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1. Introduction

When a nonlinear evolution equation can be generated from a pair of linear partial differential
equations of first order by means of a compatibility condition, the nonlinear evolution equation is said
to be Lax integrable and the nonlinear system is called a Lax pair [7, 8]. However, if such a pair of
equations can be determined, then such objects such as gauge and Darboux transformations as well as
an infinite number of conservation laws can be constructed for the equation. Complete integrability is
another property associated with such systems. This concept is usually formulated for a distribution on
a manifold [9].

Definition 1. (i) Let m, n be integers with 1 ≤ m ≤ n, then an m-dimensional distribution D on an
n-dimensional manifold M is a selection of an m-dimensional subspace Dp of TpM for each p ∈ M.
The distribution is C∞ if for p ∈ M, there exists a neighborhood U of p and m vector fields X1, . . . , Xm

on U which span D at each point in U. A vector field is said to lie in the distribution D if Xp ∈ Dp,
for each p ∈ M. (ii) A C∞ distribution is called involutive, or completely integrable, if [X,Y] ∈ D
whenever X,Y ∈ D. (iii) We say D is integrable if for any p ∈ M there is a (local) submanifold N ⊂ M

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/Math.2017.4.610 


611

called a (local) integral manifold of D at p containing p whose tangent bundle is exactly D restricted
to N. �

An equivalent way of stating this is that a distribution D is completely integrable if through each
point p ∈ M, there exists an integral manifold whose dimension is equal to the dimension of D. The
Frobenius theorem gives the necessary and sufficient condition for the integrability of a distribution.
The theorem can be expressed in several different but equivalent forms, in terms of vector fields as well
as differential forms.

The exterior differential version of the Frobenius theorem states that a distributionD is completely
integrable if and only if the ideal I(D) generated by D is a closed differential ideal, hence d I(D) ⊂
I(D). This is a very practical form of the theorem.

The objective here is to investigate 1 + 1 dimensional nonlinear evolution equations which possess
Lax integrability by means of a geometric approach. It will be seen that the relation between com-
plete and Lax integrability can be formulated in this way when the Lax integrability of the nonlinear
evolution equation is given in terms of exterior differential forms [11]. This permits geometric in-
terpretations of the Lax equation to be given. Exterior differential systems also provides an efficient
way to formulate the concept of gauge and Darboux transformations for such equations. The terminol-
ogy nonlinear evolution equation will be understood to signify an equation in one space and one time
variable everywhere, that is, in one+one dimensions [2–4].

2. Lax Representations in Two Independent Variables

Historically in the theory of nonlinear evolution equations of soliton type, it is well known that these
equations may be considered as sufficient conditions for the integrability of an eigenvalue problem
involving a set of linear partial differential equations which contain the solution of the corresponding
evolution equation. As a particular example [5], the integrability of the linear system

yx = λ + u, yt = −uxx +
6

n + 1
(−u)n+1 + µ,

leads to the nonlinear system
ut + uxxx + 6(−u)n ux = 0.

If we eliminate u from the pair, it is found that y = y(x, t) satisfies the equation

yt + yxxx −
6

n + 1
(λ − yx)n+1 − µ = 0.

This is often called the potential equation when λ = µ = 0, and is an example of a Bäcklund transfor-
mation as well

The Lax representation of a nonlinear evolution equation in two independent variables considered
here is introduced as a matrix system,

ψx = M(λ)ψ, ψt = N(λ)ψ. (2.1)

The parameter λ in (2.1) is usually called a spectral parameter, ψ is referred to as an eigenfunction
associated with the spectral parameter λ, and M, N are particular matrices whose elements depend on
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λ. The sizes of the matrices may be left arbitrary for the moment. Collectively (2.1) is referred to as
a Lax pair. The nonlinear equation which corresponds to M and N is obtained by differentiating the
first equation with respect to t and the second with respect to x and equating the mixed partials of ψ to
produce the compatibility condition for (2.1)

Mt − Nx + [M,N] = 0. (2.2)

The bracket in (2.2) is defined as [M,N] = MN − NM.
To obtain a geometric picture of this type of integrability, define a matrix of one-forms ω as

ω = M dx + N dt. (2.3)

System (2.1) results as a consequence of the following relation

σ = dψ − ψω = 0. (2.4)

Exterior differentiation of (2.3) produces the result,

dσ = −dωψ + ω ∧ dψ = 0. (2.5)

Solving (2.4) for dψ and putting this in (2.5), we obtain,

dσ = −dωψ + ω ∧ (σ + ωψ) = ω ∧ σ − (dω − ω ∧ ω)ψ. (2.6)

The Frobenius theorem implies system (2.3) is completely integrable if and only if the system of one-
forms ω satisfies the condition

Ω = dω − ω ∧ ω = 0. (2.7)

In (2.7), Ω is a square matrix of two-forms usually referred to as the curvature. It is straightforward
to verify that (2.7) is equivalent to (2.2). These equations, (2.2) and (2.7), are referred to as zero
curvature conditions, and (2.7) is equivalent under (2.3) to the nonlinear evolution equation whose Lax
representation is (2.1).

