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1. Introduction

Fractional calculus is the most famous and useful branch of mathematics which provides a good
framework for mathematical modeling of biological, engineering and physical phenomena etc. [1–5].
To get a few developments about the theory of fractional differential equations (FDEs), one can refer
to [6–10] and the references therein.

Recently, the BVPs for nonlinear FDEs have been demonstrated by numerous authors. It has been
seen that boundary conditions can be used to describe many physical systems and is therefore a pop-
ular part of mathematics. Interested readers may refer to [8–13] and the references therein for better
understanding.

Most of the research papers deal with the existence of solutions for differential equations with
instantaneous impulsive conditions see [8–10,14,15]. But many times it has seen that certain dynamics
of evolution processes cannot describe by instantaneous impulses, For instance: Pharmacotherapy, high
or low levels of glucose, this situation can be interpreted as an impulsive action which starts abruptly at
certain point of time and continue with a finite time interval. Such type of systems are known as non-
instantaneous impulsive systems which are more suitable to study the dynamics of evolution processes.
This theory of a new class of impulsive differential equation (IDE) was developed by Hernndez et
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al. [14]. Afterwards, Pierri et al. [16] continued the work in this field and extend the theory of [14] in
a PCα− normed Banach space. The existence of solutions for non-instantaneous impulsive fractional
differential equations (IFDEs) have also been studied [6, 7, 11, 16, 17].

Recently, Kumar et al. [15] investigated the FDE with not instantaneous impulse. By using the
Banach fixed point theorem with condensing map the author’s built up the presence and uniqueness
results. Li et al. [6] considered the IFDEs where impulses are non-instantaneous. Yu [7] studied a new
class of FDEs with non-instantaneous impulses and gave a suitable formula of piecewise continuous
solutions. The author also established the concept of Ulam-Hyers stability on compact interval.

Wang et al. [11] investigated the following periodic BVP:
cDqu(t) = f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m, q > 0,
u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,
u(0) = u(T ),

(1.1)

where cDq represents the Caputo’s fractional derivative. Authors also studied the same system for
q = 1, and obtained the existence results by utilizing some classical fixed point theorems.

Recently, Z. Lin et al. [12] discussed the following system of order q ∈ (0, 1):
cDqu(t) + λu(t) = f (t, u(t)), t ∈ (si, ti+1), i = 0, 1, 2, . . . ,m,
u(t) = gi(t, u(t+

i )), t ∈ (ti, si], i = 1, 2, . . . ,m,
u(0) =

∑m
i=1 ξiu(τi), τi ∈ (si, ti+1), i = 1, 2, . . . ,m,

∑m
i=1 ξi = 1,

(1.2)

The two existence results are obtained by classical and generalized Mittag Leffer functions and fixed
point theorems.

Inspired by the development in this field and the above mentioned work, we deliberate the following
fractional BVP in case of non-instantaneous impulse:

cDα
0,ty(t) + f (t, y(t)) = 0, t ∈ (si, ti+1] ⊂ [0,T ], i = 0, 1, 2, . . . ,m, α ∈ (0, 1],

y(t) = Hi(t, y(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,
y(0) = µ cDqy(ψ), 0 < ψ < T, q ∈ (0, 1), µ ∈ R,

(1.3)

For the not instantaneous impulses, 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = T are pre-fixed
numbers. The functions f : [0,T ] × R→ R and H : [ti, si] × R→ R are continuous.

In the literature, a limited work is reported on non-instantaneous impulsive effect together with FB-
VPs. To overcome this gap, we extend the work carried out in [11]. This paper is composed as follows.
In Section 2 we demonstrate a couple of preliminaries, definitions, and lemmas which are to be em-
ployed to prove our essential outcomes. After that, the existence and uniqueness outcomes of solutions
for the model (1.3) are analyzed under the Banach, Kransnoselskii’s and Larey schauder’s alternative
fixed point theorems [18] in Section 3. In this article the Section 4 is introduced to demonstrate the
validity and applicability of the techniques.

