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Abstract: In this article, we obtain sufficient conditions to obtain finite time blowup in a system
of two coupled nonlinear Schrödinger (NLS) equations in the critical case. This system mainly con-
sidered here in dimension 2, couples one equation including gain and the other one including losses,
constituting a generalization of the model of pulse propagation in birefringent optical fibers. In the
spirit of the seminal work of Glassey, the proofs used the virial technique arguments.
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1. Introduction

Several applications need to solve and study nonlinear Schrödinger (NLS) equations. Hereafter,
a basic model of propagation of weakly dispersive waves is considered by a system of coupled NLS
equations which reads as follows:{

ıut = −∆u + κv + ıγu − (g11|u|2 + g12|v|2)u,
ıvt = −∆v + κu − ıγv − (g12|u|2 + g22|v|2)v,

(1)

with the coefficients of the nonlinear parts being real. The ı is the complex such that ı2 = −1 and
the coefficients κ and γ are positive constants that characterize gain and loss in wave components. This
model is known for its pertinence for several applications of nonlinear optics (as birefringent optics
fiber) and has been studied by several authors [1, 2, 3, 4, 5, 6, 7, 8]. The parameter γ does not influence
the model by a damping phenomenon as it appears in each component of the system by opposite sign
(see for example some studies of damped NLS [9, 10, 11]).

In addition, one recalls that if the parameter γ was equal to zero, the density and the energy would
be time invariants, and the model is known as the Hamiltonian version of the generalized Manakov
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system [5, 6]. In this paper, we focus onto giving sufficient conditions in order to predict that the
solution of the Cauchy problem in the critical case blows up in finite time.

Let us recall that the system (1) is considered as a Parity-Time (PT) symmetric system as soon
as the coefficients g11 = g22, which means that if g11 = g22, the following formal property holds: if
(u(x, t), v(x, t)) solve the system (1), then the pair (uPT (x, t), vPT (x, t) := (v̄(x,−t), ū(x, t)) also solves the
same system (hereafter an overbar stands for the complex conjugation).

The concept of PT-symmetry first emerged from quantum mechanics with the study of pure real
spectra of non-Hermitian operators [12]. But for around one decade this PT-symmetry property gained
a particular relevance due to its importance in several other branches in Physics: optics, Bose-Einstein
Condensates, plasmonic waveguides, electronic circuits, superconductivity,... [13, 7, 14] (and refer-
ences therein). Indeed, the interplay between this property and the nonlinearity of the system seems
to be at the heart of several phenomenon as the behaviour of a single atomic specie in two different
ground states of Bose-Einstein Condensates [15], or the modulational instability of the carrier wave
between two waveguides [14].

The existence of a unique global solution (u(t), v(t)) ∈ C(IR, (H1(IR))2) of the Cauchy problem for
the generalized Manakov system (1) in dimension 1 with (u(0), v(0)) = (u0, v0) ∈ (H1(IR))2 is known
[6]. Also in 1D, we proved recently that if the symmetry is unbroken (γ < κ) the H1-norm of the
solution cannot blow up in finite time [8]. But in higher dimension, the answer is fully different as the
problem is more complex. In the supercritical case, which corresponds to dimension greater or equal
to 3, finite time blowup for the system (1) is obtained under suffisient conditions on the parameters
[16].

But in the critical case, as far as we know, only partial results are available until now [14]. The ex-
istence of finite-time blowup for solutions of a single NLS equation in dimension n ≥ 2 is well known
[17]. Analysis of global existence and blow-up of solutions of the Hamiltonian version of the general-
ized Manakov system have been studied [18, 19]. And solutions of this Hamiltonian version without
linear coupling are known to blow up in finite time in a specific way that is called L2-concentration
(mass concentration) [20]. In our focusing case, as soon as the PT-symmetry is unbroken (γ < κ) and
the nonlinear coefficients g11, g22 and g12 equals to 1, a global solution in (H1(IR2))2 exists for initial
solutions that provide a density remaining limited all over time [6].