Theorem 1. The nonlinear evolution equation in (x, t) whose Lax representation is given by (2.1)
must be completely integrable.

Proof: Differentiating the curvature Ω in (2.7) gives

dΩ = −dω ∧ ω + ω ∧ dω = −(Ω + ω ∧ ω) ∧ ω + ω ∧ (Ω + ω ∧ ω)

= −Ω ∧ ω + ω ∧Ω. (2.8)

Therefore, system (2.7) is completely integrable according to the Frobenius theorem. Hence (2.7)
corresponds to the nonlinear evolution equation whose Lax representation is (2.1) as required. �

There is an equivalent approach to the definition of Lax integrability which is discussed now. Let
U ⊂ R2 be coordinatized by x and t and let V = U × Rn ⊂ Rn+2 be a fiber bundle with U as the base
manifold and U carries coordinates related to a particular nonlinear evolution equation.

Suppose the equation can be represented by a system of two-forms defined on V . As a specific
example, consider the system of two-forms

α1 = du ∧ dt − p dx ∧ dt,
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α2 = dp ∧ dt − q dx ∧ dt, (2.9)

α3 = −du ∧ dx + dq ∧ dx − u dq ∧ dt + u du ∧ dt + β (u − q) du ∧ dt.

The parameter β which appears is a constant. If the map s : U → V is a cross section of V with the
property

s∗ αi = 0, (2.10)

where the αi are a system of forms such as (2.9), and mapping s∗ denotes the pull-back of s, it can be
verified that u(x, t) is a solution of the associated equation. Conversely, for any given solution u(x, t) of
the equation, the map s : U → V which is given by s(x, t) = (x, t, u(x, t), ux(x, t), · · · ) is a cross section
of V satisfying s∗αi = 0.

Differentiating the forms in (2.9) gives

dα1 = −dp ∧ dx ∧ dt = dx ∧ α2,

dα2 = dx ∧ (−α3 + u((1 + β)u − q)α1),

dα3 = (1 − β)[dq ∧ α1 + p dt ∧ α3 − p dx ∧ α1].

Clearly, all of the dα j vanish modulo (2.9) so the {αi} represent a closed differential ideal. Sectioning
α1 and α2 gives p = ux and q = uxx and the nonlinear equation results from evaluating

0 = α3|s = (ut − qt + u(ux − qx) + β(u − q)ux) dx ∧ dt.

These results imply the partial differential equation

(u − q)t + u(u − q)x + β(u − q)ux = 0.

Introducing ρ = u − uxx, then for the case β = 3, the Degasperis-Procesi equation results,

ρt + ρxu + 3ρux = 0,

and for β = 2, the Camassa-Holm equation appears

ρt + ρxu + 2ρ ux = 0.

It is important to note that if a set of forms {αi} can be determined which correspond to a particular
evolution equation these forms can be used to construct both Lax pairs and Bäcklund transformations
for that equation.

For any nonlinear evolution equation, a corresponding set of two forms can be constructed. In fact,
two systems of two-forms {αi} and {βi} are said to be equivalent if one set can be expressed in terms of
the other as βi = f j

i α j, and the rank of the matrix ( f j
i ) is maximal.

Theorem 2. (Lax Integrability) A nonlinear evolution equation in (x, t) is Lax integrable if and only
if there exists a square matrix ω of one-forms in (dx, dt) such that the system (2.7) is equivalent to
{αi = 0}.

Proof: Assume the Lax representation for the nonlinear equation is given by (2.1). If ω is defined
to be the one-form (2.3), then ω is exactly what is required according to the demonstrated equivalence
of relations starting with (2.7) implying (2.2) which then yields the nonlinear evolution equation (2.1)
which finally can be put in the equivalent differential form {αi = 0}.

