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Abstract: In this paper, we consider an isentropic Euler-Poisson equations for the bipolar hydrody-
namic model of semiconductor devices, which has a non-flat doping profile and insulating boundary
conditions. Using a technical energy method and an entropy dissipation estimate, we present a frame-
work for the large time behavior of time-increasing weak entropy solutions. It is shown that the weak
solutions converge to the stationary solutions in L2 norm with exponential decay rate. No regularity
and smallness conditions are assumed.
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1. Introduction

In this paper, isentropic Euler-Poisson equations for the bipolar hydrodynamic model of semicon-
ductor devices are considered. This model is as follows

n1t + J1x = 0,

J1t + (
J2

1

n1
+ n1)x = n1E − J1,

n2t + J2x = 0,

J2t + (
J2

2

n2
+ n2)x = −n2E − J2,

Ex = n1 − n2 − D(x),

(1.1)

here n1, n2, J1, J2 and E are the unknown functions of the space variable x ∈ [0, 1] and time variable
t ≥ 0, representing the electron density, the hole density, the electron current density, the hole current
density and the electric field respectively. The function D(x) > 0, usually called the doping profile,
stands for the density of impurities in semiconductor devices. In this paper, we assume the doping

\protect \relax \protect \edef txr{txr}\protect \xdef \U/txexa/m/n/5 {\OT1/txr/m/n/10 }\U/txexa/m/n/5 \size@update \enc@update http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/Math.2017.1.102


103

profile D(x) satisfies
D∗ = sup

x
D(x) ≥ inf

x
D(x) = D∗. (1.2)

For the system (1.1), the initial-boundary conditions are described by

ni(x, 0) = ni0(x) ≥ 0, Ji(x, 0) = Ji0(x),

Ji(0, t) = Ji(1, t) = 0, E(0, t) = E(1, t) = 0, i = 1, 2
(1.3)

with the compatibility condition

Ji0(0) = Ji0(1) = 0, i = 1, 2. (1.4)

When n2 = J2 = 0 in (1.1), the bipolar model turns into the unipolar one, that is
nt + Jx = 0,

Jt + (
J2

n
+ n)x = nE − J,

Ex = n − D(x).

(1.5)

Recently, many efforts are made on the systems (1.1) and (1.5) to considering the large time behav-
ior of their weak entropy solutions. With the smallness assumption on the amplitude of background
electron current, [1] first proved the uniformly bounded density weak entropy solutions of the unipolar
hydrodynamic model (1.5), decay exponentially to the stationary solutions. [3] considered a similar
problem on the bipolar model with a non-flat doping profile. However, the uniform bounded condition

0 ≤ ni(x, t) ≤ C0 (1.6)

in [1] ([3])is stiff and still be open although it seems natural from physical point of view. For example,
the L∞ bounds obtained in [2, 4, 7] grow with time. In this paper, instead of proving the hard bone
(1.6), we will give a large time behavior framework for density time-increasing entropy solutions to
the bipolar hydrodynamic model (1.1) − (1.3). The related work on unipolar model, we can see the
reference [6]. We make some preparation work before to introduce the primary result.

The vector function (n1, n2, J1, J2, E) is a weak solution of problem (1.1) − (1.4), if it satisfies the
equation (1.1) in the distributional sense, verifies the restriction (1.3) and (1.4). Furthermore, a weak
solution of system (1.1) − (1.4) is called an entropy solution if it satisfies the entropy inequality

ηet + qex +
J2

1

n1
+

J2
2

n2
− J1E + J2E ≤ 0 (1.7)

in the sense of distribution. And (ηe, qe) are mechanical entropy-entropy flux pair satisfying
ηe(n1, n2, J1, J2) =

J2
1

2n1
+ n2

1 +
J2

2

2n2
+ n2

2,

qe(n1, n2, J1, J2) =
J3

1

2n2
1

+ 2n1J1 +
J3

2

2n2
2

+ 2n2J2.

(1.8)
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The corresponding stationary system of problem (1.1) − (1.4) is
N1x = N1E,
N2x = −N2E,
Ex = N1 − N2 − D(x)

(1.9)

with the boundary condition

E(0) = E(1) = 0. (1.10)

In reference [5], the author give the following existence and uniqueness Theorem, that is
theorem A Problem (1.9) − (1.10) has an unique stationary solution (N1,N2,E) satisfying

1) D∗ ≤ N1 − N2 ≤ D∗ and there exist positive constant N∗ and N∗ such that 0 < N∗ ≤ N1,N2 ≤ N∗;
2) D∗ − D∗ ≤ E,Ex ≤ D∗ − D∗.