Our main contribution is to adapt the sketch of proof that has been developed for the supercritical
case by other authors [16]. But to develop it, we had to modify slightly the second time-derivative
expression by substituting the first integral Stokes variable using the energy equality. Following that,
the proof by contradiction can be led in the spirit of the technique that has been introduced by Glassey
[21]. Assuming that the nonlinear coefficients are such that the quadradic form

ϕ(x, y) = g11x4 + g22y4 + 2g12x2y2

is negative definite, one obtains the non existence of the solution of the Cauchy problem in the interval
[0,T0].

The outline of the paper is the following. The main results consist of gathering in the proposition,
the computations of the time-derivative of the density, the time-derivative of the energy, and the first
and second time-derivative of the mean square momentum. In a second proposition, we focus onto
initial conditions of the Cauchy problem that provide the suffisient blowup conditions of the main
theorem that will follow.
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2. Main results

Let us consider here a local solution in energy space

(u(t), v(t)) ∈ C
(
[−t0, t0],H1(IR2) × H1(IR2)

)
of the Cauchy problem (1)-(u(0), v(0)) = (u0, v0), that is obtained by a modified contraction method
with Stritcharz estimates [22].

Let us recall that in the Hamiltonian case (for γ = 0), it is known that for (u, v) ∈ C(IR; H1(IRn) ×
H1(IRn)), the two following quantities are conserved, namely the density, which is defined by,

Q(t) =
∫

(|u|2 + |v|2)dx,

and the total energy of the system (1)

E(t) =
∫ (
|∇u|2 + |∇v|2 + κ(ūv + uv̄) − g11

2
|u|4 − g22

2
|v|4 − g12|u|2|v|2

)
dx.

In the sequel, we also need to introduce the mean square momentum, and its time derivative

X(t) =
∫
|x|2(|u|2 + |v|2)dx, and Y(t) =

dX(t)
dt
.

In the next proposition some results are recalled for a convenient self-consistent corpus of this paper.

Proposition 2.1. For (u(t), v(t)) ∈ C(IR, (H1(IRn))2) the solution of the Cauchy problem for the gener-
alized Manakov system (1) with (u(0), v(0)) = (u0, v0) ∈ (H1(IRn))2,

dQ
dt
= 2γ

∫
(|u|2 − |v|2)dx, (2)

dE
dt
= 2γ

∫
(|∇u|2 − |∇v|2 − g11|u|4 + g22|v|4)dx, (3)

Y(t) = 4Im
∫

((ux.∇u) + (vx.∇v))dx + 2γ
∫
|x|2(|u|2 − |v|2)dx. (4)

dY
dt
= 4nE(t) + 4(2 − n)

∫
(|∇u|2 + |∇v|2)dx + 4γ2X(t)+

8γIm
∫

((ux.∇u) − (vx.∇v))dx + 8κγIm
∫
|x|2(vu)dx − 8κnRe

∫
uvdx. (5)

Proof. The equalities (2) and (3) are obvious (see [6, 8]).
To prove equality (4), one needs to take the scalar product of the first equality of the system (1) with
2u and the second one with 2v.

Taking the imaginary part of the first computation, one obtains:

∂

∂t
|u|2 = −2Im(u∆u) + 2γ|u|2.
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But, one can aslo write:
∂

∂t
|u|2 = −2∇.(Im(u∇u)) + 2γ|u|2.

Taking the product with |x|2 and after space integration over IRn, one gets:

∂

∂t

∫
|x|2|u|2dx = −2

∫
∇.(Im(u∇u))|x|2dx + 2γ

∫
|x|2|u|2dx.

Following an integration by parts of the first integral of the right hand side, the previous equality
becomes:

∂

∂t

∫
|x|2|u|2dx = 4

∫ n∑
k=1

(Im(u∇u))kxkdx + 2γ
∫
|x|2|u|2dx.

