Mathematics

Research article

Permutational behavior of reversed Dickson polynomials over finite fields

Kaimin Cheng

School of Mathematics and information, China west normal University, Nanchong 637009, P.R. China

* Correspondence: ckm20@126.com

Abstract

In this paper, we develop the method presented previously by Hong, Qin and Zhao to obtain several results on the permutational behavior of the reversed Dickson polynomial $D_{n, k}(1, x)$ of the $(k+1)$-th kind over the finite field \mathbb{F}_{q}. Particularly, we present the explicit evaluation of the first moment $\sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a)$. Our results extend the results of Hong, Qin and Zhao to the general $k \geq 0$ case.

Keywords: Permutation polynomial; Reversed Dickson polynomial of the ($k+1$)-th kind; Finite field; Generating function

1. Introduction

Permutation polynomials and Dickson polynomials are two of the most important topics in the area of finite fields. Let \mathbb{F}_{q} be the finite field of characteristic p with q elements. Let $\mathbb{F}_{q}[x]$ be the ring of polynomials over \mathbb{F}_{q} in the indeterminate x. If the polynomial $f(x) \in \mathbb{F}_{q}[x]$ induces a bijective map from \mathbb{F}_{q} to itself, then $f(x) \in \mathbb{F}_{q}[x]$ is called a permutation polynomial of \mathbb{F}_{q}. Properties, constructions and applications of permutation polynomials may be found in [4], [5] and [6]. Associated to any integer $n \geq 0$ and a parameter $a \in \mathbb{F}_{q}$, the n-th Dickson polynomials of the first kind and of the second kind, denoted by $D_{n}(x, a)$ and $E_{n}(x, a)$, are defined for $n \geq 1$ by

$$
D_{n}(x, a):=\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i}
$$

and

$$
E_{n}(x, a):=\sum_{i=0}^{\left[\frac{n}{2}\right]}\binom{n-i}{i}(-a)^{i} x^{n-2 i},
$$

respectively, and $D_{0}(x, a):=2, E_{0}(x, a):=1$. It is well known that $D_{n}(x, 0)$ is a permutation polynomial of \mathbb{F}_{q} if and only if $\operatorname{gcd}(n, q-1)=1$, and if $a \neq 0$, then $D_{n}(x, a)$ induces a permutation of \mathbb{F}_{q} if and
only if $\operatorname{gcd}\left(n, q^{2}-1\right)=1$. There are lots of published results on permutational properties of Dickson polynomial $E_{n}(x, a)$ of the second kind (see, for example, [1]).

The reversed Dickson polynomial of the first kind, denoted by $D_{n}(a, x)$, was introduced in [3] and defined as follows

$$
D_{n}(a, x):=\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-i}\binom{n-i}{i}(-x)^{i} a^{n-2 i}
$$

if $n \geq 1$ and $D_{0}(a, x)=2$, where [$\frac{n}{2}$] means the largest integer no more than $\frac{n}{2}$. Wang and Yucas [7] extended this concept to that of the n-th reversed Dickson polynomial of $(k+1)$-th kind $D_{n, k}(a, x) \in$ $\mathbb{F}_{q}[x]$, which is defined for $n \geq 1$ by

$$
\begin{equation*}
D_{n, k}(a, x):=\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-k i}{n-i}\binom{n-i}{i}(-x)^{i} a^{n-2 i} \tag{1.1}
\end{equation*}
$$

and $D_{0, k}(a, x)=2-k$. Some families of permutation polynomials from the revered Dickson polynomials of the first kind were obtained in [3]. Hong, Qin and Zhao [2] studied the revered Dickson polynomial $E_{n}(a, x)$ of the second kind that is defined for $n \geq 1$ by

$$
E_{n}(a, x):=\sum_{i=0}^{\left[\frac{n}{2}\right]}\binom{n-i}{i}(-x)^{i} a^{n-2 i}
$$

and $E_{0}(a, x)=1$. In fact, they gave some necessary conditions for the revered Dickson polynomial $E_{n}(1, x)$ of the second kind to be a permutation polynomial of \mathbb{F}_{q}. Regarding the revered Dickson polynomial $D_{n, 2}(a, x) \in \mathbb{F}_{q}[x]$ of the third kind, from its definition one can derive that

$$
\begin{equation*}
D_{n, 2}(a, x)=a E_{n-1}(a, x) \tag{1.2}
\end{equation*}
$$

for each $x \in \mathbb{F}_{q}$. Using (1.2), one can deduce immediately from [2] the similar results on the permutational behavior of the reversed Dickson polynomial $D_{n, 2}(a, x)$ of the third kind.

In this paper, our main goal is to develop the method presented by Hong, Qin and Zhao in [2] to investigate the reversed Dickson polynomial $D_{n, k}(a, x)$ of the $(k+1)$-th kind which is defined by (1.1) if $n \geq 1$ and $D_{0, k}(a, x):=2-k$. For $a \neq 0$, we write $x=y(a-y)$ with an indeterminate $y \neq \frac{a}{2}$. Then one can rewrite $D_{n, k}(a, x)$ as

$$
\begin{equation*}
D_{n, k}(a, x)=\frac{((k-1) a-(k-2) y) y^{n}-(a+(k-2) y)(a-y)^{n}}{2 y-a} \tag{1.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
D_{n, k}\left(a, \frac{a^{2}}{4}\right)=\frac{(k n-k+2) a^{n}}{2^{n}} \tag{1.4}
\end{equation*}
$$

In fact, (1.3) and (1.4) follow from Theorem 2.2 (i) and Theorem 2.4 (i) below. It is easy to see that if $\operatorname{char}\left(\mathbb{F}_{q}\right)=2$, then $D_{n, k}(a, x)=E_{n}(a, x)$ if k is odd and $D_{n, k}(a, x)=D_{n}(a, x)$ if k is even. We also find that $D_{n, k}(a, x)=D_{n, k+p}(a, x)$, so we can restrict $p>k$. Thus we always assume $p=\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 3$ in what follows.