2. Preliminaries

Let C([0,T ],R) be the Banach space of all continuous functions with the sup norm ‖y‖C :=
sup{|y(t)| : t ∈ [0,T ]} for y ∈ C([0,T ],R). From the associate literature we assume the space
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PC([0,T ],R) := {y : [0,T ] → R : y ∈ C((tk, tk+1],R), k = 0, 1, . . . ,m and there exist y(t−k )
and y(t+

k ), k = 0, 1, . . . ,m, with y(t−k = y(tk))} under the norm ‖y‖PC := sup{|y(t)| : t ∈ [0,T ]}.
Set PC1([0,T ],R) := {y ∈ PC([0,T ],R) : y′ ∈ PC([0,T ],R)} endowed with the norm ‖y‖PC1 :=
max{‖y‖PC, ‖y′‖PC}. Clearly, PC1([0,T ],R) favoured with the norm ‖.‖PC1 is a Banach space.

In this manuscript, we have used some fundamental definitions of fractional derivatives and integrals
and preparatory facts of fractional calculus which are taken from the paper [19]. So we may relax all
those notations and historical background.

Lemma 2.1. [13] Let α > 0, then cDαK(t) = 0, has solutions K(t) = c0 + c1t + c2t2 + · · · + cp−1tp−1

and IαcDαK(t) = K(t) + c0 + c1t + c2t2 + · · · + cp−1tp−1 where ci ∈ R, i = 0, 1, . . . , p − 1, p = [α] + 1.

In order to obtain the solution of the problem (1.3), we need the following lemma.

Lemma 2.2. [11] Suppose h : [0,T ] → R and Gi : [ti, si] → R be continuous functions. A function
y ∈ PC1([0,T ],R) is a solution of the problem

y′(t) = h(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,
y(t) = Gi(t), t ∈ (ti, si], i = 1, 2, . . . ,m,
y(0) = y(T ),

iff

y(t) =


Gm(sm) +

∫ T

sm
h(s)ds +

∫ t

0
h(s)ds, t ∈ [0, t1],

Gi(t), t ∈ (ti, si], i = 1, 2, . . . ,m,
Gi(si) +

∫ t

si
h(s)ds, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m.

Theorem 2.3. [18] Let C be a convex subset of a Banach space, E be a open subset of C with 0 ∈ E.
Then every completely continuous map F : E → C has at least one of the two following properties

1. There exist an e ∈ E such that Fe = e.
2. There exists an y ∈ ∂E and κ ∈ (0, 1), such that y = κFy.

By using the concept of lemma 2.2, we can derive the following result.

Lemma 2.4. A function y ∈ PC1([0,T ],R) given by

y(t) =


−µ

∫ ψ

0
(ψ−s)α−q−1

Γ(α−q) σ(s)ds −
∫ t

0
(t−s)α−1

Γ(α) σ(s)ds, t ∈ [0, t1],

Hi(t), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si) +

∫ si

0
(si−s)α−1

Γ(α) σ(s)ds −
∫ t

0
(t−s)α−1

Γ(α) σ(s)ds, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

(2.1)

is a solution of the following system
cDαy(t) + σ(t) = 0, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m, α ∈ (0, 1], t ∈ [0,T ],
y(t) = Hi(t), t ∈ (ti, si], i = 1, 2, . . . ,m,
y(0) = µDqy(ψ), 0 < ψ < T, q > 0,

(2.2)

AIMS Mathematics Volume 2, Issue 2, 365-376



368

Proof. Suppose y(t) satisfies (2.2). Then for t ∈ [0, t1], integrating the first equation of (2.2) from 0 to
t, we have

y(t) = y(0) −
∫ t

0

(t − s)α−1

Γ(α)
σ(s)ds. (2.3)

Moreover, if t ∈ (si, ti+1], and again integrating the first equation of (2.2) from si to t, we obtain

y(t) = y(si) −
∫ t

si

(t − s)α−1

Γ(α)
σ(s)ds. (2.4)