In other words,
∂

∂t

∫
|x|2|u|2dx = 4Im

∫
(ux.∇u)dx + 2γ

∫
|x|2|u|2dx. (6)

Processing in a similar way with the second equality of the system (1), one gets the following equality.

∂

∂t

∫
|x|2|v|2dx = 4Im

∫
(vx.∇v)dx − 2γ

∫
|x|2|v|2dx. (7)

Adding the equalities (6) and (7), one recovers the equality (4).

To prove equality (5), one needs to start by taking the scalar product of the first equality of the
system (1) with (2x.∇u) and the second one with (2x.∇v). Following that, after integrating over IRn

each term of the expression that has been obtained, one takes the real part of their sum to obtain:

2Re
∫
ı

[
(x.∇u)

∂u
∂t
+ (x.∇v)

∂v
∂t

]
dx = −2Re

∫ [
(x.∇u)∆u + (x.∇v)∆v

]
dx

+ 2κRe
∫ [

(x.∇u)v + (x.∇v)u
]

dx + 2γRe
∫
ı
[
(x.∇u)u + (x.∇v)v

]
dx

− 2Re
∫ [

(x.∇u)(g11|u|2 + g12|v|2)u + (x.∇v)(g22|v|2 + g12|v|2)v
]

dx. (8)

First, let us denote by R1, R2, R3 and R4, each term of the right hand side of the equality (8) (in the
same order of appearance), such that the right hand side equals the sum of each Ri.
By several integration by parts, similarly as been done ([22] p. 125, for example), we get

R1 = −2Re
∫ [

(x.∇u)∆u + (x.∇v)∆v
]
dx = (2 − n)

∫
(|∇u|2 + |∇v|2)dx.

Also, the second term of the right-hand-side of equality (8) can be rewritten as

R2 = 2κ
n∑

k=1

∫
Rexk

∂

∂xk
(uv)dx = −2κnRe

∫
uvdx.

By transforming the third term of the right-hand-side of (8), one obtains:

R3 = −2γIm
∫ [

(x.∇u)u − (x.∇v)v
]

dx.
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Expressing
∂u
∂xk
=
∂|u|2
∂xk
− u
∂u
∂xk
,

and similarly for the second component, the first part being real, one obtains by taking the imaginary
part,

R3 = −2γIm
n∑

k=1

∫
xk

(
−u
∂u
∂xk
+ v
∂v
∂xk

)
dx

= 2γIm
∫ [

(ux.∇u) − (vx.∇v)
]

dx.

The last term of the right-hand-side of (8) can be formulated as follows.

R4 = −
n∑

k=1

∫
xk

[
g11|u|2(2Re

∂u
∂xk

u) + g22|v|2(2Re
∂v
∂xk

v)
]

dx

+ g12

n∑
k=1

∫
xk

[
|v|2(2Re

∂u
∂xk

u) + |u|2(2Re
∂v
∂xk

v)
]

dx.

Hence,

R4 = −
n∑

k=1

∫
xk

[
g11|u|2

∂

∂xk
|u|2 + g22|v|2

∂

∂xk
|v|2

]
dx + g12

n∑
k=1

∫
xk

[
|v|2 ∂
∂xk
|u|2 + |u|2 ∂

∂xk
|v|2

]
dx.

Finally, one gets:

R4 = −
n∑

k=1

∫
xk

[
1
2
∂

∂xk
(g11|u|4 + g22|v|4) + g12

∂

∂xk
(|u|2|v|2)

]
dx

=
n
2

∫
(g11|u|4 + g22|v|4)dx + ng12

∫
|u|2|v|2dx.