The paper is organized as follows. First in section 2, we study the properties of the reversed Dickson polynomial $D_{n, k}(a, x)$ of the $(k+1)$-th kind. Subsequently, in Section 3, we prove a necessary condition
for the reversed Dickson polynomial $D_{n, k}(1, x)$ of the $(k+1)$-th kind to be a permutation polynomial of \mathbb{F}_{q} and then introduce an auxiliary polynomial to present a characterization for $D_{n, k}(1, x)$ to be a permutation of \mathbb{F}_{q}. From the Hermite criterion [4] one knows that a function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a permutation polynomial of \mathbb{F}_{q} if and only if the i-th moment

$$
\sum_{a \in \mathbb{F}_{q}} f(a)^{i}=\left\{\begin{aligned}
0, & \text { if } 0 \leq i \leq q-2 \\
-1, & \text { if } i=q-1
\end{aligned}\right.
$$

Thus to understand well the permutational behavior of the reversed Dickson polynomial $D_{n, k}(1, x)$ of the $(k+1)$-th kind, we would like to know if the i-th moment $\sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a)^{i}$ is computable. We are able to treat with this sum when $i=1$. The final section is devoted to the computation of the first moment $\sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a)$.

2. Reversed Dickson polynomials of the $(k+1)$-th kind

In this section, we study the properties of the reversed Dickson polynomials $D_{n, k}(a, x)$ of the $(k+1)$ th kind. Clearly, if $a=0$, then

$$
D_{n, k}(0, x)=\left\{\begin{aligned}
0, & \text { if } n \text { is odd } \\
(-1)^{\frac{n}{2}+1}(k-2) x^{\frac{n}{2}}, & \text { if } n \text { is even. }
\end{aligned}\right.
$$

Therefore, $D_{n, k}(0, x)$ is a PP (permutation polynomial) of \mathbb{F}_{q} if and only if n is an even integer with $\operatorname{gcd}\left(\frac{n}{2}, q-1\right)=1$. In what follows, we always let $a \in \mathbb{F}_{q}^{*}$. First, we give a basic fact as follows.
Lemma 2.1. [4] Let $f(x) \in \mathbb{F}_{q}[x]$. Then $f(x)$ is a PP of \mathbb{F}_{q} if and only if $c f(d x)$ is a PP of \mathbb{F}_{q} for any given $c, d \in \mathbb{F}_{q}^{*}$.

Then we can deduce the following result.
Theorem 2.2. Let $a, b \in \mathbb{F}_{q}^{*}$. Then the following are true.
(i). One has $D_{n, k}(a, x)=\frac{a^{n}}{b^{n}} D_{n, k}\left(b, \frac{b^{2}}{a^{2}} x\right)$.
(ii). We have that $D_{n, k}(a, x)$ is a PP of \mathbb{F}_{q} if and only if $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q}.

Proof. (i). By the definition of $D_{n, k}(a, x)$, we have

$$
\begin{aligned}
\frac{a^{n}}{b^{n}} D_{n, k}\left(b, \frac{b^{2}}{a^{2}} x\right) & =\frac{a^{n}}{b^{n}} \sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-k i}{n-i}\binom{n-i}{i}(-1)^{i} b^{n-2 i} \frac{b^{2 i}}{a^{2 i}} x^{i} \\
& =\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-k i}{n-i}\binom{n-i}{i}(-1)^{i} a^{n-2 i} x^{i} \\
& =D_{n, k}(a, x)
\end{aligned}
$$

as required. Part (i) is proved.
(ii). Taking $b=1$ in part (i), we have

$$
D_{n, k}(a, x)=a^{n} D_{n, k}\left(1, \frac{x}{a^{2}}\right) .
$$

It then follows from Lemma 2.1 that $D_{n, k}(a, x)$ is a PP of \mathbb{F}_{q} if and only if $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q}. This completes the proof of part (ii). So Theorem 2.2 is proved.

Theorem 2.2 tells us that to study the permutational behavior of $D_{n, k}(a, x)$ over \mathbb{F}_{q}, one only needs to consider that of $D_{n, k}(1, x)$. In the following, we supply several basic properties on the reversed Dickson polynomial $D_{n, k}(1, x)$ of the $(k+1)$-th kind. The following result is given in [2].

Lemma 2.3. [2] Let $n \geq 0$ be an integer. Then

$$
D_{n}(1, x(1-x))=x^{n}+(1-x)^{n}
$$

and

$$
E_{n}(1, x(1-x))=\frac{x^{n+1}-(1-x)^{n+1}}{2 x-1}
$$

if $x \neq \frac{1}{2}$.
Theorem 2.4. Each of the following is true.
(i). For any integer $n \geq 0$, we have

$$
D_{n, k}\left(1, \frac{1}{4}\right)=\frac{k n-k+2}{2^{n}}
$$

and

$$
D_{n, k}(1, x)=\frac{(k-1-(k-2) y) y^{n}-(1+(k-2) y)(1-y)^{n}}{2 y-1}
$$

if $x=y(1-y) \neq \frac{1}{4}$.
(ii). If n_{1} and n_{2} are positive integers such that $n_{1} \equiv n_{2}\left(\bmod q^{2}-1\right)$, then one has $D_{n_{1}, k}\left(1, x_{0}\right)=$ $D_{n_{2}, k}\left(1, x_{0}\right)$ for any $x_{0} \in \mathbb{F}_{q} \backslash\left\{\frac{1}{4}\right\}$.
Proof. (i). First of all, it is easy to see that $D_{0, k}\left(1, \frac{1}{4}\right)=2-k=\frac{k \times 0-k+2}{2^{0}}$ and $D_{1, k}\left(1, \frac{1}{4}\right)=1=\frac{k \times 1-k+2}{2^{1}}$. the first identity is true for the cases that $n=0$ and 1 . Now let $n \geq 2$. Then one has

$$
\begin{aligned}
D_{n, k}\left(1, \frac{1}{4}\right) & =\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-k i}{n-i}\binom{n-i}{i}\left(-\frac{1}{4}\right)^{i} \\
& =\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-(k-1) i}{n-i}\binom{n-i}{i}\left(-\frac{1}{4}\right)^{i}+\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{-i}{n-i}\binom{n-i}{i}\left(-\frac{1}{4}\right)^{i} \\
& =D_{n, k-1}\left(1, \frac{1}{4}\right)+\frac{1}{4} \sum_{i=0}^{\left[\frac{n}{2}\right]-1}\binom{n-2-i}{i}\left(-\frac{1}{4}\right)^{i} \\
& =D_{n, k-1}\left(1, \frac{1}{4}\right)+\frac{1}{4} E_{n-2}\left(1, \frac{1}{4}\right),
\end{aligned}
$$

which follows from Theorem 2.2 (1) in [2] that

$$
\begin{aligned}
D_{n, k}\left(1, \frac{1}{4}\right) & =D_{n, 1}\left(1, \frac{1}{4}\right)+(k-1) \frac{1}{4} E_{n-2}\left(1, \frac{1}{4}\right) \\
& =\frac{n+1}{2^{n}}+\frac{(k-1) n-(k-1)}{2^{n}} \\
& =\frac{k n-k+2}{2^{n}}
\end{aligned}
$$