Now applying the impulsive condition y(t) = Hi(t), t ∈ (ti, si], we get

y(si) = Hi(si). (2.5)

Consequently, from (2.4) and (2.5), we occur

y(t) = Hi(si) −
∫ t

si

(t − s)α−1

Γ(α)
σ(s)ds, (2.6)

and

y(t) = Hi(si) +

∫ si

0

(si − s)α−1

Γ(α)
σ(s)ds −

∫ t

0

(t − s)α−1

Γ(α)
σ(s)ds. (2.7)

Now using the boundary condition y(0) = µDqy(ψ), 0 < ψ < T, we obtain

y(0) = µDqy(ψ) = −µ

∫ ψ

0

(ψ − s)α−q−1

Γ(α − q)
σ(s)ds. (2.8)

Hence, by the definitions of fractional derivatives, integrals, lemma 2.1 and proceeding the steps of
lemma 4.1 [13], it is clear that (2.3), (2.7) and (2.8) imply (2.1). �

By lemma 2.4, we state the following definition.

Definition 2.5. The continuously differentiable function y : [0,T ] → R such that y ∈ PC1([0,T ],R) is
said to be the solution of the system (1.3) if it satisfies the following integral equation

y(t) =


−µ

∫ ψ

0
(ψ−s)α−q−1

Γ(α−q) f (s, y(s))ds −
∫ t

0
(t−s)α−1

Γ(α) f (s, y(s))ds, t ∈ [0, t1],

Hi(t, y(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si, y(si)) +

∫ si

0
(si−s)α−1

Γ(α) f (s, y(s))ds −
∫ t

0
(t−s)α−1

Γ(α) f (s, y(s))ds, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m.

(2.9)

3. Main Results

In this section, we present the main outcomes and existence results of this article.
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3.1. Existence and Uniqueness result via Banach fixed point theorem:

Theorem 3.1. Consider the following condition hold

(A1) There are positive constants L, Lhi , i = 1, 2, . . . ,m, such that

| f (t, y(t)) − f (t, v(t))| ≤ L|y − v|, ∀ t ∈ [0,T ], y, v ∈ R,

|Hi(t, y1) − Hi(t, y2)| ≤ Lhi |y1 − y2|, t ∈ [ti, si], ∀ y1, y2 ∈ R.

Then the system (1.3) has a unique solution on [0,T ] provided ∆ < 1, such that

∆ := max
{ µLψα−q

Γ(α − q + 1)
+

LTα

Γ(α + 1)
, max

i=1,2,...,m
Lhi +

L(tαi+1 + sαi )
Γ(α + 1)

}
.

Proof. First, we transform the problem (1.3) into a fixed point problem. Define an operator F :
PC([0,T ],R)→ PC([0,T ],R) by

(Fy)(t) =


−µ

∫ ψ

0
(ψ−s)α−q−1

Γ(α−q) f (s, y(s))ds −
∫ t

0
(t−s)α−1

Γ(α) f (s, y(s))ds, t ∈ [0, t1],

Hi(t, y(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si, y(si)) +

∫ si

0
(si−s)α−1

Γ(α) f (s, y(s))ds −
∫ t

0
(t−s)α−1

Γ(α) f (s, y(s))ds, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m.

(3.1)

It also observe that F is well defined. Now, we show that F is a contraction mapping. Let y1, y2 ∈

PC([0,T ],R), we have
Case 1. For each t ∈ [0, t1], we get

|(Fy1)(t) − (Fy2)(t)| ≤ µ
∫ ψ

0

(ψ − s)α−q−1

Γ(α − q)
| f (s, y1(s)) − f (s, y2(s))|ds

+

∫ t

0

(t − s)α−1

Γ(α)
| f (s, y1(s)) − f (s, y2(s))|ds

≤ L
[ µψα−q

Γ(α − q + 1)
+

Tα

Γ(α + 1)

]
‖y1 − y2‖PC.