Second suppose the matrix of one-forms is ω, then ω can be identified as a combination of a dx and
dt term, so (2.3) holds. Then (M,N) can be identified as the Lax pair demanded by Ω = 0. �
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3. Prolongation and Differential Systems

The Prolongation Method emerges in a natural way out of this theory. Prolongations are important
for constructing solutions of evolution equations and also for deriving Bäcklund and auto-Bäcklund
transformations which transform a solution of an equation into a solution of another or the same equa-
tion. The main ideas seem to originate with Wahlquist and Estabrook [10, 12, 13]. The nonlinear
equation with Lax representation given by (2.1) can be replaced by an equivalent system of two-forms
{αi = 0} defined on the manifold V . Now introduce an additional system of Pfaff forms ϕi on the vector
bundle E = V × Rn which are defined as follows

ϕi = dyi − Fi dx −Gi dt. i = 1, . . . , n, (3.1)

The new variables yi are often called pseudopotentials and provide a coordinate system for Rn. The
ϕi are one-forms on E and the Fi, Gi are a set of functions which may depend on all the coordinates
of E. The prolongation method requires the ideal which is generated by the system {αi = 0, ϕi = 0}
to be a closed differential ideal. This will provide constraints which serve to determine the form of
the unknown functions Fi and Gi in (3.1). Thus, the prolongation condition has to have the following
structure: the derivative of (3.1) must be of the following form,

dϕi = β
j
i α j + γ

j
i ∧ ϕ j, i = 1, . . . , n, (3.2)

where (β j
i ) is a matrix of functions and (γ j

i ) is a matrix of one-forms. Formally comparing σ with ϕi,
the pseudo-potentials yi can be identified with the eigenfunction ψ, while Fi, Gi correspond to ω. There
is also a formal correspondence between (3.2) and (2.6). Out of this correspondence, it may be seen
that the prolongation condition guarantees that (3.1) is completely integrable on the solution manifold
{αi = 0} of the equation whose Lax representation is (2.1). The Lax system (2.1) for the equation can
be obtained with the complete integrability condition, although Lax integrability is a stronger property
than complete integrability.

A geometric interpretation comes directly from differential geometry for the Lax equation (2.4)
[1, 6]. Assume there is a connection ∇ which is defined on the vector bundle E, and the sections
e1, · · · , en form a frame of sections of E. By using the frame of sections S = (e1, · · · , en)T and the
connection, and n × n connection matrix ω can be defined by the formula

∇S = ωS. (3.3)

Elements of the connection matrix ω has elements which depend on the coordinates of the manifold V .
If a section s = ηiei is a parallel section of E with the ηi functions on V , from ∇s = 0, the ηi will satisfy
the following equations

dηi + η jωi
j = 0, i = 1, · · · , n. (3.4)

If we set η = (η1, · · · , ηn), then (3.4) can be put in matrix form as

dη + ηω = 0. (3.5)

The connection ∇ on the vector bundle E induces a connection ∇∗ on the dual vector bundle E∗ =

V × (Rn)∗, where (Rn)∗ denotes the dual space of Rn. If a dual frame of sections S∗ = (e1∗, · · · , en∗)T of
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E∗ is established, then 〈ei, e j∗〉 = δ
j
i with 〈, 〉 the inner product in the vector bundles E and E∗. On the

dual space, the connection is written ∇∗S∗ = −ωS∗, so the induced connection matrix on the dual E∗

is −ω. If the section s∗ = θiei∗ is a parallel section of E∗ where the θi are functions on V with ∇∗s∗ = 0,
then the θi satisfy the equation

dθi − θ jω
j
i = 0, i = 1, · · · , n.

Defining θ = (θ1, · · · , θn), then this can be put in matrix form is

dθ − ωθ = 0. (3.6)

Equation (3.6) is exactly Lax equation (2.4), and this Lax equation may be thought of as the parallel
section equation on the dual vector bundle E∗ with connection matrix equal to −ω = −M dx − N dt.
The eigenfunctions ψ correspond to the vector formed by the coordinates of the parallel section of
E∗ under the dual frame of sections of S ∗. Then the equation for Ω represents the curvature matrix
where ω plays the role of connection matrix. Pfaff system (2.3) is completely integrable then if and
only if curvature matrix Ω vanishes. Also, if the zero curvature condition Ω = 0 is satisfied, there
exists n linearly independent parallel sections, or alternatively, the Lax equation (2.4) has n linearly
independent solutions.