as desired. So the first identity is proved.
Now we turn our attention to the second identity. Let $x \neq \frac{1}{4}$, then there exists $y \in \mathbb{F}_{q^{2}} \backslash\left\{\frac{1}{2}\right\}$ such that $x=y(1-y)$. So by the definition of the n-th reversed Dickson polynomial of the $(k+1)$-th kind, one has

$$
\begin{align*}
D_{n, k}(1, y(1-y)) & =\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-k i}{n-i}\binom{n-i}{i}(-y(1-y))^{i} \\
& =\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{k(n-i)-k n}{n-i}\binom{n-i}{i}(-y(1-y))^{i} \\
& =k \sum_{i=0}^{\left[\frac{n}{2}\right]}\binom{n-i}{i}(-y(1-y))^{i}-(k-1) \sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-i}\binom{n-i}{i}(-y(1-y))^{i} \\
& =k E_{n}(1, y(1-y))-(k-1) D_{n}(1, y(1-y)) . \tag{2.1}
\end{align*}
$$

But Lemma 2.3 gives us that

$$
\begin{equation*}
D_{n}(1, y(1-y))=y^{n}+(1-y)^{n} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}(1, y(1-y))=\sum_{i=0}^{n} y^{n-i}(1-y)^{i}=\frac{y^{n+1}-(1-y)^{n+1}}{2 y-1} . \tag{2.3}
\end{equation*}
$$

Thus it follows from (2.1) to (2.3) that

$$
\begin{aligned}
D_{n, k}(1, x) & =D_{n, k}(1, y(1-y)) \\
& =k E_{n}(1, y(1-y))-(k-1) D_{n}(1, y(1-y)) \\
& =\frac{k y^{n+1}-k(1-y)^{n+1}}{2 y-1}-(k-1)\left(y^{n}+(1-y)^{n}\right) \\
& =\frac{(k-1-(k-2) y) y^{n}-(1+(k-2) y)(1-y)^{n}}{2 y-1}
\end{aligned}
$$

as required. So the second identity holds. Part (i) is proved.
(ii). For each $x_{0} \in \mathbb{F}_{q} \backslash\left\{\frac{1}{4}\right\}$, one can choose an element $y_{0} \in \mathbb{F}_{q^{2}} \backslash\left\{\frac{1}{2}\right\}$ such that $x_{0}=y_{0}\left(1-y_{0}\right)$. Since $n_{1} \equiv n_{2}\left(\bmod q^{2}-1\right)$, one has $y_{0}^{n_{1}}=y_{0}^{n_{2}}$ and $\left(1-y_{0}\right)^{n_{1}}=\left(1-y_{0}\right)^{n_{2}}$. It then follows from part (i) that

$$
\begin{aligned}
D_{n_{1}, k}\left(1, x_{0}\right) & =D_{n_{1}, k}\left(1, y_{0}\left(1-y_{0}\right)\right) \\
& =\frac{\left(k-1-(k-2) y_{0}\right) y_{0}^{n_{1}}-\left(1+(k-2) y_{0}\right)\left(1-y_{0}\right)^{n_{1}}}{2 y_{0}-1} \\
& =\frac{\left(k-1-(k-2) y_{0}\right) y_{0}^{n_{2}}-\left(1+(k-2) y_{0}\right)\left(1-y_{0}\right)^{n_{2}}}{2 y_{0}-1} \\
& =D_{n_{2}, k}\left(1, x_{0}\right)
\end{aligned}
$$

as desired. This ends the proof of Theorem 2.4.

Evidently, by Theorem 2.2 (i) and Theorem 2.4 (i) one can derive that (1.3) and (1.4) are true.
Proposition 2.5. Let $n \geq 2$ be an integer. Then the recursion

$$
D_{n, k}(1, x)=D_{n-1, k}(1, x)-x D_{n-2, k}(1, x)
$$

holds for any $x \in \mathbb{F}_{q}$.
Proof. We consider the following two cases.
Case 1. $x \neq \frac{1}{4}$. For this case, one may let $x=y(1-y)$ with $y \in \mathbb{F}_{q^{2}} \backslash\left\{\frac{1}{2}\right\}$. Then by Theorem 2.4 (i), we have

$$
\begin{aligned}
D_{n-1, k}(1, x)-x D_{n-2, k}(1, x)= & D_{n-1, k}(1, y(1-y))-y(1-y) D_{n-2, k}(1, y(1-y)) \\
= & \frac{(k-1-(k-2) y) y^{n-1}-(1+(k-2) y)(1-y)^{n-1}}{2 y-1} \\
& -y(1-y) \frac{(k-1-(k-2) y) y^{n-2}-(1+(k-2) y)(1-y)^{n-2}}{2 y-1} \\
= & \frac{(k-1-(k-2) y) y^{n}-(1+(k-2) y)(1-y)^{n}}{2 y-1} \\
= & D_{n, k}(1, x)
\end{aligned}
$$

as required.
Case 2. $x=\frac{1}{4}$. Then by Theorem 2.4 (i), we have

$$
\begin{aligned}
D_{n-1, k}\left(1, \frac{1}{4}\right)-\frac{1}{4} D_{n-2, k}\left(1, \frac{1}{4}\right) & =\frac{k(n-1)-k+2}{2^{n-1}}-\frac{1}{4} \frac{k(n-2)-k+2}{2^{n-2}} \\
& =\frac{k n-k+2}{2^{n}} \\
& =D_{n, k}\left(1, \frac{1}{4}\right) .
\end{aligned}
$$

This concludes the proof of Proposition 2.5.
By Proposition 2.5, we can obtain the generating function of the reversed Dickson polynomial $D_{n, k}(1, x)$ of the $(k+1)$-th kind as follows.
Proposition 2.6. The generating function of $D_{n, k}(1, x)$ is given by

$$
\sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n}=\frac{(k-1) t-k+2}{1-t+x t^{2}}
$$

Proof. By the recursion presented in Proposition 2.5, we have

$$
\begin{aligned}
\left(1-t+x t^{2}\right) \sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n} & =\sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n}-\sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n+1}+x \sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n+2} \\
& =(k-1) t-k+2+\sum_{n=0}^{\infty}\left(D_{n+2, k}(1, x)-D_{n+1, k}(1, x)+x D_{n, k}(1, x)\right) t^{n+2} \\
& =(k-1) t-k+2 .
\end{aligned}
$$

Thus the desired result follows immediately.