The left-hand-side of the equality (8) can be also rewritten as follows:

Re
∫
ı

n∑
k=1

xk

[(
∂u
∂xk

u
)

t
− ∂
∂xk

(uut) +
(
∂v
∂xk

v
)

t
− ∂
∂xk

(uut)
]

dx

= − ∂
∂t
Im

∫ [
(x.∇u)u + (x.∇v)v

]
dx − Re

∫
ı

n∑
k=1

xk
∂

∂xk
(uut + vvt)dx,

and one can still use the system (1) to obtain:

Re
∫
ı

n∑
k=1

xk

[(
∂u
∂xk

u
)

t
− ∂
∂xk

(uut) +
(
∂v
∂xk

v
)

t
− ∂
∂xk

(uut)
]

dx

=
∂

∂t
Im

∫ [
(ux.∇u) + (vx.∇v)

]
dx − nRe

∫
(|∇u|2 + |∇v|2)dx
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− nκ
∫

(vu + uv)dx + n
∫

(g11|u|4 + g22|v|4 + 2g12|u|2|v|2)dx.

Consequently, using all the previous computations, equation (8) can be formulated in the following
way, by recovering the energy expression,

∂

∂t
Im

∫ [
(ux.∇u) + (vx.∇v)

]
dx = nE(t) + (2 − n)

∫
(|∇u|2 + |∇v|2)dx

− 2κnRe
∫

uvdx + γIm
∫ [

(ux.∇u) − (vx.∇v)
]
dx. (9)

In other hand, let us take the difference between the scalar product of the first equation of the system
(1) with |x|2u and the second equation with |x|2v. Then, the imaginary part of the computations gives:

1
2
∂

∂t

∫
|x|2(|u|2 − |v|2)dx = 2κIm

∫
|x|2vudx + γX(t). (10)

By summing side by side 4 times equation (9) with 4γ times equation (10), we obtain the final formu-
lation of the second time derivative of X. �

In order to state the main result of this paper, let us now introduce several notations. Following the
introduction, we will consider the quadratic form ϕ(X,Y),

ϕ(X,Y) := g11X4 + g22Y4 + 2g12X2Y2, (11)

that we assume negative definite. This property is valid as soon as the coefficients g11, g22, g12 are all
strictly negative, but also if g11, g22 < 0 and g12 ≤

√
g11g22.

Let us define ρ(t), F(t),M(t) and G(t) four real maps by,

ρ(t) =
∫ t

0

∫ σ

0
(|∇u|2 + |∇v|2 + |u|4 + |v|4)dτdσ,

F(t) = X(0) + Y(0)t + 6E(0)t2 + 3κ
γ2 Q(0)(e2γt − 2γt − 1),

M(t) = sup
τ∈[0,t]

F(τ) + 1,

G(t) = M(t)
(
c1t
2 + exp(γc3t

c2
) − 1

)
,

where the real constants c1, c2 and c3 being as follows

c1 = 4γ2( κγ + 3),

c2 =

{
min(2,−2g11,−2g22) if g12 < 0
min(2, (−2g11 + g12), (−2g22 + g12)) if g12 > 0,

c3 = 24 max(1, |g11|, |g22|).
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Proposition 2.2. Let C0 a real constant defined later according to the initial conditions (u0(x), v0(x))
of the Cauchy problem for the system (1). Let β = γc3

c2
be another constant, and let us define the real

map
M̃(t) = 1 + X(0) +C0(e2γt − 1),

and

T+0 = 1
β ln

(
1 + β2

(1 + X(0))(β2 + c1)

)
T−0 = 1

β ln
(
1 + β2

M̃(T+0 )(β2 + c1)

)
.

(12)

If

E(0) < −
M̃(T+0 )

6(T−0 )2 , (13)

we fix C0 =
|Y(0)|

2γ +
3κ
γ2 Q(0). And if

Y(0) <
6κ
γ

Q(0) −
M̃(T+0 )

T−0
, (14)

we fix C0 =
6|E(0)|
γ2 + 3κ

γ2 Q(0).

Then, there exists T0 ∈ [T−0 ,T
+
0 ] such that the following conditions are satisfied:

F(T0) + 1 < 0, (15)

G(T0) < 1. (16)

The proof of this proposition is similar to that have been done by Dias et. al. [16].

