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Abstract: In this paper, we will establish a sufficient condition for the regularity criterion to the
3D MHD equation in terms of the derivative of the pressure in one direction. It is shown that if the
partial derivative of the pressure ∂3π satisfies the logarithmical Serrin type condition ∂3π satisfies the
logarithmical Serrin type condition

∫ T

0

∥∂3π(s)∥
2

2−r
·
M2, 3r

1 + ln(1 + ∥b(s)∥L4)
ds < ∞ for 0 < r < 1,

then the solution (u, b) remains smooth on [0,T ]. Compared to the Navier-Stokes result, there is a
logarithmic correction involving b in the denominator.
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1. Introduction

The MHD equation plays a significant role of mathematical model in fluid dynamics, which can be
stated as follows : 

∂tu − ∆u + u · ∇u + ∇π − b · ∇b = 0,
∂tb − ∆b + u · ∇b − b · ∇u = 0,
∇ · u = ∇ · b = 0,
u (x, 0) = u0 (x) , b (x, 0) = b0 (x) .

(1.1)

Here u = u(x, t) ∈ R3 is the velocity field, π = π(x, t) ∈ R, b = b(x, t) ∈ R3 denote the velocity vector,
scalar pressure and the magnetic field of the fluid, respectively, while u0(x) and b0(x) are given initial
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velocity and initial magnetic fields with ∇ · u0 = ∇ · b0 = 0 in the sense of distribution.
In their work, Sermange and Temam [19] (see also Duvaut and Lions [6]) proved that the MHD

equations admit at least one global weak solution for any divergence-free initial data (u0, b0) ∈ L2(R3)
and it has a (unique) local strong solution, if additionally, (u0, b0) belongs to some Sobolev space
H s(R3) with s ≥ 3. However, whether a local strong solution can exist globally, or equivalently,
whether global weak solutions are smooth is an open and challenge problem.

There are many known mathematical results on the three-dimentional MHD equations (see [4, 5, 10,
14, 20, 21, 22, 25, 26] and the references therein). Realizing the dominant role played by the velocity
field, He and Xin [10] were able to derive criteria in terms of the velocity field u alone. In particular,
a scaling invariant regularity criterion in terms of u was established (also by Zhou [25] independently)
which shows that a weak solution (u, b) is smooth on a time interval (0,T ] if

∇u ∈ Lα(0,T ; Lγ(R3)) with 1 ≤ α < ∞, 3/2 < γ ≤ ∞ and
2
α
+

3
γ
= 2.

Moreover, the problem of so-called “regularity criteria via partial components” was shown in [3, 9, 11,
12, 13, 15, 17, 23, 24, 27].

Recently, Cao and Wu in [3] presented the regularity criteria on the derivatives of the pressure in
one direction. More precisely, they proved that if

∂π

∂x3
(x, t) ∈ Lα

(
0,T ; Lγ(R3)

)
with

2
α
+

3
γ
≤ 7

4
and

12
7
≤ γ ≤ ∞, (1.2)

then (u, b) is smooth on R3 × [0,T ]. Later, [13] and [24] improve condition (1.2) as:

∂π

∂x3
(x, t) ∈ Lα

(
0,T ; Lγ(R3)

)
with

2
α
+

3
γ
≤ 2 and

3
2
≤ γ ≤ ∞. (1.3)

Very recently, Benbernou et al. [2] extend (1.3) to the homogeneous Morrey-Campanato space
·
M2, 3r

(R3). to obtain the regularity of weak solutions. This space has been used successfully in the
study of the uniqueness of weak solutions for the Navier-Stokes equations in [16] where it is pointed
out that

L
3
r
(
R3

)
⊂ L

3
r ,∞

(
R3

)
⊂

.

M2, 3r

(
R3

)
.

The purpose of this manuscript is to establish a logarithmically improved regularity criterion in
terms of the derivatives of the pressure in one direction of the systems (1.1). Our result can be stated
as follows.