Lemma 2.7. [3] Let $x \in \mathbb{F}_{q^{2}}$. Then $x(1-x) \in \mathbb{F}_{q}$ if and only if $x^{q}=x$ or $x^{q}=1-x$.
Let V be defined by

$$
V:=\left\{x \in \mathbb{F}_{q^{2}}: x^{q}=1-x\right\} .
$$

Clearly, $\mathbb{F}_{q} \cap V=\left\{\frac{1}{2}\right\}$. Then we obtain a characterization for $D_{n, k}(1, x)$ to be a PP of \mathbb{F}_{q} as follows.
Theorem 2.8. Let $q=p^{e}$ with $p>3$ being a prime and e being a positive integer. Let

$$
f: y \mapsto \frac{(k-1-(k-2) y) y^{n}-(1+(k-2) y)(1-y)^{n}}{2 y-1}
$$

be a mapping on $\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$. Then $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if f is 2 -to- 1 and $f(y) \neq \frac{k n-k+2}{2^{n}}$ for any $y \in\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$.

Proof. First, we show the sufficiency part. Let f be 2-to-1 and $f(y) \neq \frac{k n-k+2}{2^{n}}$ for any $y \in\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$. Let $D_{n, k}\left(1, x_{1}\right)=D_{n, k}\left(1, x_{2}\right)$ for $x_{1}, x_{2} \in \mathbb{F}_{q}$. To show that $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q}, it suffices to show that $x_{1}=x_{2}$, which will be done in what follows.

First of all, one can find $y_{1}, y_{2} \in \mathbb{F}_{q^{2}}$ satisfying $x_{1}=y_{1}\left(1-y_{1}\right)$ and $x_{2}=y_{2}\left(1-y_{2}\right)$. By Lemma 2.7, we know that $y_{1}, y_{2} \in \mathbb{F}_{q} \cup V$. We divide the proof into the following two cases.

Case 1. At least one of x_{1} and x_{2} is equal to $\frac{1}{4}$. Without loss of any generality, we may let $x_{1}=\frac{1}{4}$. So by Theorem 2.4 (i), one derives that

$$
\begin{equation*}
D_{n, k}\left(1, x_{2}\right)=D_{n, k}\left(1, x_{1}\right)=D_{n, k}\left(1, \frac{1}{4}\right)=\frac{k n-k+2}{2^{n}} \tag{2.4}
\end{equation*}
$$

We claim that $x_{2}=\frac{1}{4}$. Assume that $x_{2} \neq \frac{1}{4}$. Then $y_{2} \neq \frac{1}{2}$. Since $f(y) \neq \frac{k n-k+2}{2^{n}}$ for any $y \in\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$, by Theorem 2.4 (i), we get that

$$
D_{n, k}\left(1, x_{2}\right)=\frac{\left(k-1-(k-2) y_{2}\right) y_{2}^{n}-\left(1+(k-2) y_{2}\right)\left(1-y_{2}\right)^{n}}{2 y_{2}-1}=f\left(y_{2}\right) \neq \frac{k n-k+2}{2^{n}},
$$

which contradicts to (2.4). Hence the claim is true, and so we have $x_{1}=x_{2}$ as required.
CASE 2. Both of x_{1} and x_{2} are not equal to $\frac{1}{4}$. Then $y_{1} \neq \frac{1}{2}$ and $y_{2} \neq \frac{1}{2}$. Since $D_{n, k}\left(1, x_{1}\right)=D_{n, k}\left(1, x_{2}\right)$, by Theorem 2.4 (i), one has

$$
\frac{\left(k-1-(k-2) y_{1}\right) y_{1}^{n}-\left(1+(k-2) y_{1}\right)\left(1-y_{1}\right)^{n}}{2 y_{1}-1}=\frac{\left(k-1-(k-2) y_{2}\right) y_{2}^{n}-\left(1+(k-2) y_{2}\right)\left(1-y_{2}\right)^{n}}{2 y_{2}-1},
$$

which is equivalent to $f\left(y_{1}\right)=f\left(y_{2}\right)$. However, f is a 2-to-1 mapping on $\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$, and $f\left(y_{2}\right)=$ $f\left(1-y_{2}\right)$ by the definition of f. It then follows that $y_{1}=y_{2}$ or $y_{1}=1-y_{2}$. Thus $x_{1}=x_{2}$ as desired. Hence the sufficiency part is proved.

Now we prove the necessity part. Let $D_{n, k}(1, x)$ be a PP of \mathbb{F}_{q}. Choose two elements $y_{1}, y_{2} \in$ $\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$ such that $f\left(y_{1}\right)=f\left(y_{2}\right)$, that is,

$$
\begin{equation*}
\frac{\left(k-1-(k-2) y_{1}\right) y_{1}^{n}-\left(1+(k-2) y_{1}\right)\left(1-y_{1}\right)^{n}}{2 y_{1}-1}=\frac{\left(k-1-(k-2) y_{2}\right) y_{2}^{n}-\left(1+(k-2) y_{2}\right)\left(1-y_{2}\right)^{n}}{2 y_{2}-1} . \tag{2.5}
\end{equation*}
$$

Since $y_{1}, y_{2} \in\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$, it follows from Lemma 2.7 that $y_{1}\left(1-y_{1}\right) \in \mathbb{F}_{q}$ and $y_{2}\left(1-y_{2}\right) \in \mathbb{F}_{q}$. So by Theorem 2.4 (i), (2.5) implies that

$$
D_{n, k}\left(1, y_{1}\left(1-y_{1}\right)\right)=D_{n, k}\left(1, y_{2}\left(1-y_{2}\right)\right) .
$$

Thus $y_{1}\left(1-y_{1}\right)=y_{2}\left(1-y_{2}\right)$ since $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q}, which infers that $y_{1}=y_{2}$ or $y_{1}=1-y_{2}$. Since $y_{2} \neq \frac{1}{2}$, one has $y_{2} \neq 1-y_{2}$. Therefore f is a 2-to-1 mapping on $\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$.