2. results

This following Theorem is main result of this paper.
Theorem 1 (Large time behavior framework). Suppose (n1, n2, J1, J2, E)(x, t) be any L∞ weak entropy
solution to problem (1.1) − (1.4) satisfying

0 ≤ ni(x, t) ≤ Mtα, M ≥ 0, 0 ≤ α ≤ 2, (2.1)

(N1,N2,E)(x, t) be the unique stationary smooth solution. If

(E − E)(x, 0) ∈ L2(R),
2∑

i=1

(
J2

i

2ni
+ (ni − Ni)2)(x, 0) ∈ L1(R), (2.2)

||n1 − n2 − N1 + N2 − D(x)||L∞ <
√
||8(N1 + N2)(x)||L∞ , (2.3)

then there exist positive constants T (α), C, and C̃ such that

∫ 1

0
[(E − E)2(x, t) +

2∑
i=1

(
J2

i

2ni
+ (ni − Ni)2)(x, t)]dx

≤ Ce−C̃t
2−α

2

∫ 1

0
[(E − E)2(x, 0) +

2∑
i=1

(
J2

i

2ni
+ (ni − Ni)2)(x, 0)]dx

(2.4)

for any t > T (α).

With less regularity of the L∞ entropy solutions, we can only obtain zero-order estimates. To get
the exponential time decay estimate between the entropy solution and the corresponding stationary
solution, we need explore the entropy dissipation.
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3. Large time behavior framework of time-increasing entropy solutions

In this part, we will prove the large time behavior framework for the L∞ entropy solutions, in
which the bounds of densities may increase with time, that is Theorem 1. Specifically speaking, for
any global entropy solutions of (1.1) − (1.4) with the densities satisfy (2.1), we get an exponential
decay rate for the electric field and the relative entropy between the entropy solution and the stationary
solution. To this purpose, we introduce new variables

yi(x, t) = −
∫ x

0
(ni(s, t) − Ni(s))ds i = 1, 2. (3.1)

Naturally, yi(i = 1, 2) is absolutely continuous in x for a.e t > 0. Moreover, we have

yix = −(ni − Ni), yit = Ji,

y2 − y1 = E − E, yi(0, t) = yi(1, t) = 0, i = 1, 2.
(3.2)

From (1.1) and the corresponding stationary equation, we get yi (i = 1, 2) admits the equations

yitt + (
y2

it

ni
)x − yixx + yit = (−1)i+1(niE − NiE). (3.3)

Multiplying yi with (3.3) integrating over the spatial domain (0,1) and then adding the results to-
gether for i = 1, 2, we have

2∑
i=1

[
d
dt

∫ 1

0
(yiyit +

1
2

y2
i )dx −

∫ 1

0
(
y2

it

ni
)yixdx +

∫ 1

0
y2

ixdx −
∫ 1

0
y2

itdx]

=

2∑
i=1

(−1)i+1
∫ 1

0
[Ni(y2 − y1)yi +

Ex

2
y2

i ]dx.

(3.4)

We calculate that
2∑

i=1

(−1)i+1
∫ 1

0
[Ni(y2 − y1)yi +

Ex

2
y2

i ]dx

= (−1)i+1
∫ 1

0

n1 − N1 − n2 + N2 − D(x)
2

y2
i dx −

∫ 1

0

N1 + N2

2
(y1 − y2)2dx,

(3.5)

then (3.4) turns into

d
dt

∫ 1

0

2∑
i=1

(yiyit +
y2

i

2
)dx +

2∑
i=1

∫ 1

0
y2

ixdx +
∫ 1

0

N1 + N2

2
(y1 − y2)2dx

=

2∑
i=1

∫ 1

0

Ni

ni
y2

itdx +
∫ 1

0

n1 − N1 − n2 + N2 − D(x)
2

(y2
1 − y2

2)dx.