Theorem 1.1. (regularity criterion) Let (u0, b0) ∈ L2(R3)∩L4(R3) with ∇·u0 = ∇·b0 = 0. Suppose that
(u, b) is a weak solution to the MHD equations (1.1) in the time interval [0,T ) for some 0 < T < ∞. If
the pressure π(x, t) satisfies the condition :

∫ T

0

∥∂3π(s)∥
2

2−r
·
M2, 3r

1 + ln(1 + ∥b∥L4)
ds < ∞ for 0 < r < 1,

then (u, b) is a regular solution on R3 × [0,T ].
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Theorem 1.1 is also true for the 3-D incompressible Navier-Stokes equations, so it gives extensions
for previous results in [2, 1, 3, 12, 17, 23]. Definitions and basic properties of the Morrey-Campanato
spaces can be find in [28] and the references therein. For concision, we omit them here.

Now we are in the position to prove Theorem 1.1.

2. Proof of Theorem 1.1

Throughout this paper, C denotes a generic positive constant (generally large), it may be different
from line to line. In order to prove regularity, we need to establish the L4 bound of (u, b) and the desired
regularity then follows from the standard Serrin-type criteria on the 3D MHD equations.

Instead of considering the equations in the form (1.1), we rewrite it in the following form as that
in [7, 8]: 

∂tw+ + w− · ∇w+ = ∆w+ − ∇π,
∂tw− + w+ · ∇w− = ∆w− − ∇π,
∇ · w+ = ∇ · w− = 0,
w+(x, 0) = u0 + b0, w−(x, 0) = u0 − b0,

(2.1)

with w± := u ± b.
First, taking the inner product of (2.1)1 with (0, 0,w+3

∣∣∣w+3 ∣∣∣2), we have

1
4

d
dt

∫
R3

∣∣∣w+3 ∣∣∣4 dx +
∫
R3

(w− · ∇)w+3 .
∣∣∣w+3 ∣∣∣2 dx

=

∫
R3
∆w+3

∣∣∣w+3 ∣∣∣2 dx −
∫
R3

∂π

∂x3
w+3

∣∣∣w+3 ∣∣∣2 dx.

Integrating by parts over R3 and using the divergence free property ∇ · w+ = 0 into account, we get∫
R3

(w− · ∇)w+3 ·
∣∣∣w+3 ∣∣∣2 dx = 0.

For the second integral term, applying the integration by parts and the incompressible conditions again
yield ∫

R3
∆w+3

∣∣∣w+3 ∣∣∣2 dx = −3
4

∫
R3

∣∣∣∣∇ ∣∣∣w+3 ∣∣∣2∣∣∣∣2 dx.

We easily get
1
4

d
dt

∫
R3

∣∣∣w+3 ∣∣∣4 dx +
3
4

∫
R3

∣∣∣∣∇ ∣∣∣w+3 ∣∣∣2∣∣∣∣2 dx = −
∫
R3

∂π

∂x3
w+3

∣∣∣w+3 ∣∣∣2 dx. (2.2)

Similarly, taking the inner product of the second equation of (2.1) with (0, 0,w−3
∣∣∣w−3 ∣∣∣2), we obtain

1
4

d
dt

∫
R3

∣∣∣w−3 ∣∣∣4 dx +
3
4

∫
R3

∣∣∣∣∇ ∣∣∣w−3 ∣∣∣2∣∣∣∣2 dx = −
∫
R3

∂π

∂x3
w−3

∣∣∣w−3 ∣∣∣2 dx. (2.3)

Summing (2.2) and (2.3) together yields

1
4

d
dt

∫
R3

(∣∣∣w+3 ∣∣∣4 + ∣∣∣w−3 ∣∣∣4) dx +
3
4

∫
R3

(∣∣∣∣∇ ∣∣∣w+3 ∣∣∣2∣∣∣∣2 + ∣∣∣∣∇ ∣∣∣w−3 ∣∣∣2∣∣∣∣2) dx
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= −
∫
R3

∂π

∂x3
w+3

∣∣∣w+3 ∣∣∣2 dx −
∫
R3

∂π

∂x3
w−3

∣∣∣w−3 ∣∣∣2 dx

= J1 + J2. (2.4)