Now take $y^{\prime} \in\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$. Then from Lemma 2.7 it follows that $y^{\prime}\left(1-y^{\prime}\right) \in \mathbb{F}_{q}$ and

$$
y^{\prime}\left(1-y^{\prime}\right) \neq \frac{1}{2}\left(1-\frac{1}{2}\right) .
$$

Notice that $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q}. Hence one has

$$
D_{n, k}\left(1, y^{\prime}\left(1-y^{\prime}\right)\right) \neq D_{n, k}\left(1, \frac{1}{2}\left(1-\frac{1}{2}\right)\right) .
$$

But Theorem 2.4 (i) tells us that

$$
D_{n, k}\left(1, \frac{1}{2}\left(1-\frac{1}{2}\right)\right)=\frac{k n-k-2}{2^{n}} .
$$

Then by Theorem 2.4 (i) and noting that $y^{\prime} \neq \frac{1}{2}$, we have

$$
\frac{\left(k-1-(k-2) y^{\prime}\right) y^{\prime n}-\left(1+(k-2) y^{\prime}\right)\left(1-y^{\prime}\right)^{n}}{2 y^{\prime}-1}
$$

which infers that $f\left(y^{\prime}\right) \neq \frac{k n-k-2}{2^{n}}$ for any $y^{\prime} \in\left(\mathbb{F}_{q} \cup V\right) \backslash\left\{\frac{1}{2}\right\}$. So the necessity part is proved.
The proof of Theorem 2.8 is complete.
Now we can use Theorem 2.4 to present an explicit formula for $D_{n, k}(1, x)$ when n is a power of the characteristic p. Then we derive the detailed characterization for $D_{n, k}(1, x)$ being a PP of \mathbb{F}_{q} in this case.

Proposition 2.9. Let $p=\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 3$ and $s \geq 0$ be an integer. Then

$$
2 D_{p^{s}, k}(1, x)+k-2=k(1-4 x)^{\frac{p^{s}-1}{2}} .
$$

Proof. We consider the following two cases.
Case 1. $x \neq \frac{1}{4}$. For this case, putting $x=y(1-y)$ in Theorem 2.4 (i) gives us that

$$
\begin{aligned}
D_{p^{s}, k}(1, x) & =D_{p^{s}, k}(1, y(1-y)) \\
& =\frac{(k-1-(k-2) y) y^{p^{s}}-(1+(k-2) y)(1-y)^{p^{s}}}{2 y-1} \\
& =\frac{\frac{k+(2-k) u}{2}\left(\frac{u+1}{2}\right)^{p^{s}}-\frac{k+(k-2) u}{2}\left(\frac{1-u}{2}\right)^{p^{s}}}{u} \\
& =\frac{1}{2^{p^{s}+1} u}\left((k+(2-k) u)(u+1)^{p^{s}}-(k+(k-2) u)(1-u)^{p^{s}}\right)
\end{aligned}
$$

$$
=\frac{1}{2}\left(k u^{p^{s}-1}-k+2\right),
$$

where $u=2 y-1$. So we obtain that

$$
2 D_{p^{s}, k}(1, x)=k\left(u^{2}\right)^{\frac{v^{s}-1}{2}}-k+2=k\left((2 y-1)^{2}\right)^{\frac{p^{s}-1}{2}}-k+2,
$$

which infers that

$$
2 D_{p^{s}, k}(1, x)+k-2=k(1-4 x)^{\frac{p^{s}-1}{2}}
$$

as desired.
Case 2. $x=\frac{1}{4}$. By Theorem 2.4 (i), one has

$$
2 D_{p^{s}, k}\left(1, \frac{1}{4}\right)+k-2=2 \times \frac{k p^{s}-k+2}{2^{p^{s}}}+k-2=0=k\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}-1}{2}}
$$

as required. So Proposition 2.9 is proved.
It is well known that every linear polynomial over \mathbb{F}_{q} is a PP of \mathbb{F}_{q} and that the monomial x^{n} is a PP of \mathbb{F}_{q} if and only if $\operatorname{gcd}(n, q-1)=1$. Then by Proposition 2.9 , we have the following result.

Corollary 2.10. Let $p \geq 3$ be a prime, $q=p^{e}$ with $e \geq 1$ and $s \geq 0$ be an integer. Then $D_{p^{s}, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $k \geq 1, p=3$, s is odd and $\operatorname{gcd}(s, e)=1$.

Proof. First assume that $D_{p^{s}, k}(1, x)$ is a PP of $\mathbb{F}_{p^{e}}$. It then follows from Proposition 2.9 that $D_{p^{s}, k}(1, x)$ is a PP of $\mathbb{F}_{p^{e}}$ if and only if

$$
\begin{equation*}
k(1-4 x)^{\frac{p^{s}-1}{2}} \tag{2.6}
\end{equation*}
$$

is a PP of $\mathbb{F}_{p^{e}}$. Clearly, $k \geq 1$ and $s>0$ in this case. Suppose $p>3$, then (2.6) is a PP of $\mathbb{F}_{p^{e}}$ if and only if

$$
\operatorname{gcd}\left(\frac{p^{s}-1}{2}, p^{e}-1\right)=1
$$

This is impossible since $\frac{p-1}{2} \left\lvert\, \operatorname{gcd}\left(\frac{p^{s}-1}{2}, q-1\right)\right.$ implies that

$$
\operatorname{gcd}\left(\frac{p^{s}-1}{2}, q-1\right) \geq \frac{p-1}{2}>1 .
$$

So $p=3, k \geq 1$ and $s>0$ in what following. Now Suppose $s>0$ is even, then it is easy to see that $2 \left\lvert\, \operatorname{gcd}\left(\frac{3^{s}-1}{2}, 3^{e}-1\right)\right.$ which is a contradiction. This means that s must be an odd integer and then so is $\frac{3^{s}-1}{2}$. Thus we have that (2.6) is a PP of $\mathbb{F}_{p^{e}}$ if and only if

$$
\operatorname{gcd}\left(\frac{3^{s}-1}{2}, 3^{e}-1\right)=\frac{1}{2} \operatorname{gcd}\left(3^{s}-1,3^{e}-1\right)=\frac{1}{2}\left(3^{\operatorname{scd}(s, e)}-1\right)=1,
$$

which is equivalent to that s is odd and $\operatorname{gcd}(s, e)=1$. So Corollary 2.10 is proved.