Proof. Let us introduce

G̃(t) := M(t)
(
1 +

c1

β2

)
(eβt − 1) for t > 0.

It is obvious that for t > 0, G̃(t) > G(t) and it can be also easily viewed that lim
0+

G̃ = 0, lim
+∞

G̃ = +∞.

By intermediate value theorem, let us then define T0 as the smallest solution of the equation G̃(T0) = 1.
This automatically implies condition (16), and also,

∀0 < t < T0, T0 <
1
β

ln
(

β2

M(t)(β2 + c1)

)
.

Using the fact that M(t) ≥ F(0) + 1 = 1 + X(0) one obtains that T0 ≤ T+0 .
Moreover, let us first consider that E(0) ≤ 0, then F(t) + 1 − 6E(0)t2 ≤ M̃(t) with t ≥ 0. Therefore,

for all t ∈ [0,T+0 ] one obtains that

M(t) ≤ sup
τ∈[0,t]

F(τ) + 1 − 6E(0)τ2 ≤ sup
τ∈[0,t]

M̃(τ) = M̃(T+0 ),
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which implies that T0 ≥ T−0 .

Condition (13) implies that E(0) < − M̃(T0)
6T 2

0
from which (15) is obtained.

Secondly, let us consider now that condition (14) holds.
Thus, F(t) − Y(0)t + 6κ

γ Q(0)t ≥ F(t) for any Y(0) ≤ 6κ
γ Q(0). Therefore, for all t ∈ [0,T+0 ] one obtains

also that
M(t) ≤ sup

τ∈[0,t]
F(τ) + 1 − Y(0)τ +

6κ
γ

Q(0)τ ≤ sup
τ∈[0,t]

M̃(τ) = M̃(T+0 ),

which implies that T0 ≥ T−0 .
Condition (14) also implies that Y(0) ≤ 6κ

γ Q(0) from which (15) is obtained. �

The Theorem 2.1 will explain how conditions (13) or (14) (which imply (15) and (16) thanks to
Proposition 2.2) can be considered as suffisient blowup conditions as soon as the quadratic form ϕ
defined by (11) is negative definite.

Theorem 2.1. Let n = 2 and let us assume that the coefficients g11 and g22 are strictly negative and
either g12 < 0 or g12 ≤

√
g11g22.

Assuming moreover that the initial data (u0(x), v0(x)) of the Cauchy problem for the system (1) are
chosen such that there exists T0 > 0 for which the two conditions (15) and (16) hold. Then, the solution
of the Cauchy problem for the system (1) does not exist in the interval [0,T0].

Proof. The proof is done by contradiction. With the notations which have been previously introduced,
the first step of the proof is to establish the viriel estimate:

X(t) + c2ρ(t) ≤ c1

∫ t

0

∫ σ

0
X(τ)dτdσ + γc3

∫ t

0
ρ(τ)dτ + F(t), (17)

and secondly, by continuation technique we obtain the non positivity which is unacceptable for a viriel.

Using equality (5) of Proposition 2.1 for n = 2, after decomposition of the last term, we get:

d2X
dt2 = 8E(t) + 4γ2X(t) + 8γIm

∫
((ux.∇u) − (vx.∇v))dx

+ 8κγ
∫
|x|2(vu)dx − 24κRe

∫
uvdx + 8κRe

∫
uvdx.

In order to substitute the last term of the previous rhs, one can use the total energy definition by this
way,

4κ
∫

(uv + uv)dx = 8κRe
∫

uvdx = 4E(t) − 4
∫

(|∇u|2 + |∇v|2)dx

+ 2
∫

(g11|u|4 + g22|v|4 + 2g12|u|2|v|2)dx,

and one obtains
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d2X
dt2 + 4

∫
(|∇u|2 + |∇v|2)dx − 2

∫
(g11|u|4 + g22|v|4 + 2g12|u|2|v|2)dx

= 12E(t) + 4γ2X(t) + 8γIm
∫

((ux.∇u) − (vx.∇v))dx

+ 8κγIm
∫
|x|2(vu)dx − 24κRe

∫
uvdx.