In what follows, we will deal with each term on the right-hand side of (2.4) separately. We estimate∥∥∥∥ ∂π∂x3
·
∣∣∣w+3 ∣∣∣2∥∥∥∥L2

as follows :∥∥∥∥∥ ∂π∂x3
·
∣∣∣w+3 ∣∣∣2∥∥∥∥∥

L2
≤ C

∥∥∥∥∥ ∂π∂x3

∥∥∥∥∥ ·
M2, 3r

∥∥∥∥∣∣∣w+3 ∣∣∣2∥∥∥∥ .Br
2,1

≤ C
∥∥∥∥∥ ∂π∂x3

∥∥∥∥∥ ·
M2, 3r

∥∥∥∥∇ ∣∣∣w+3 ∣∣∣2∥∥∥∥r

L2

∥∥∥∥∣∣∣w+3 ∣∣∣2∥∥∥∥1−r

L2
.

Here we have used the following inequality due to Machihara and Ozawa [18]

∥ f ∥ .Br
2,1
≤ C ∥ f ∥1−r

L2 ∥∇ f ∥rL2 for 0 < r < 1.

Hence, it follows from the Hölder inequality and Young’s inequality that

|J1| ≤
∫
R3

∣∣∣∣∣ ∂π∂x3

∣∣∣∣∣ |w+3 |3dx

≤ C
∥∥∥∥∥ ∂π∂x3

·
∣∣∣w+3 ∣∣∣2∥∥∥∥∥

L2

∥∥∥w+3
∥∥∥

L2

≤ C

∥∥∥∥∥ ∂π∂x3

∥∥∥∥∥ 2
1−r

·
M2, 3r

∥∥∥w+3
∥∥∥4

L4


1−r

2 (∥∥∥∥∇ ∣∣∣w+3 ∣∣∣2∥∥∥∥2

L2

) r
2
(∥∥∥w+

∥∥∥2

L2

) 1
2

≤ C
∥∥∥∥∥ ∂π∂x3

∥∥∥∥∥ 2
1−r

·
M2, 3r

∥∥∥w+3
∥∥∥4

L4 +
1
2

∥∥∥∥∇ ∣∣∣w+3 ∣∣∣2∥∥∥∥2

L2
+C

∥∥∥w+
∥∥∥2

L2 , (2.5)

Note that the weak solution (u, b) ∈ L∞(0,T ; L2(R3)), this leads to

(w+,w−) ∈ L∞(0,T ; L2(R3)).

Similarly, one can prove that

|J2| ≤ C
∥∥∥∥∥ ∂π∂x3

∥∥∥∥∥ 2
1−r

·
M2, 3r

∥∥∥w−3
∥∥∥4

L4 +
1
2

∥∥∥∥∇ ∣∣∣w−3 ∣∣∣2∥∥∥∥2

L2
+C

∥∥∥w−
∥∥∥2

L2 . (2.6)

Substituting (2.5) and (2.6) into (2.4), we obtain

1
4

d
dt

∫
R3

(∣∣∣w+3 ∣∣∣4 + ∣∣∣w−3 ∣∣∣4) dx +
1
4

∫
R3

(∣∣∣∣∇ ∣∣∣w+3 ∣∣∣2∣∣∣∣2 + ∣∣∣∣∇ ∣∣∣w−3 ∣∣∣2∣∣∣∣2) dx

≤ C

∥∥∥∥∥ ∂π∂x3

∥∥∥∥∥ 2
1−r

·
M2, 3r

+ 1

 (∥∥∥w+3
∥∥∥4

L4 +
∥∥∥w−3

∥∥∥4

L4

)
, (2.7)
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for all 0 ≤ t < T . Setting

J =
∥∥∥∥∥ ∂π∂x3

∥∥∥∥∥ 2
1−r

·
M2, 3r

(
e +

∥∥∥w+3
∥∥∥4

L4 +
∥∥∥w−3

∥∥∥4

L4

)
.

On the other hand, we see that

1 + ln (1 + ∥b∥L4) ≤ 1 + ln
(
1 + ∥b∥4L4 +

9
8

)
≤ 1 + ln

(
e + ∥b∥4L4

)
,

where we have used the following inequality

x ≤ x4 +
9
8

for all x ≥ 0.