3. A necessary condition for $D_{n, k}(1, x)$ to be permutational and an auxiliary polynomial

In this section, we study a necessary condition on n for $D_{n, k}(1, x)$ to be a PP of \mathbb{F}_{q}. On one hand, it is easy to check that

$$
D_{0, k}(1,0)=2-k, D_{n, k}(1,0)=1
$$

for any $n \geq 1$ and $D_{0, k}(1,1)=2-k, D_{1, k}(1,1)=1$. On the other hand, Proposition 2.5 tells us that

$$
D_{n+2, k}(1,1)=D_{n+1, k}(1,1)-D_{n, k}(1,1)
$$

for $n \geq 0$. Then one can easily show that the sequence $\left\{D_{n, k}(1,1) \mid n \in \mathbb{N}\right\}$ is periodic with the smallest positive periods 6 . In fact, one has

$$
D_{n, k}(1,1)=\left\{\begin{array}{rrc}
2-k, & \text { if } n \equiv 0 & (\bmod 6), \\
1, & \text { if } n \equiv 1 & (\bmod 6), \\
k-1, & \text { if } n \equiv 2 & (\bmod 6), \\
k-2, & \text { if } n \equiv 3 & (\bmod 6), \\
-1, & \text { if } n \equiv 4 & (\bmod 6), \\
1-k, & \text { if } n \equiv 5 & (\bmod 6)
\end{array}\right.
$$

So we have the following result.
Theorem 3.1. Assume that $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q} with $q=p^{e}$ and $p>3$. Then $n \not \equiv 1(\bmod 6)$.
Proof. Let $D_{n, k}(1, x)$ be a PP of \mathbb{F}_{q}. Then $D_{n, k}(1,0)$ and $D_{n, k}(1,1)$ are distinct. Then by the above results, the desired result $n \not \equiv 1(\bmod 6)$ follows immediately.

Let n, k be nonnegative integers. We define the following auxiliary polynomial $p_{n, k}(x) \in \mathbb{Z}[x]$ by

$$
p_{n, k}(x):=k \sum_{j \geq 0}\binom{n}{2 j+1} x^{j}-(k-2) \sum_{j \geq 0}\binom{n}{2 j} x^{j}
$$

for $n \geq 1$, and

$$
p_{0, k}(x):=2^{n}(2-k) .
$$

Then we have the following relation between $D_{n, k}(1, x)$ and $p_{n, k}(x)$.
Theorem 3.2. Let $p>3$ be a prime and $n \geq 0$ be an integer. Then each of the following is true.
(i). One has

$$
\begin{equation*}
D_{n, k}(1, x)=\frac{1}{2^{n}} p_{n, k}(1-4 x) . \tag{3.1}
\end{equation*}
$$

(ii). We have that $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $p_{n, k}(x)$ is a PP of \mathbb{F}_{q}.

Proof. (i). Clearly, (3.1) follows from the definitions of $p_{0, k}(x)$ and $D_{0, k}(1, x)$ if $n=0$. Then we assume that $n \geq 1$ in what follows.

First, let $x \in \mathbb{F}_{q} \backslash\left\{\frac{1}{4}\right\}$. Then there exists $y \in \mathbb{F}_{q^{2}} \backslash\left\{\frac{1}{2}\right\}$ such that $x=y(1-y)$. Let $u=2 y-1$. It then follows from Theorem 2.4 (i) that

$$
\begin{aligned}
D_{n, k}(1, x) & =D_{n, k}(1, y(1-y)) \\
& =\frac{(k-1-(k-2) y) y^{n}-(1+(k-2) y)(1-y)^{n}}{2 y-1} \\
& =\frac{1}{u}\left(\frac{-(k-2) u+k}{2}\left(\frac{u+1}{2}\right)^{n}-\frac{(k-2) u+k}{2}\left(\frac{1-u}{2}\right)^{n}\right) \\
& =\frac{1}{2^{n+1} u}\left(k\left((u+1)^{n}-(1-u)^{n}\right)-(k-2) u\left((u+1)^{n}+(1-u)^{n}\right)\right) \\
& \left.=\frac{1}{2^{n}} k \sum_{j \geq 0}\binom{n}{2 j+1} x^{j}-(k-2) \sum_{j \geq 0}\binom{n}{2 j} u^{2 j}\right) \\
& =\frac{1}{2^{n}} p_{n, k}\left(u^{2}\right) \\
& =\frac{1}{2^{n}} p_{n, k}(1-4 y(1-y)) \\
& =\frac{1}{2^{n}} p_{n, k}(1-4 x)
\end{aligned}
$$

as desired. So (3.1) holds in this case.
Consequently, we let $x=\frac{1}{4}$. Then by Theorem 2.4 (i), we have

$$
D_{n, k}\left(1, \frac{1}{4}\right)=\frac{k n-k+2}{2^{n}} .
$$

On the other hand, we can easily check that

$$
p_{n, k}(0)=k n-k+2 .
$$

Therefore

$$
D_{n, k}\left(1, \frac{1}{4}\right)=\frac{1}{2^{n}} p_{n, k}(0)=\frac{1}{2^{n}} p_{n, k}\left(1-4 \times \frac{1}{4}\right)
$$

as one desires. So (3.1) is proved.
(ii). Notice that $\frac{1}{2^{n}} \in \mathbb{F}_{q}^{*}$ and $1-4 x$ is linear. So $D_{n, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $p_{n, k}(x)$ is a PP of \mathbb{F}_{q}. This ends the proof of Theorem 3.2.

4. The first moment $\sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a)$

In this section, we compute the first moment $\sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a)$. By Proposition 2.6, one has

$$
\begin{aligned}
\sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n} & =\frac{(k-1) t-k+2}{1-t+x t^{2}}=\frac{(k-1) t-k+2}{1-t} \frac{1}{1-\frac{t^{2}}{t-1} x} \\
& =\frac{(k-1) t-k+2}{1-t}\left(1+\sum_{m=1}^{q-1} \sum_{\ell=0}^{\infty}\left(\frac{t^{2}}{t-1}\right)^{m+\ell(q-1)} x^{m+\ell(q-1)}\right) \\
& \equiv \frac{2 t-1}{1-t}\left(1+\sum_{m=1}^{q-1} \sum_{\ell=0}^{\infty}\left(\frac{t^{2}}{t-1}\right)^{m+\ell(q-1)} x^{m}\right) \quad\left(\bmod x^{q}-x\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{(k-1) t-k+2}{1-t}\left(1+\sum_{m=1}^{q-1} \frac{\left(\frac{t^{2}}{t-1}\right)^{m}}{1-\left(\frac{t^{2}}{t-1}\right)^{q-1}} x^{m}\right) \\
& =\frac{(k-1) t-k+2}{1-t}\left(1+\sum_{m=1}^{q-1} \frac{(t-1)^{q-1-m} t^{2 m}}{(t-1)^{q-1}-t^{2(q-1)}} x^{m}\right) . \tag{4.1}
\end{align*}
$$