(3.6)

Noticing

|yi(x)| = |
∫ x

0
yis(s)ds| ≤ x

1
2 (
∫ x

0
y2

isds)
1
2 ≤ x

1
2 (
∫ 1

0
y2

isds)
1
2 , (3.7)
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then we have

||yi||2L2 =

∫ 1

0
y2

i dx ≤
∫ 1

0
x
∫ 1

0
y2

isdsdx ≤ ||yix||2L2

∫ 1

0
xdx =

1
2
||yix||2L2 . (3.8)

While if (2.3) satisfies, we have∫ 1

0
|n1 − N1 − n2 + N2 − D(x)

2
(y1 − y2)(y1 + y2)|dx

≤ (1 − δ)
∫ 1

0
(y1 + y2)2dx +

1
(1 − δ)

∫ 1

0
(y1 − y2)2 (n1 − n2 − N1 + N2 − D(x))2

16
dx

< (1 − δ)
∫ 1

0
(y1 + y2)2dx + (1 − δ̃)

∫ 1

0

N1 + N2

2
(y1 − y2)2dx,

(3.9)

for some small positive constant δ and δ̃ =
δ

1 − δ < 1. To see this, let ε = 2δ > 0, we have

1
(1 − δ)

∫ 1

0
(y1 − y2)2 (n1 − n2 − N1 + N2 − D(x))2

16
dx

<
1

(1 − δ)

∫ 1

0

N1 + N2

2
(y1 − y2)2dx − ε

(1 − δ)

∫ 1

0

N1 + N2

2
(y1 − y2)2dx

=
1 − 2δ
(1 − δ)

∫ 1

0

N1 + N2

2
(y1 − y2)2dx.

(3.10)

Thus (3.6) turns into

d
dt

∫ 1

0

2∑
i=1

(yiyit +
y2

i

2
)dx +

δ

2

∫ 1

0

2∑
i=1

(y2
ix + y2

i )dx + δ̃
∫ 1

0

N1 + N2

2
(y1 − y2)2dx

≤
2∑

i=1

∫ 1

0

Ni

ni
y2

itdx.

(3.11)

Now we explore the entropy dissipation estimate. To this end, we introduce the relative entropy-
entropy flux pair to make full use of the entropy inequality.

The relative entropy-entropy flux are:

η∗(x, t) =
2∑

i=1

( J2
i

2ni
+ n2

i − N2
i − 2Ni(ni − Ni)

)
(x, t)

=

(
ηe −

2∑
i=1

Qi

)
(x, t) ≥ 0,

(3.12)
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q∗(x, t) =
2∑

i=1

( J3
i

2n2
i

+ 2niJi − 2NiJi

)
(x, t)

=

(
qe −

2∑
i=1

Pi

)
(x, t),

(3.13)

where
Qi = N2

i + 2Ni(ni − Ni), Pi = 2NiJi,

ηe and qe are the entropy-entropy flux pair defined in (1.8).
Using the entropy inequality, we have the following estimates on the relative entropy-entropy flux

pair (η∗, q∗):

0 ≥ ηet + qex +
J2

1

n1
+

J2
2

n2
− J1E + J2E

= η∗t + q∗x +
J2

1

n1
+

J2
2

n2
− J1E + J2E + J1E − J2E

= η∗t + q∗x +
y2

1t

n1
+

y2
2t

n2
+

1
2

(y2 − y1)2
t ,

(3.14)

that is
d
dt

∫ 1

0
(η∗ +

1
2

(y2 − y1)2)dx +
∫ 1

0
(
y2

1t

n1
+

y2
2t

n2
)dx ≤ 0. (3.15)

The estimates (3.11) and (3.15) are elemental. Any L∞ weak entropy solutions satisfying (2.3) have
these two estimates. Let λ(t) = Mt

α
2 + N∗ + 1, where M and N∗ are the constants in (2.1) and theorem

A.
Multiplying (3.15) by λ(t) and adding the result to (3.11), we obtain

d
dt

∫ 1

0
[λη∗ +

λ

2
(y2 − y1)2) +

2∑
i=1

(yiyit +
y2

i

2
)]dx − αM

2
t
α
2−1
∫ 1

0
(η∗ +

(y2 − y1)2

2
)dx

+
δ

2

∫ 1

0

2∑
i=1

(y2
ix + y2

i )dx + δ̃
∫ 1

0

N1 + N2

2
(y1 − y2)2dx

+

∫ 1

0
[(λ − N1)

y2
1t

n1
+ (λ − N2)

y2
2t

n2
]dx ≤ 0.