4. Lax Systems and Gauge Transformations in Terms of Differential Systems

Consider two Lax systems defined by

Ψx = MΨ, Ψt = NΨ, (4.1)

Φx = M̃Φ, Φt = ÑΦ. (4.2)

If a gauge transformation τ exists such that

Φ = τΨ, (4.3)

where τ is a matrix that transforms (4.1) into (4.2), a system of equations satisfied by τ can be obtained.
Differentiating (4.3) with respect to x gives

Φx = τxΨ + τΨx = τxΨ + τMΨ.

This must be equal to M̃Φ = M̃τΨ, and so isolating τxΨ

τxΨ = (M̃τ − τM)Ψ. (4.4)

This yields an equation for τx. Similarly, evaluating Ψt gives

τtΨ = (Ñτ − τN)Ψ. (4.5)

Therefore, the matrix τ satisfies the following system,

τx = M̃τ − τM, τt = Ñτ − τN. (4.6)
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In fact, system (4.6) can be expressed in the form [10]

ω̃ = τωτ−1 + dτ τ−1 (4.7)

upon noting that ω = M dx + N dt and ω̃ = M̃ dx + Ñ dt. Now (4.7) is just the transformation formula
for the connection matrix under the transformation of the basis of sections, namely,

S̃ = τ S . (4.8)

The transformation equation for the curvature matrix is given by

Ω̃ = τΩ τ−1, (4.9)

where Ω and Ω̃ are the respective curvature forms. This can be summarized as the following statement.
Theorem 3. A nonlinear evolution equation which is Lax integrable is equivalent to the system

τΩτ−1 = 0 for some n × n invertible matrix τ whose elements depend on the coordinates of V .
Proof: If an equation with Lax integrability is equivalent to system (4.9), then the Lax equation

corresponding to that equation is dψ̃ = ω̃ ψ̃, with ω̃ given by (4.7).
Conversely, it has been noted that every nonlinear evolution equation with Lax integrability is equiv-

alent to a representative equation under gauge transformation. Therefore, there is an invertible matrix
τ such that the given equation is equivalent to the system τΩτ−1 = 0. �

System (4.7) is clearly equivalent to the following Pfaff system

Θ = dτ − ω̃ τ + τω = 0. (4.10)

Expanding out (4.10) more fully, it is

Θ = τx dx + τt dt − (M̃ dx + Ñdt)τ + τ(M dx + N dt) = 0.

Theorem 4. Pfaff system (4.10) is completely integrable.
Proof: Differentiating (4.10), it is found that

dΘ = −dω̃τ + ω̃ ∧ dτ + dτ ∧ ω + τ dω

= −dω̃τ + ω̃ ∧ (Θ + ω̃τ − τω) + (Θ + ω̃τ − τω) ∧ ω + τ dω

= −dω̃τ + ω̃ ∧ Θ + ω̃ ∧ ω̃τ − ω̃ ∧ τω + Θ ∧ ω + ω̃τ ∧ ω − τω ∧ ω + τ dω

= −(dω̃ − ω̃ ∧ ω̃)τ + τ(dω − ω ∧ ω) + ω̃ ∧ Θ + Θ ∧ ω. (4.11)

Given that Ω = 0 and Ω̃ = 0, the Frobenius theorem implies Pfaff system (4.11) is completely inte-
grable and moreover,

dΘ = (ω̃ − ω) ∧ Θ. (4.12)

�
Theorem 4 says that every nonlinear evolution equation in one+one dimensions with Lax inte-

grability is gauge equivalent to any other. For example, if the KdV equation is taken as a typical
representative, assuming the n-dimensional Lax representation for it is dψ = ωψ, the KdV equation is
equivalent to Ω = 0.
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Theorem 5. The nonlinear equation in (x, t) with Lax integrability is equivalent to the system
τΩτ−1 = 0 for some n × n invertible matrix τ whose elements are functions on the manifold V .

Proof: If a nonlinear equation with Lax integrability is equivalent to the system τΩτ−1 = 0, the Lax
equation corresponding to that equation is dψ̃ = ω̃ ψ̃, where ω̃ is given by (4.7). Then that nonlinear
evolution equation is Lax integrable.

Conversely, it is known that every nonlinear evolution equation in one+one dimensions with Lax
integrability is gauge equivalent to one of the equations, say the representative equation. Thus there is
an invertible matrix τ such that the given nonlinear equation with Lax integrability is equivalent to the
system τΩτ−1 = 0. �

If two systems Ω = 0 and τΩτ−1 = 0 correspond to the same nonlinear evolution equation with Lax
integrability, it is said they are equivalent. The set of gauge transformations forms a group referred to
as the gauge group. Since these transformations preserve the solution manifold it may also be called
the symmetry group.