Moreover, by Theorem 2.4 (ii), it follows that for any $x \in \mathbb{F}_{q} \backslash\left\{\frac{1}{4}\right\}$, one has

$$
D_{n_{1}, k}(1, x)=D_{n_{2}, k}(1, x)
$$

when $n_{1} \equiv n_{2}\left(\bmod q^{2}-1\right)$. Thus if $x \neq \frac{1}{4}$, one has

$$
\begin{align*}
\sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n} & =1+\sum_{n=1}^{q^{2}-1} \sum_{\ell=0}^{\infty} D_{n+\ell\left(q^{2}-1\right), k}(1, x) t^{n+\ell\left(q^{2}-1\right)} \\
& =1+\sum_{n=1}^{q^{2}-1} D_{n, k}(1, x) \sum_{\ell=0}^{\infty} t^{n+\ell\left(q^{2}-1\right)} \\
& =1+\frac{1}{1-t^{q^{2}-1}} \sum_{n=1}^{q^{2}-1} D_{n, k}(1, x) t^{n} \tag{4.2}
\end{align*}
$$

Then (4.1) together with (4.2) gives that for any $x \neq \frac{1}{4}$, we have

$$
\begin{align*}
& \sum_{n=1}^{q^{2}-1} D_{n, k}(1, x) t^{n}=\left(\sum_{n=0}^{\infty} D_{n, k}(1, x) t^{n}-1\right)\left(1-t^{q^{2}-1}\right) \\
\equiv & \left(\frac{(k-1) t-k+2}{1-t}-1\right)\left(1-t^{q^{2}-1}\right)+\frac{\left(1-t^{q^{2}-1}\right)((k-1) t-k+2)}{1-t} \sum_{m=1}^{q-1} \frac{(t-1)^{q-1-m} t^{2 m}}{(t-1)^{q-1}-t^{2(q-1)}} x^{m} \quad\left(\bmod x^{q}-x\right) \\
= & \frac{(k t+1-k)\left(1-t^{q^{2}-1}\right)}{1-t}+h(t) \sum_{m=1}^{q-1}(t-1)^{q-1-m} t^{2 m} x^{m} \tag{4.3}
\end{align*}
$$

where

$$
h(t):=\frac{\left(t^{q^{2}-1}-1\right)((k-1) t-k+2)}{(t-1)^{q}-(t-1) t^{2(q-1)}} .
$$

Lemma 4.1. [4] Let $u_{0}, u_{1}, \cdots, u_{q-1}$ be the list of the all elements of \mathbb{F}_{q}. Then

$$
\sum_{i=0}^{q-1} u_{i}^{k}=\left\{\begin{aligned}
0, & \text { if } 0 \leq k \leq q-2 \\
-1, & \text { if } k=q-1
\end{aligned}\right.
$$

Now by Theorem 2.4 (i), Lemma 4.1 and (4.3), we derive that

$$
\sum_{n=1}^{q^{2}-1} \sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a) t^{n}=\sum_{n=1}^{q^{2}-1} D_{n, k}\left(1, \frac{1}{4}\right) t^{n}+\sum_{n=1}^{q^{2}-1} \sum_{a \in \mathbb{F}_{q} \backslash\left\{\frac{1}{4}\right\}} D_{n, k}(1, a) t^{n}
$$

$$
\begin{align*}
& =\sum_{n=1}^{q^{2}-1} \frac{k n-k+2}{2^{n}} t^{n}+\sum_{a \in \mathbb{F}_{q} \backslash\left(\frac{1}{4}\right\}} \frac{(k t+1-k)\left(1-t^{q^{2}-1}\right)}{1-t}+h(t) \sum_{m=1}^{q-1}(t-1)^{q-1-m} t^{2 m} \sum_{a \in \mathbb{F}_{q} \backslash\left\{\frac{1}{4}\right\}} a^{m} \\
& =\sum_{n=1}^{q^{2}-1} \frac{k n-k+2}{2^{n}} t^{n}+(q-1) \frac{(k t+1-k)\left(1-t^{q^{2}-1}\right)}{1-t}+h(t) \sum_{m=1}^{q-1}(t-1)^{q-1-m} t^{2 m} \sum_{a \in \mathbb{F}_{q}} a^{m} \\
& \quad-h(t) \sum_{m=1}^{q-1}(t-1)^{q-1-m} t^{2 m}\left(\frac{1}{4}\right)^{m} \\
& =\sum_{n=1}^{q^{2}-1} \frac{k n-k+2}{2^{n}} t^{n}-\frac{(k t+1-k)\left(1-t^{q^{2}-1}\right)}{1-t}-h(t) t^{2(q-1)}-h(t) \sum_{m=1}^{q-1}(t-1)^{q-1-m} t^{2 m}\left(\frac{1}{4}\right)^{m} . \tag{4.4}
\end{align*}
$$

Since $(t-1)^{q}=t^{q}-1$ and q is odd, one has

$$
\begin{align*}
h(t) & =\frac{\left(t^{q^{2}-1}-1\right)(2 t-1)}{(t-1)^{q}-(t-1) t^{2(q-1)}} \\
& =\frac{\left(t^{q^{2}-1}-1\right)(2 t-1)}{\left(1-t^{q-1}\right)\left(t^{q}-t^{q-1}-1\right)} \\
& =\frac{\left(t^{q^{2}}-t\right)(2 t-1)}{\left(t-t^{q}\right)\left(t^{q}-t^{q-1}-1\right)} \\
& =\frac{\left(t^{q}-t\right)^{q}+t^{q}-t}{t-t^{q}} \cdot \frac{2 t-1}{t^{q}-t^{q-1}-1} \\
& =\frac{\left(-1-\left(t-t^{q}\right)^{q-1}\right)(2 t-1)}{t^{q}-t^{q-1}-1} \\
& =\frac{(2 t-1) \sum_{i=0}^{q^{2}-q} b_{i} t^{i}}{t^{q}-t^{q-1}-1}, \tag{4.5}
\end{align*}
$$

where

$$
\sum_{i=0}^{q^{2}-q} b_{i} t^{i}:=-1-\left(t-t^{q}\right)^{q-1} .
$$

Then by the binomial theorem applied to $\left(t-t^{q}\right)^{q-1}$, we can derive the following expression for the coefficient b_{i}.