(3.16)

Since η∗ ∼
2∑

i=1

(
y2

it

ni
+ y2

ix) and α < 2, we get

2∑
i=1

δ

4

∫ 1

0
y2

ixdx +
δ̃

2

∫ 1

0

N1 + N2

2
(y1 − y2)2dx +

∫ 1

0
Mt

α
2 (

y2
1t

n1
+

y2
2t

n2
)dx

>
αM

2
t
α
2−1
∫ 1

0
(η∗ +

(y2 − y1)2

2
)dx

(3.17)
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for big enough t > t∗. ∗ Then (3.16) turns into

d
dt

∫ 1

0
[λη∗ +

λ

2
(y2 − y1)2 +

2∑
i=1

(yiyit +
y2

i

2
)]dx +C1[

∫ 1

0

2∑
i=1

(y2
ix + y2

i )dx

+

∫ 1

0

N1 + N2

2
(y1 − y2)2dx +

∫ 1

0
(
y2

1t

n1
+

y2
2t

n2
)dx] ≤ 0,

(3.18)

where C1 = min{δ
4
,
δ̃

2
, 1}.

Since

λη∗ +
λ

2
(y2 − y1)2 +

2∑
i=1

(yiyit +
y2

i

2
)

≤
2∑

i=1

(
√

niy2
i

2
+

y2
it

2
√

ni
+

y2
i

2
+
λy2

it

2ni
+ λO(1)

2∑
i=1

y2
ix) +

λ

2
(y2 − y1)2

≤ O(1)λC1[
2∑

i=1

(y2
ix + y2

i ) +
N1 + N2

2
(y1 − y2)2 + (

y2
1t

n1
+

y2
2t

n2
)],

(3.19)

then there exists positive constant C2 such that (3.18) turns into

d
dt

∫ 1

0
[λη∗ +

λ

2
(y2 − y1)2 +

2∑
i=1

(yiyit +
y2

i

2
)]dx

+
1

C2
t−
α
2

∫ 1

0
[(λη∗ +

λ

2
(y2 − y1)2 +

2∑
i=1

(yiyit +
y2

i

2
)]dx ≤ 0.

(3.20)

Let F(x, t) =
∫ 1

0
[λη∗ +

λ

2
(y2 − y1)2 +

2∑
i=1

(yiyit +
y2

i

2
)]dx, then Gronwal inequality denotes

F(x, t) ≤ e−C3t
2−α

2 F(x, 0) (3.21)

for some positive constant C3 > 0.

∗since we consider the large time behavior, without loss of generality, we always assume t > t∗.
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On the other hand, noticing∫ 1

0
[λη∗ +

λ

2
(y2 − y1)2 +

2∑
i=1

(yiyit +
y2

i

2
)]dx

≥
∫ 1

0
[

2∑
i=1

(−
√

niy2
i

2
−

y2
it

2
√

ni
+
λy2

it

2ni
+

y2
i

2
+ λO(1)y2

ix) +
λ(y2 − y1)2

2
]dx

≥ C4

∫ 1

0
[η∗ +

2∑
i=1

y2
i + (y2 − y1)2]dx

(3.22)

for some constant C4 > 0, we have∫ 1

0
[η∗ +

2∑
i=1

y2
i + (y2 − y1)2]dx

≤ C5e−C3t
2−α

2

∫ 1

0
[η∗ +

2∑
i=1

y2
i + (y2 − y1)2](x, 0)dx

(3.23)

for some constant C5 > 0. Thus, we prove Theorem 1.

4. Remark on the assumption (2.3)

The assumption (2.3) is important to get relation (3.11). However, if we suppose

max
i=1,2
|Ni − ni + (−1)i+1D(x)| < 4, (4.1)

(3.11) can be obtained too. To see this, we calculate∫ 1

0

n1 − N1 − n2 + N2 − D(x)
2

(y2
1 − y2

2)dx

=
1
2

∫ 1

0
(y2x − y1x − D(x))(y2

1 − y2
2)dx

=
1
2

[
∫ 1

0
(y2x − D(x))y2

1dx +
∫ 1

0
(y1x + D(x))y2

2dx]

< 2
∫ 1

0
(y2

1 + y2
2)dx.

(4.2)

It is worthy to point out that (4.1) indicates that ni is bounded with respect to x and t. While the
assumption (2.3) permits the bounds of ni (i = 1, 2) grow with time.
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