k)

+
1
2

(s(k))T
[
(Ω(k))−1Λ(k+1)(Ξ(k) + I −Ω(k))

]
s(k),

(2.17)

where s(k) := x(k+1) − x(k). Then we have

∆r(x(k)) = (s(k))T
[
−D + (Ω(k))−1Λ(k+1)(Ξ(k) + I −Ω(k))

]
s(k). (2.18)

Theorem 2.1. Let
{
x(k)

}
be generated from Algorithm 2, with the corresponding

{
Λ(k)

}
given in (2.8).

If
{
−D + (Ω(k))−1Λ(k+1)(Ξ(k) + I −Ω(k))

}
is uniformly positive definite. Then

lim
k→+∞

s(k) = 0. (2.19)

Proof. Under these assumptions, and by (2.18), we know that
{
r(x(k))

}
is nondecreasing but

bounded. This directly implies (2.19). �

Let ai ∈ σ(Aii), ai is an eigenvalue of the matrix Aii. Obviously, ai > 0. If{
−D + (Ω(k))−1Λ(k+1)(Ξ(k) + I −Ω(k))

}
is uniformly positive definite, then we have

−ai +
λ(k+1)

i (ξk
i − ω

(k)
i + 1)

ω(k)
i

> 0.

By direct computation, we have

ω(k)
i <

λ(k+1)
i (ξk

i + 1)

λ(k+1)
i + ai

<
λ(k+1)

i (ξk
i + 1)

λ(k+1)
i

= ξk
i + 1. (2.20)

By the equation (2.9), if ω(k)
i ≥ 1, we get

ξk
i

∥∥∥x(k+1)
i

∥∥∥
2

=
∥∥∥(1 − ω(k)

i )x(k)
i + ω(k)

i y(k+1)
i

∥∥∥ ≥ ω(k)
i − (ω(k)

i − 1) = 1.

Then, we have
ω(k)

i < 2.

And we find that, if ω(k)
i is very small, then x(k+1)

i → x(k)
i , so we usually let ω(k)

i > 0.5 in our numerical
experiments.

Lemma 2.2. ([1, Lemma 4.4]). Let ak be a bounded sequence of real numbers with the property
|ak − ak+1| → 0 as k → 0. If there are only finitely many limit points for the sequence, then {ak}

converges to a unique limit point.

AIMS Mathematics Volume 3, Issue 1, 253–262



258

Theorem 2.3. Under the assumptions of Theorem 2.1, and assume further that A has n distinct
eigenvalues, ω(k)

i = ω is a constant. Then the sequence
{
Λ(k)

}
converges as k → +∞, the sequence{

x(k)
}

from Algorithm 2 converges monotonically to a solution of the MEP.

Proof. From the compactness, we know that
{
x( jk)

}
has a convergent subsequence. Without loss of

generality, we may assume
{
x( jk)

}
converges to x̄ and

{
ξ( jk)

}
converges to ξ̄. By (2.9), we get

ξ̄ x̄ = (1 − ω)x̄ + ω lim
k→+∞

y(k+1)
i ,

and ∥∥∥∥∥ lim
k→+∞

y(k+1)
i

∥∥∥∥∥
2

= ‖x̄‖2 = 1.

Then we get
lim

k→+∞
y(k+1)

i = x̄.

Therefore,

lim
k→+∞

δx(k) = lim
k→+∞

(Ax(k) − Λx(k))

= lim
k→+∞

(Ax(k) − Λy(k))

= lim
k→+∞

[
(U + UT + D)x(k) − (UT + D)x(k) − Ux(k−1)

]
= lim

k→+∞
Us(k−1) = 0. (2.21)

So, subsequences
{
x( jk),Λ( jk)

}
converges to

{
x̄, Λ̄

}
, and Ax̄ = Λ̄x̄.

From the compactness and the result that the MEP has only finitely many solutions [3], we know
that

{
x(k),Λ(k)

}
has finitely many limit points. By (2.9), we have

∣∣∣λ(k+1)
i − λ(k)

i

∣∣∣ ≤ i∑
j=1

∥∥∥Ai j

∥∥∥
2

∥∥∥x(k+1)
i − x(k)

i

∥∥∥
2

+

m∑
j=i+1

∥∥∥Ai j

∥∥∥
2

∥∥∥x(k)
i − x(k−1)

i

∥∥∥
2
.