Proposition 4.2. For each integer i with $0 \leq i \leq q^{2}-q$, write $i=\alpha+\beta q$ with α and β being integers such that $0 \leq \alpha, \beta \leq q-1$. Then

$$
b_{i}= \begin{cases}(-1)^{\beta+1}\binom{q-1}{\beta}, & \text { if } \alpha+\beta=q-1, \\ -1, & \text { if } \alpha=\beta=0, \\ 0, & \text { otherwise. }\end{cases}
$$

For convenience, let

$$
a_{n}:=\sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a) .
$$

Then by (4.4) and (4.5), we arrive at
$\sum_{n=1}^{q^{2}-1}\left(a_{n}-\frac{k n-k+2}{2^{n}}\right) t^{n}=-\frac{(k t+1-k)\left(1-t^{q^{2}-1}\right)}{1-t}-\frac{(2 t-1) \sum_{i=0}^{q^{2}-q} b_{i} t^{i}}{t^{q}-t^{q-1}-1}\left(t^{2(q-1)}+\sum_{m=1}^{q-1}(t-1)^{q-1-m} t^{2 m}\left(\frac{1}{4}\right)^{m}\right)$,
which implies that

$$
\begin{align*}
& \left(t^{q}-t^{q-1}-1\right) \sum_{n=1}^{q^{2}-1}\left(a_{n}-\frac{k n-k+2}{2^{n}}\right) t^{n} \\
= & -\left(t^{q}-t^{q-1}-1\right)(k t+1-k) \sum_{i=0}^{q^{2}-2} t^{i}-(2 t-1)\left(t^{2(q-1)}+\sum_{k=1}^{q-1}(t-1)^{q-1-k} t^{2 k}\left(\frac{1}{4}\right)^{k}\right) \sum_{i=0}^{q^{2}-q} b_{i} t^{i} . \tag{4.6}
\end{align*}
$$

Let

$$
\sum_{i=1}^{q^{2}+q-1} c_{i} t^{i}
$$

denote the right-hand side of (4.6) and let

$$
d_{n}:=a_{n}-\frac{k n-k+2}{2^{n}}
$$

for each integer n with $1 \leq n \leq q^{2}-1$. Then (4.6) can be reduced to

$$
\begin{equation*}
\left(t^{q}-t^{q-1}-1\right) \sum_{n=1}^{q^{2}-1} d_{n} t^{n}=\sum_{i=1}^{q^{2}+q-1} c_{i} t^{i} \tag{4.7}
\end{equation*}
$$

Then by comparing the coefficient of t^{i} with $1 \leq i \leq q^{2}+q-1$ of the both sides in (4.7), we derive the following relations:

$$
\begin{cases}c_{j}=-d_{j}, & \text { if } 1 \leq j \leq q-1, \\ c_{q}=-d_{1}-d_{q}, & \text { if } 1 \leq j \leq q^{2}-q-1, \\ c_{q+j}=d_{j}-d_{j+1}-d_{q+j}, & \text { if } 0 \leq j \leq q-2, \\ c_{q^{2}+j}=d_{q^{2}-q+j}-d_{q^{2}-q+j+1}, & \\ c_{q^{2}+q-1}=d_{q^{2}-1}, & \end{cases}
$$

from which we can deduce that

$$
\begin{cases}d_{j}=-c_{j}, & \text { if } 1 \leq j \leq q-1, \tag{4.8}\\ d_{q}=c_{1}-c_{q}, & \\ d_{\ell q+j}=d_{(\ell-1) q+j}-d_{(\ell-1) q+j+1}-c_{\ell q+j}, & \text { if } 1 \leq \ell \leq q-2 \text { and } 1 \leq j \leq q-1, \\ d_{\ell q}=d_{(\ell-1) q}-d_{(\ell-1) q+1}-c_{\ell q}, & \text { if } 2 \leq \ell \leq q-2, \\ d_{q^{2}-q+j}=\sum_{i=j}^{q-1} c_{q^{2}+i}, & \text { if } 0 \leq j \leq q-1 .\end{cases}
$$

Finally, (4.8) together with the following identity

$$
\sum_{a \in \mathbb{F}_{q}} D_{n, k}(1, a)=d_{n}+\frac{k n-k+2}{2^{n}}
$$

shows that the last main result of this paper is true:

Theorem 4.3. Let c_{i} be the coefficient of t^{i} in the right-hand side of (4.6) with i being an integer such that $1 \leq i \leq q^{2}+q-1$. Then we have

$$
\begin{aligned}
& \sum_{a \in \mathbb{F}_{q}} D_{j, k}(1, a)=-c_{j}+\frac{k j-k+2}{2^{j}} \text { if } 1 \leq j \leq q-1, \\
& \sum_{a \in \mathbb{F}_{q}} D_{q, k}(1, a)=c_{1}-c_{q}-\frac{k-2}{2}, \\
& \sum_{a \in \mathbb{F}_{q}} D_{\ell q+j, k}(1, a)=\sum_{a \in \mathbb{F}_{q}} D_{(\ell-1) q+j, k}(1, a)-\sum_{a \in \mathbb{F}_{q}} D_{(\ell-1) q+j+1, k}(1, a)-c_{\ell q+j}+\frac{k}{2^{\ell+j}} \\
& \text { if } 1 \leq \ell \leq q-2 \text { and } 1 \leq j \leq q-1, \\
& \sum_{a \in \mathbb{F}_{q}} D_{\ell q, k}(1, a)=\sum_{a \in \mathbb{F}_{q}} D_{(\ell-1) q, k}(1, a)-\sum_{a \in \mathbb{F}_{q}} D_{(\ell-1) q+1, k}(1, a)-c_{\ell q}+\frac{k}{2^{\ell}} \text { if } 2 \leq \ell \leq q-2
\end{aligned}
$$

and

$$
\sum_{a \in \mathbb{F}_{q}} D_{q^{2}-q+j, k}(1, a)=\sum_{i=j}^{q-1} c_{q^{2}+i}+\frac{k j-k+2}{2^{j}} \text { if } 0 \leq j \leq q-1 .
$$

Acknowledgement

Cheng was supported partially by the General Project of Department of Education of Sichuan Province 15ZB0434. [2000]Primary 11T06, 11T55, 11C08.

Conflict of Interest

The author declares no conflicts of interest in this paper.

References

1. S. D. Cohen, Dickson polynomials of the second kind that are permutations, Canad. J. Math., 46 (1994), 225-238.
2. S. Hong, X. Qin and W. Zhao, Necessary conditions for reversed Dickson polynomials of the second kind to be permutational, Finite Fields Appl., 37 (2016), 54-71.
3. X. Hou, G. L. Mullen, J.A. Sellers and J.L. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl., 15 (2009), 748-773.
4. R. Lidl and H. Niederreiter, Finite Fields, second ed., Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 201997.
5. X. Qin and S. Hong, Constructing permutation polynomials over finite fields, Bull. Aust. Math. Soc., 89 (2014), 420-430.
6. X. Qin, G. Qian and S. Hong, New results on permutation polynomials over finite fields, Int. J. Number Theory, 11 (2015), 437-449.
7. Q. Wang and J. L. Yucas, Dickson polynomials over finite fields, Finite Fields Appl., 18 (2012), 814-831.
© 2017, Kaimin Cheng, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