According to equality (3) of Proposition 2.1, the following upper bound is straightforward:

dE
dt
≤ 2γmax(1, |g11|, |g22|)(∥∇u∥2 + ∥∇v∥2 + ∥u∥4L4 + ∥v∥4L4),

and after integration,

E(t) ≤ E(0) +
γc3

12

∫ t

0
(∥∇u∥2 + ∥∇v∥2 + ∥u∥4L4 + ∥v∥4L4)dτ.

Step by step let us formulate an upper bound for the second derivative of the viriel.
Using Cauchy-Schwarz inequality and Young inequality with ε = 2γ, we obtain

8γIm
∫

((ux.∇u) − (vx.∇v))dx ≤ 8γ
∫

(|ux.∇u| + |vx.∇v|)dx,

then,

8γIm
∫

((ux.∇u) − (vx.∇v))dx ≤ 2(∥∇u∥2 + ∥∇v∥2) + 8γ2X. (18)

Also, we get

8κγIm
∫
|x|2(vu)dx ≤ 4κγX, (19)

and using the density upper bound,

24κRe
∫

uvdx = 12κ
∫

(uv + uv)dx ≤ 12κQ(0)e2γt. (20)

With the notations that have been introduced before, and inequalities (18), (19) and (20) the second
derivative of X can be estimated as follows,

d2X
dt2 + c2(|∇u|2 + |∇v|2 + |u|4 + |v|4) ≤ c1X(t)

+ γc3

∫ t

0
(|∇u|2 + |∇v|2 + |u|4 + |v|4)dτ + 12E(0) + 12κQ(0)e2γt.

After successively integrate two times in time, the inequality (17) is obtained.

Now, one can continue as Dias et al. did in [16] by assuming that the solution of the Cauchy problem
for the system (1) exists for all t ∈ [0,T0] with T0 > 0 such that conditions (15) and (16) hold. One can
then define

T1 = sup{t ∈ [0,T0] : X(s) ≤ M(T0) for any s ∈ [0, t]}.
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Due to the viriel estimate (17) and condition (15), one obtains that

X(t) + c2ρ(t) ≤ c1M(T0)
T 2

0

2
+ γc3

∫ t

0
ρ(τ)dτ + M(T0) − 1

< M(T0) + γc3

∫ t

0
ρ(τ)dτ. (21)

Then, the positivity of the viriel and Gronwall’s inequality provides the inequality as follows,

ρ(t) ≤ M(T0)
c2

exp(
γc3

c2
t).

Using this upper bound back into inequality (17) and due to the definition of G(t), we find that

X(t) + c2ρ(t) ≤ M(T0)
(
c1

T 2
0

2
+ exp(

γc3

c2
T0) − 1

)
+ F(t)

≤ G(T0) + F(t).

As the mapping ρ(t) is positive,
X(t) ≤ G(T0) + F(t), (22)

then by taking the least upper bound and using the assumption (16), one obtains

sup
t∈[0,T0]

X(t) ≤ M(T0) − 1 +G(T0) < M(T0).

Thus, T1 = T0, hence using (22) and assumption (16),

X(T0) ≤ F(T0) + 1 < 0.

This non positivity being impossible for a viriel, the proof is done. �

3. Concluding remarks

This paper aims to study blowup phenomenon in finite time for solution of a coupled system of
NLS equations (in critical case) which statisfies a PT-symmetry property. In particular, two sufficient
conditions of finite time blowup have been obtained by adapting a method used recently by Dias et al.
for the problem in the supercritical case. Several complements should be done in the future about this
phenomenon, like estimates of the finite blowup times and a numerical procedure suitable to provide
some illustrations.
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