Case 2. For each t ∈ (ti, si], we find

|(Fy1)(t) − (Fy2)(t)| ≤ |Hi(t, y1(t)) − Hi(t, y2(t))| ≤ Lhi‖y1 − y2‖PC.

Case 3. For each t ∈ (si, ti+1], we obtain

|(Fy1)(t) − (Fy2)(t)| ≤ |Hi(si, y1(si)) − Hi(si, y2(si))| +
∫ si

0

(si − s)α−1

Γ(α)
| f (s, y1(s)) − f (s, y2(s))|ds

+

∫ t

0

(t − s)α−1

Γ(α)
| f (s, y1(s)) − f (s, y2(s))|ds

≤
[
Lhi +

L
Γ(α + 1)

(tαi+1 + sαi )
]
‖y1 − y2‖PC.

From the above simulation, we conclude that ‖(Fy1) − (Fy2)‖PC ≤ ∆‖y1 − y2‖PC, which implies that F
is a contraction and ∃ a unique solution y ∈ PC([0,T ],R) on [0,T ]. �
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3.2. Existence result via Krasnoselskiis fixed point theorem:

Theorem 3.2. Suppose that A1 satisfied and the following axioms hold

(A2) There is a constant L f > 0, such that

| f (t, y)| ≤ L f (1 + |y|), t ∈ [si, ti+1], ∀ y ∈ R.

(A3) There exist a function ηi(t), i = 1, 2, . . . ,m, such that

|Hi(t, y)| ≤ ηi(t), t ∈ [ti, si], ∀ y ∈ R.

For the convenience, we also assume that Mi := supt∈[ti,si]ηi(t) < ∞, and K := max{Lhi} < 1, such that
for all i = 1, 2, . . . ,m. Then the system (1.3) has at least one solution.

Proof. For each r > 0, let us consider two operators P and Q on Bα,r = {y ∈ PC([0,T ],R) : ‖y‖PC ≤ r}
such as

(Py)(t) =


0, t ∈ [0, t1],
Hi(t, y(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si, y(si)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m.

and

(Qy)(t) =


−µ

∫ ψ

0
(ψ−s)α−q−1

Γ(α−q) f (s, y(s))ds −
∫ t

0
(t−s)α−1

Γ(α) f (s, y(s))ds, t ∈ [0, t1],

0, t ∈ (ti, si], i = 1, 2, . . . ,m,∫ si

0
(si−s)α−1

Γ(α) f (s, y(s))ds −
∫ t

0
(t−s)α−1

Γ(α) f (s, y(s))ds, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m.

For better readability, we break the proof into a sequence of following steps.
Step 1. Under the assumption (A2), we prove that Py + Qy ∈ Bα,r.

Case 1. For t ∈ [0, t1], we get

|(Py + Qy)(t)| ≤ µ
∫ ψ

0

(ψ − s)α−q−1

Γ(α − q)
| f (s, y(s))|ds +

∫ t

0

(t − s)α−1

Γ(α)
| f (s, y(s))|ds

≤
[ µL fψ

α−q

Γ(α − q + 1)
+

L f Tα

Γ(α + 1)

]
(1 + r) ≤ r.

Case 2. For each t ∈ (ti, si], we have

|(Py + Qy)(t)| ≤ |Hi(t, y(t))| ≤ Mi ≤ r.

Case 3. For each t ∈ (si, ti+1], we obtain

|(Py + Qy)(t)| ≤ |Hi(si, y(si))| +
∫ si

0

(si − s)α−1

Γ(α)
| f (s, y(s))|ds

+

∫ t

0

(t − s)α−1

Γ(α)
| f (s, y(s))|ds
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≤ Mi +
[L f (sαi + tαi+1)

Γ(α + 1)

]
(1 + r) ≤ r.

So, we infer that Py + Qy ∈ Bα,r.