Consequently, J can be estimated as follows:

J =

∥∥∥∥ ∂π∂x3

∥∥∥∥ 2
1−r
·
M2, 3r

1 + ln(1 + ∥b∥L4)
(e +

∥∥∥w+3
∥∥∥4

L4 +
∥∥∥w−3

∥∥∥4

L4) [1 + ln(1 + ∥b∥L4)]

≤

∥∥∥∥ ∂π∂x3

∥∥∥∥ 2
1−r
·
M2, 3r

1 + ln(1 + ∥b∥L4)
(e +

∥∥∥w+3
∥∥∥4

L4 +
∥∥∥w−3

∥∥∥4

L4)
[
1 + ln(e + ∥b∥4L4)

]
(2.8)

≤

∥∥∥∥ ∂π∂x3

∥∥∥∥ 2
1−r
·
M2, 3r

1 + ln(1 + ∥b∥L4)
(e +

∥∥∥w+3
∥∥∥4

L4 +
∥∥∥w−3

∥∥∥4

L4)
[
1 + ln(e +

∥∥∥w+3
∥∥∥4

L4 +
∥∥∥w−3

∥∥∥4

L4)
]
.

Inserting (2.8) into (2.7) and setting

F(t) = e +
∥∥∥w+3 (t)

∥∥∥4

L4 +
∥∥∥w−3 (t)

∥∥∥4

L4 ,

we obtain

dF
dt
≤ C

∥∥∥∥ ∂π∂x3

∥∥∥∥ 2
1−r
·
M2, 3r

1 + ln(1 + ∥b∥L4)
(1 + ln F)F +CF.

for all t ∈ [0,T ]. Thank’s to Gronwall inequality, we get

F(t) ≤ F(0) exp

C
∫ t

0

∥∥∥∥ ∂π∂x3
(s)

∥∥∥∥ 2
1−r
·
M2, 3r

1 + ln(1 + ∥b(s)∥L4)
(1 + ln F(s))ds

 exp(CT ),

which implies

1 + ln F(t) ≤ CT + ln F(0) +C
∫ t

0

∥∥∥∥ ∂π∂x3
(s)

∥∥∥∥ 2
1−r
·
M2, 3r

1 + ln(1 + ∥b(s)∥L4)
(1 + ln F(s))ds.

AIMS Mathematics Volume 2, Issue 1, 16-23



21

Applying Gronwall’s inequality again, one has

ln F(t) ≤ c(u0, b0,T ) exp

C
∫ T

0

∥∥∥∥ ∂π∂x3
(s)

∥∥∥∥ 2
1−r
·
M2, 3r

1 + ln(1 + ∥b(s)∥L4)
ds

 ,
which implies that

sup
0≤t≤T

(
∥∥∥w+(., t)

∥∥∥
L4 +

∥∥∥w−(., t)
∥∥∥

L4) < ∞ (2.9)

Hence, it follows from the triangle inequality and (2.9) that

sup
0≤t≤T
∥u(., t)∥L4 =

1
2

sup
0≤t≤T
∥(u + b)(., t) + (u − b)(., t)∥L4

≤ 1
2

sup
0≤t≤T

(∥(u + b)(., t)∥L4 + ∥(u − b)(., t)∥L4)

≤ 1
2

sup
0≤t≤T

(
∥∥∥w+(., t)

∥∥∥
L4 +

∥∥∥w−(., t)
∥∥∥

L4) < ∞

and

sup
0≤t≤T
∥b(., t)∥L4 =

1
2

sup
0≤t≤T
∥(u + b)(., t) − (u − b)(., t)∥L4

≤ 1
2

sup
0≤t≤T

(∥(u + b)(., t)∥L4 + ∥(u − b)(., t)∥L4)

≤ 1
2

sup
0≤t≤T

(
∥∥∥w+(., t)

∥∥∥
L4 +

∥∥∥w−(., t)
∥∥∥

L4) < ∞.

Thus,
sup

0≤t≤T
(∥u(., t)∥L4 + ∥b(., t)∥L4) < ∞. (2.10)

This completes the proof of Theorem 1.1.
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