By Theorem 2.1, we see that
∣∣∣λ(k+1)

i − λ(k)
i

∣∣∣ → 0 as k → +∞. Together with Lemma 2.2, we can get
that, the sequence

{
Λ(k)

}
converges as k → +∞, and the sequence

{
x(k)

}
from Algorithm 2 converges

monotonically to a solution of the MEP. �

We shall show that the SOR-like AVM is able to converge globally to the global maximizer of the
MCP when A is nonnegative irreducible.

Theorem 2.4. Suppose that A is a nonnegative irreducible matrix. For any x(0) ≥e 0,
let

{
x(k)

}
be generated from Algorithm 2, with the corresponding

{
Λ(k)

}
given in (2.8). If{

−D + (Ω(k))−1Λ(k+1)(Ξ(k) + I −Ω(k))
}

is uniformly positive definite, then
{
x(k)

}
converges to the posi-

tive global maximizer of the MCP.
Proof. Similar to the proof of the Theorem 3.6 in [9]. �
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3. Numerical experiments

In this section, we present our numerical experiments of the SOR-like AVM to show its efficiency,
and most importantly, the effectiveness in seeking the global maximum of the MCP. All of our tests
were conducted in MATLAB 7.0. We run the algorithm starting from 103 random initial points, and
use

∥∥∥δx(k)
∥∥∥

2
≤ 10−6 as the stopping criterion.

Example 1. We choose the symmetric and positive definite matrix BCS S T K04 ∈ R132×132 in the
set BCSSTRUC1 from the Harwell-Boeing collection in Matrix Market as the original matrices A’s for
the MCP, with m = 2, and {P = 50, 82}, each of which consequently corresponds to a particular MCP
problem.

Example 2. The matrix A is given by

A =


I A12 A13

AT
12 I A23

AT
13 AT

23 I

 , A12 =


0.636 0.126 0.059
−0.021 0.633 0.049
0.016 0.157 0.521

 ,
A13 =


0.626 0.195 0.059
0.035 0.459 0.129
0.048 0.238 0.426

 , A23 =


0.709 0.050 −0.002
0.039 0.532 0.190
0.067 0.258 0.299

 ,
with m = 3, and {P = 2, 3, 4}. This example is from [5].

In Table 1, under the columns “Avg. Iter. #” are the average numbers of iterations needed to meet the
stopping criterion. Under columns “% to Global” are the sample probabilities, out of the 103 random
tests, of convergence to a global maximizer. We observe, from the results, that for almost all randomly
chosen starting points, the SOR-like AVM is able to reach a global maximizer as the standard AVM,
for different choice of the ω, the SOR-like AVM may iterate faster than the standard AVM. This is very
attractive and has consequential effect on applications.

Furthermore, to demonstrate more clearly the performance of each algorithm, we plot the history of
r(x(k)), the residual

∥∥∥δx(k)
∥∥∥

2
, and the multivariate eigenvalues λ(k)

i in the following figures. The iteration{
x(k)

}
of Example 1 in Figure 1, Figure 2 and Figure 3 starts from

x(0) =
[

1
√

50
, . . . , 1

√
50
, 1
√

82
, . . . , 1

√
82

]T
,

while the sequence
{
x(k)

}
of Example 2 in Figure 4, Figure 5 and Figure 6 starts from

x(0) =
[

1, 0, 1, 0, 0, 1, 0, 0, 0
]T
.

Table 1. Performance of the SOR-like AVM on Examples 1 and 2.

Example ω Avg. Iter.# % to Global
Example 1 ω = 1(AV M) 99.44 100.00

ω = 1.4 33.08 100.00
Example 2 ω = 1(AV M) 22.59 100.00

ω = 1.2 12.83 100.00
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Figure 5. The history of r(xk) and Norm(δ(xk)) for Example 2.
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i for Example 2.
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4. Conclusion

In this paper, we prove the monotone convergence of the SOR-like alternating variable method. The
SOR-like AVM shows its computational advantage, for different choice of the ω, the SOR-like AVM
may have a better performance than the standard AVM.
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