Step 2. By using the condition (A1), we show that P is contraction on Bα,r. Let y1, y2 ∈ Bα,r, we
have

Case 1. For t ∈ [0, t1], we occur

|Py1(t) − Py2(t)| ≤ 0. (3.2)

Case 2. For t ∈ (ti, si], we find

|Py1(t) − Py2(t)| ≤ |Hi(t, y1(t)) − Hi(t, y2(t))| ≤ Lhi‖y1 − y2‖PC. (3.3)

Case 3. For t ∈ (si, ti+1], we obtain

|Py1(t) − Py2(t)| ≤ |Hi(si, y1(si)) − Hi(si, y2(si))| ≤ Lhi‖y1 − y2‖PC. (3.4)

From the above inequalities (3.2), (3.3) and (3.4), we find

‖Py1(t) − Py2(t)‖PC ≤ K‖y1 − y2‖PC.

Hence P is a contraction on Bα,r.
Step 3. In this step, we show that Q is continuous. Let yn be any convergent sequence such that

yn → y in PC([0,T ],R).
Case 1. For each t ∈ [0, t1], we have

|Qyn(t) − Qy(t)| ≤ µ
∫ ψ

0

(ψ − s)α−q−1

Γ(α − q)
| f (s, yn(s)) − f (s, y(s))|ds +

∫ t

0

(t − s)α−1

Γ(α)
| f (s, yn(s)) − f (s, y(s))|ds

≤
[ µψα−q

Γ(α − q + 1)
−

Tα

Γ(α + 1)

]
‖ f (., yn(.)) − f (., y(.))‖PC.

Case 2. For each t ∈ (ti, si], we obtain

|Qyn(t) − Qy(t)| ≤ 0.

Case 3. For each t ∈ (si, ti+1], we occur

|Qyn(t) − Qy(t)| ≤
∫ si

0

(si − s)α−1

Γ(α)
| f (s, yn(s)) − f (s, y(s))|ds +

∫ t

0

(t − s)α−1

Γ(α)
| f (s, yn(s)) − f (s, y(s))|ds

≤
sαi + tαi+1

Γ(α + 1)
‖ f (., yn(.)) − f (., y(.))‖PC.

Thus, we conclude from the above cases that ‖Qyn − Qy‖PC → 0 as n→ ∞.
Step 4. Finally by using the assumption (A2),we show that Q is compact. Since ‖Qy‖PC ≤

L f T
Γ(α+1) (1+

r) < r, so that we can say Q is uniformly bounded on Bα,r. Therefore, it remains to prove that Q maps
bounded set into equicontinuous set of Bα,r.
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Case 1. For each t ∈ [0, t1], 0 ≤ E1 ≤ E2 ≤ t1, y ∈ Bα,r, we obtain

|Qy(E2) − Qy(E1)| ≤
∫ E1

0
(E1−s)α−1−(E2−s)α−1

Γ(α) | f (s, y(s))|ds −
∫ E2

E1

(E2−s)α−1

Γ(α) | f (s, y(s))|ds,

≤

 L f (1+r)
Γ(1+α) {(E

α
2 − Eα

1 ) + 2(E1 − E2)α}, 0 < α < 1,
L f (1+r)
Γ(α+1) (Eα

1 − Eα
2 ), α ≥ 1.

Case 2. For each t ∈ (ti, si], ti < E1 < E2 ≤ si, y ∈ Bα,r, we have

|Qy(E2) − Qy(E1)| = 0.

Case 3. For each t ∈ (si, ti+1], si < E1 < E2 ≤ ti+1, y ∈ Bα,r, we establish

|Qy(E2) − Qy(E1)| ≤

 L f (1+r)
Γ(1+α) {(E

α
2 − Eα

1 ) + 2(E1 − E2)α}, 0 < α < 1,
L f (1+r)
Γ(α+1) (Eα

1 − Eα
2 ), α ≥ 1.

From the above estimation, we observe that |Qy(E2) − Qy(E1)| → 0 as E2 → E1. So the operator Q is
equicontinuous.