Suppose the formω(λ) = M(λ)dx+N(λ) dt is expanded in powers of λ in the formω(λ) =
∑m

i=0 ωiλ
i,

then if S is an n × n matrix independent of λ, ω(S ) is defined to be

ω(S ) =

m∑
i=0

ωi S i. (4.13)

Theorem 6. If there exists a gauge transformation of the form τ = λI−S for the nonlinear evolution
equation whose Lax representation is (2.1), then an n×n matrix S independent of the parameter λ must
satisfy the following equation

dS + [S , ω(S )] = 0. (4.14)

Proof: Substitute the forms ω(λ) =
∑m

i=0 ωiλ
i and ω̃(λ) =

∑m
i=0 ω̃iλ

i and τ = λ I − S into Θ from
(4.10). Collecting coefficients of the same powers of the spectral parameter λ

− dS −
m∑

i=1

ω̃iλ
i+1 +

m∑
i=1

ω̃iλ
i S +

m∑
i=0

ωiλ
i+1 − S

m∑
i=0

ωiλ
i = 0. (4.15)

Collecting like powers of λ in (4.15), there results,

− dS + ω̃0S − S ω0 +

m∑
i=1

(−ω̃i−1 + ω̃i S − ωi−1 − Sωi) λi + (−ω̃m + ωm)λm+1 = 0. (4.16)

Equating the coefficients of each power λi to zero, then if i refers to the power on λ, the following
system of equations results,

dS + Sω0 − ω̃0S = 0, i = 0, −ω̃i−1 + ω̃iS + ωi−1 − Sωi = 0, i = 1, . . . ,m,

− ω̃m + ωm = 0, i = m + 1. (4.17)

Applying these equations recursively, we can write

−Sω jS j−1 + ω̃ jS j = −Sω jS j−1 + (ω j − Sω j+1 + ω̃ j+1S )S j

= −Sω jS j−1 + ω jS j − Sω j+1S j + ω̃ j+1S j+1 = [ω j, S ]S j−1 − Sω j+1S j + ω̃ j+1S j+1. (4.18)
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Thus iterating (4.18), a relationship between ω0 and ω̃0 can be obtained,

ω̃0 = ω0 + [ω1, S ] − Sω2S + ω̃2S 2 = ω0 + [ω1, S ] + (ω2S − Sω2) S + Sω3S 2 + ω̃3 S 3

= ω0 +

m∑
k=1

[ωk, S ] S k−1. (4.19)

Solving for dS from the i = 0 equation of (4.17) and substituting ω̃0 from (4.19), we get

dS = ω̃0S − S ω0 = ω0S − Sω0 +

m∑
k=1

[ωk, S ]S k = −[S , ω0] −
m∑

k=1

[S , ωk] S k

= −

m∑
k=0

[S , ωk] S k.

Thus the result is exactly equation (4.14). �
Substituting ω(S ) = M(S ) dx + N(S ) dt into (4.14), it breaks up into two equations as follows,

S x + [S ,M(S )] = 0, S t + [S ,N(S )] = 0. (4.20)

Theorem 7. System (4.14) is completely integrable if and only if the following equation is satisfied,

dω(S ) − ω(S ) ∧ ω(S ) = 0, (4.21)

or equivalently, if and only if

Mt(S ) − Nx(S ) + [M(S ),N(S )] = 0. (4.22)

Proof: Define the Pfaff system ξ to be

ξ = dS + [S , ω(S )] = dS + [S ,M(S )] dx + [S ,N(S )] dt = 0. (4.23)

Differentiating ξ

dξ = [dS ,M(S )] ∧ dx + [S ,Mt(S ) − Nx(S )] dt ∧ dx + [dS ,N(S )] ∧ dt. (4.24)

Obtaining dS from (4.23) and replacing it in (4.24) gives,

dξ = [ξ,M(S )] ∧ dx + [ξ,N(S )] ∧ dt + [S ,Mt(S ) − Nx(S )] dt ∧ dx

− [[S ,N(S )],M(S )] dt ∧ dx − [[S ,M(S )],N(S )] dx ∧ dt. (4.25)

Using the Jacobi identity, equation (4.25) simplifies to the form

dξ = [ξ,M(S )] ∧ dx + [ξ,N(S )] ∧ dt + [S ,Mt(S ) − Nx(S ) + [M(S ),N(S )]] dt ∧ dx.