Hence, we can say that Q : Bα,r → Bα,r is continuous and completely continuous. With the statement
of Krasnoselskii’s fixed point theorem [13], we explore that F = P + Q has atleast a fixed point on
[0,T ]. The proof is complete. �

3.3. Existence result via Nonlinear Alternative of Leray-Schauder type fixed point theorem:

Theorem 3.3. Assume that

(A4) There exist S f ∈ L1([0,T ],R+), S hi ∈ L1([ti, si],R+) and the continuous nondecreasing functions
ω, ω∗ : [0,∞)→ [0,∞) such that

| f (t, y)| ≤ S f (t)ω(|y|), (t, y) ∈ [0,T ] × R,

and
|hi(t, y)| ≤ S hi(t)ω

∗(|y|), (t, y) ∈ (ti, si] × R.

(A5) There exist a numberM > 0 such that

M

ω∗(M)‖S hi‖L1 + ω(M)‖S f ‖L1 max
(

µψα−q

Γ(α−q+1) + Tα

Γ(α+1) , maxi=1,2,...,m
(siα+tαi+1)
Γ(α+1)

) > 1,

satisfy.

Then the system (1.3) has at least one solution on [0,T ].

Proof. For the proof of this result first we consider an operator F defined as in (3.1) and rest of the part
is divided in the following steps.

Step 1. In starting, we show that F maps bounded sets (balls) into bounded sets in PC([0,T ],R)
sothat we consider a ball Bα,r defined in Theorem 3.2 then by the axiom (A4), we have
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Case 1. For each t ∈ [0, t1], we find

|(Fy)(t)| ≤ µ
∫ ψ

0

(ψ − s)α−q−1

Γ(α − q)
| f (s, y(s))|ds +

∫ t

0

(t − s)α−1

Γ(α)
| f (s, y(s))|ds

≤ S f (s)ω(‖y‖PC)
[ µψα−q

Γ(α − q + 1)
+

Tα

Γ(α + 1)

]
≤ ω(r)‖S f ‖L1

[ µψα−q

Γ(α − q + 1)
+

Tα

Γ(α + 1)

]
.

Case 2. For t ∈ (ti, si], we get

|(Fy)(t)| = |Hi(t, y(t))| ≤ S hi(t)ω
∗(‖y‖PC) ≤ ω∗(r)‖S hi‖L1 .

Case 3. For t ∈ (si, ti+1], we obtain

|(Fy)(t)| ≤ |Hi(si, y(si))| +
∫ si

0

(si − s)α−1

Γ(α)
| f (s, y(s))|ds +

∫ t

0

(t − s)α−1

Γ(α)
| f (s, y(s))|ds

≤ S hi(si)ω∗(‖y‖PC) + S f (s)ω(‖y‖PC)
si
α

Γ(α + 1)
+ S f (s)ω(‖y‖PC)

tαi+1

Γ(α + 1)

≤ ω∗(r)‖S hi‖L1 + ω(r)‖S f ‖L1

(sαi + tαi+1)
Γ(α + 1)

.

Step 2. Now, we shall show that F maps bounded sets into equicontinuous sets of PC([0,T ],R).
Let k1, k2 ∈ [0,T ] with k1 < k2 and y ∈ Bα,r then under the condition (A4), we need to discuss the
following cases

Case 1. For t ∈ [0, t1], we have

|(Fy)(k2) − (Fy)(k1)| ≤
∫ k2

0

(k2 − s)α−1

Γ(α)
| f (s, y(s))|ds +

∫ k1

0

(k1 − s)α−1

Γ(α)
| f (s, y(s))|ds

≤

∫ k1

0

(k2 − s)α−1 + (k1 − s)α−1

Γ(α)
| f (s, y(s))|ds +

∫ k2

k1

(k2 − s)α−1

Γ(α)
| f (s, y(s))|ds

≤
ω(r)
Γ(α)

[ ∫ k1

0
(k2 − s)α−1 + (k1 − s)α−1S f (s)ds +

∫ k2

k1

(k2 − s)α−1S f (s)ds
]
.

Case 2. For t ∈ (ti, si], we get

|(Fy)(k2) − (Fy)(k1)| = |Hi(k2, y(k2)) − Hi(k1, y(k1))|.

Case 3. For t ∈ (si, ti+1], we obtain

|(Fy)(k2) − (Fy)(k1)| ≤
ω(r)
Γ(α)

[ ∫ k1

0
(k2 − s)α−1 + (k1 − s)α−1S f (s)ds +

∫ k2

k1

(k2 − s)α−1S f (s)ds
]
.

As k1 → k2, the right-hand side of above inequalities in Step 2 tends to zero independently of y ∈ Bα,r.
Hence, by the Arzel-Ascoli theorem the operator F : PC([0,T ],R) → PC([0,T ],R) is completely
continuous.
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Step 3. In this last step of the proof, we show that F has a fixed point in E. Let y = κFy for some
κ ∈ (0, 1) then from the conditions (A4) and (A5), we conclude that

Case 1. For t ∈ [0, t1], we have

|y| = |κFy| ≤ ω(‖y‖PC)‖S f ‖L1

[ µψα−q

Γ(α − q + 1)
+

Tα

Γ(α + 1)

]
,

which implies that

‖y‖PC

ω(‖y‖PC)‖S f ‖L1

[
µψα−q

Γ(α−q+1) + Tα

Γ(α+1)

] ≤ 1.

Case 2. For t ∈ (ti, si], we get

|y| = |κFy| ≤ ω∗(‖y‖PC)‖S hi‖L1 ,

which implies that

‖y‖PC

ω∗(‖y‖PC)‖S hi‖L1
≤ 1.

Case 3. For t ∈ (si, ti+1], we obtain

|y| = |κFy| ≤ ω∗(‖y‖PC)‖S hi‖L1 + ω(‖y‖PC)‖S f ‖L1

(si
α + tαi+1)

Γ(α + 1)
,

which implies that

‖y‖PC

ω∗(‖y‖PC)‖S hi‖L1 + ω(‖y‖PC)‖S f ‖L1
(siα+tαi+1)
Γ(α+1)

≤ 1.

According to the assumed condition (A5), we know that there existM such thatM , ‖y‖PC and let

E = {y ∈ PC([0,T ],R) : ‖y‖PC <M}. (3.5)

Thus, we observe that the operator F : E → PC([0,T ],R) is continuous and completely continuous.
There is no y ∈ ∂E such that y = κFy for some κ ∈ (0, 1) with the choice of E. Therefore, by the
nonlinear alternative of Leray-Schauder type Theorem 2.3, we deduce that F has a fixed point y ∈ E
which is a solution of (1.3). The proof is complete. �

4. Example

We consider the following example to verify the uniqueness result:
D

1
4 u(t) =

|u(t)|
(1+et) , t ∈ (0, 1] ∪ (2, 3],

u(t) =
|u(t)|

2(1+|u(t)|) , t ∈ (1, 2],

u(0) = 3D
1
2 u(1

2 ),

(4.1)
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Here, we have α = 1
4 , t ∈ [0, 3], 0 = s0 < t1 = 1 < s1 = 2 < t2 = 3, f (t, u(t)) =

|u(t)|
(1+et) and h1(t, u(t)) =

|u(t)|
2(1+|u(t)|) . Let u1, u2 ∈ R and t ∈ (0, 1] ∪ (2, 3], we obtain | f (t, u1) − f (t, u2)| ≤ 1

2 |u1 − u2|. Let u1, u2 ∈ R

and t ∈ (1, 2],we get |h1(t, u1)−h1(t, u2)| ≤ 1
2 |u1−u2|.Moreover, we have L = 1

2 , µ = .25, ψ = 1
2 , q = 1

2 .

We determine that

µLψα−q

Γ(α − q + 1)
+

LTα

Γ(α + 1)
< 1.

or

max
i=1,2,...,m

Lhi +
L(tαi+1 + sαi )
Γ(α + 1)

< 1.

Since all the assumptions of Theorem 3.1 are satisfied so that the system 4.1 has a unique solution on
[0, 3].
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