Therefore, by the Frobenius Theorem, the Pfaff system ξ = 0 is completely integrable if and only if
(4.22) holds. �
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Let matrix S be constructed in the following way. Suppose Λ is an n × n matrix formed by putting
the n complex parameters λ1, . . . , λn on the main diagonal and zero everywhere else. Then B is an n×n
invertible matrix such that B = diag(ψ1, . . . , ψn), where the ψi, i = 1, . . . , n satisfy the equations

dψi = ω(λi)ψi, i = 1, . . . , n. (4.26)

Define the matrix S to be
S = BΛ B−1. (4.27)

Theorem 8. The matrix S from (4.27) satisfies the following relation,

dS i = ω(S ) S i − S i ω(S ). (4.28)

Proof: Differentiating B, there results

dB = diag(dψ1, . . . , dψn) = diag(ω(λ1)ψ1, . . . , ω(λn)ψn)

= diag(
m∑

i=1

ωiλ
i
1ψ1, . . . ,

m∑
i=0

ωiλ
i
nψn) =

m∑
i=0

ωiBΛi. (4.29)

This can be used to evaluate dS ,

dS = d(BΛB−1) = dBΛB−1 + BΛdB−1 = dBΛB−1 − BΛB−1 · dBB−1

= (
m∑

i=0

ωiBΛi)ΛB−1 − (BΛB−1)(
m∑

i=0

ωiBΛi)B−1

= (
m∑

i=0

ωiBΛiB−1)(BΛB−1) − (BΛB−1)(
m∑

i=0

ωiBΛiB−1)

= (
m∑

i=0

ωiS i)S − S (
m∑

i=0

ωiS i) = ω(S )S − Sω(S ). (4.30)

Differentiating one S at a time sequentially in S i, we obtain

dS i = dS S i−1 + S dS S i−2 + . . . + S i−1 dS . (4.31)

Substituting dS from (4.30) into each of these terms one after the other, the following system is ob-
tained,

dS S i−1 = (ω(S )S − Sω(S ))S i−1 = ω(S )S i − Sω(S )S i−1,

S dS S i−2 = S (ω(S )S − Sω(S ))S i−2 = Sω(S )S i−1 − S 2ω(S )S i−2,
...

S i−1dS = S i−1(ω(S )S − Sω(S )) = S i−1ω(S )S − S iω(S ).

Adding these together vertically most terms cancel out, as the sum telescopes, and the result (4.28)
follows. �
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Theorem 9. Matrix S satisfies the equation

m∑
i=0

dωiS i −

m∑
i=0

ωi ∧ ω(S )S i = 0. (4.32)

Proof: The compatibility condition for the system (2.4) is

dω(λ)ψ − ω(λ) ∧ dψ = 0.

The curvature can be expanded into a series in powers of the spectral parameter λ as

Ω(λ) =

m∑
i=0

dωiλ
i −

m∑
i=0

ωiλ
i ∧ ω(λ) = 0. (4.33)

Replacing λ by the spectral parameters λ1, . . . , λn one after the other yields the system of equations,∑m
i=0 dωiλ

i
1 =
∑m

i=0 ωi ∧ ω(λ1)λi
1 =
∑m

i, j=0 ωi ∧ ω jλ
i+ j
1 ,

...
...

...∑m
i=0 dωiλ

i
n =
∑m

i=0 ωi ∧ ω(λn)λi
n =
∑m

i, j=0 ωi ∧ ω jλ
i+ j
n .

Multiply the j-th equation in this set by ψ j, so if B represents the n × n matrix defined above, this
system of equations can be written in the following way,

m∑
i=0

dωiBΛi =

m∑
i, j=1

ωi ∧ ω jBΛi+ j. (4.34)

Finally, multiply (4.34) from the right on both sides by B−1 and use the definition of S in (4.27), and
the result follows. �

Theorem 10. Matrix S in (4.27) satisfies the relation

dω(S ) − ω(S ) ∧ ω(S ) = 0.

Proof: Differentiating (4.13) and using Theorem 8 to replace dS i, we obtain

dω(S ) = d(
m∑

i=0

ωiS i) =

m∑
i=0

dωiS i −

m∑
i=0

ωi ∧ dS i =

m∑
i=0

dωiS i −

m∑
i=0

ωi ∧ (ω(S )S i − S iω(S ))

=

m∑
i=0

ωi ∧ S iω(S ) + [
m∑

i=0

dωiS i −

m∑
i=0

ωi ∧ ω(S )S i] = ω(S ) ∧ ω(S ).

In the second line, (4.32) has been used to eliminate the second term in the square brackets to finish
the proof. �
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